Advanced Computer Graphics Introduction

Matthias Teschner

Computer Graphics

Modeling - Rendering - Simulation

© Warner Bros. Scanline VFX V-Ray

Outline

- Organization
- Concepts
- Applications
- History

Graphics Courses

- Key course
 - Image processing and computer graphics (modeling, rendering, simulation)
- Specialization courses
 - Advanced computer graphics (global illumination)
 - Simulation in computer graphics (solids and fluids)
- B.Sc. / M.Sc. project, lab course, B.Sc. / M.Sc. thesis
 - Simulation track, rendering track
 - By appointment per email, semester-aligned

Seminars / Projects / Theses in Graphics

Semester	Simulation Track	Rendering Track
Winter	Simulation Course	
Summer	Key Course Lab Course - Simple fluid solver Simulation Seminar	Key Course Lab Course - Simple Ray Tracer Rendering Seminar
Winter	Master Project - PPE fluid solver Rendering Seminar	Rendering Course Master Project - Monte Carlo RT Simulation Seminar
Summer	Master Thesis Research-oriented topic	Master Thesis Research-oriented topic

Course Goals

- Concepts for image synthesis / global illumination approaches
- Governing equation and solution techniques
 - Radiometric quantities
 - Rendering equation
 - Radiosity
 - Monte Carlo ray tracing
- Requirements:
 - Key course in graphics and image processing

 Slide sets and video recordings on https://cg.informatik.uni-freiburg.de/teaching.htm

 Matt Pharr, Wenzel Jakob, Greg Humphreys Physically Based Rendering Morgan Kaufmann http://www.pbr-book.org/

 Philip Dutre, Kavita Bala, Philippe Bekaert Advanced Global Illumination
 A K Peters

Peter Shirley, R. Keith Morley
 Realistic Ray Tracing
 A K Peters

Andrew Glassner
 Principles of Digital Image Synthesis

Available online from http://www.realtimerendering.com

Peter Shirley
 Raytracing in one Weekend
 Raytracing – The Next Week
 Raytracing – The Rest of Your
 Life

Available online from https://raytracing.github.io/

Exercises

- Development of ray tracing components
- Check web page for information and example frameworks
- Voluntary

Exam

- Written
- Based on slide sets and recordings
- Relevant material will be summarized
- Text exam on our web page

Outline

- Organization
- Concepts
- Applications
- History
- Summary

Light

- Modeled as energy parcels / photons that travel
 - Along geometric rays (radiance L)
 - At infinite speed
- Emitted by light sources
- Scattered / absorbed at surfaces
- Scattered / absorbed by participating media
- Absorbed / measured by sensors

Light

Light travels along rays

Light is generated at light sources Incoming light is scattered and absorbed at surfaces

Participating media scatters and absorbs light Sensors absorb light

Color

- Photons are characterized by a wavelength within the visible spectrum
- Distribution of wavelengths ⇒ spectrum ⇒ color

$$\Phi_{\lambda}(\lambda_1)$$

$$\Phi_{\lambda}(\lambda_2)$$

$$\Phi = \int_{\text{VisibleSpectrum}} \Phi_{\lambda}(\lambda) d\lambda$$

$$\approx \sum_{i} \Phi_{\lambda}(\lambda_{i}) \Delta \lambda_{i}$$

$$\approx \Phi_{\rm red} \Delta \lambda + \Phi_{\rm green} \Delta \lambda + \Phi_{\rm blue} \Delta \lambda$$

$$\Phi_{\lambda}(\lambda_3)$$

 $\Phi_{\lambda}(\lambda)$: number of photons per time with a wavelength in a range $\Delta\lambda_i$ around λ_i .

Governing Equations

- Light transport is governed by surfaces and by participating media
- Interactions of light with surfaces and volumes are described by governing equations
 - Rendering equation
 - Volume rendering equation

Light at Surfaces - Rendering Equation

 Governing equation for reflected light at surfaces into a particular direction given incident light from all directions

Light in Volumes

 Governing equations for light changes along rays through participating media, e.g. haze or fog

$$L(\mathbf{p}_1, \boldsymbol{\omega}) = L(\mathbf{p}, \boldsymbol{\omega}) + s \frac{\mathrm{d}L}{\mathrm{d}s}$$

$$\frac{\mathrm{d}L}{\mathrm{d}s} = -\kappa L(\boldsymbol{p}, \boldsymbol{\omega})$$

$$\frac{\mathrm{d}L}{\mathrm{d}s} = L_e(\boldsymbol{p}, \boldsymbol{\omega})$$

$$\frac{\mathrm{d}L}{\mathrm{d}s} = -\sigma L(\boldsymbol{p}, \boldsymbol{\omega})$$

$$\frac{\mathrm{d}L}{\mathrm{d}s} = L_j(\boldsymbol{p}, \boldsymbol{\omega})$$

Light Transport

Governing equations
 enable the computation
 of light at all points
 in space into all direction

Reflected light due to material properties

Rendering of the Result

- At an arbitrarily placed and oriented sensor
 - Cast rays into the scene
 - Lookup light that is transported along these rays

Example: Cornell box

Rendering Algorithms

 Goal: Solving the entire light transport in a scene as accurate as possible

Radiosity

- Computes reflected light at all surface points into all directions
- Typical simplifications: No participating media, diffuse surfaces, equal reflected light per finite-size surface patch, e.g. triangle
- Linear system with unknown reflected light per surface patch

Ray Tracing

- Computation of light transport along selected line segments / rays
- Minimal setup
 - Consideration of rays from the scene towards the sensor (viewing rays)
 - Consideration of rays from the light source towards visible scene elements (shadow rays)

[Wikipedia: Ray Tracing]

Ray Tracing - Challenge

Path 4

Computation of outgoing radiance from surface towards camera is the main goal of a ray tracer

Path 1, 2, 3 ...

Incoming / outgoing radiance at all other paths is required to compute radiance at path 4

Path 3

Two surfaces illuminate each other. Outgoing radiance from q towards p depends on outgoing radiance from p towards q which depends on ...

- Accurate modeling of the light interaction with surfaces and participating media
- Parameterizing realistic light sources and materials
- Computing the light transport for as many rays as possible
- In case of limited resources, choose relevant rays with larger radiances

- Capturing all direct and indirect illumination from all directions
 - Less realistic images consider few and simple light sources

https://imgur.com/gallery/MXbNt

- Realistic reflection properties of materials
 - Surfaces are not perfectly diffuse or specular

Next Limit / Maxwell Render http://support.nextlimit.com/display/maxwelldocs/IOR+files

Emitted light

Outline

- Organization
- Concepts
- Applications
- History
- Summary

Areas

- Movies and commercials
- Architecture
- Automotive
- Flight and car simulators
- Computer games

Architecture

Mies van der Rohe Farnsworth House (Artist Alessandro Prodan)

Delta Tracing

[www.mentalimages.com]

Automotive

zerone cgi GmbH and Daimler AG

[www.mentalimages.com]

Commercials

Spellwork Pictures

Modeling Rendering

Commercials

Spellwork Pictures

Animation

Animation + Rendering

Commercials

Spellwork Pictures

Outline

- Organization
- Concepts
- Applications
- History
- Summary

Rasterization

1965: Rasterized lines (Bresenham)

1967: Rasterized flat-shaded polygons (Wylie)

1973: Phong illumination model

1974: Depth buffer (Catmull)

1977: Shadow volumes (Crow)

1978: Shadow maps (Williams)

Ray Tracing

- Ray casting
 1968: viewing and shadow rays, non-recursive (Appel)
- Recursive ray tracing
 1980: ideal reflection, refraction (Whitted)
- Rendering equation 1986: general description of light interaction at surfaces (Kajiya): $L_o(\boldsymbol{p}, \boldsymbol{\omega}_o) = L_e(\boldsymbol{p}, \boldsymbol{\omega}_o) + \int_{\Omega} f_r(\boldsymbol{p}, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) L_i(\boldsymbol{p}, \boldsymbol{\omega}_i) \cos \theta_i \mathrm{d}\omega_i$
- Stochastic ray tracing
 1986: Monte-Carlo integration for approximately solving the rendering equation (Kajiya), e.g. path tracing

Ray Casting and Rasterization

Solve the visibility problem

Ray Casting computes ray-scene intersections to estimate q from p.

Rasterizers apply transformations to p in order to estimate q. p is projected onto the sensor plane.

Ray Tracing and Rasterization

- Ray tracing
 - Can potentially compute entire light transport in a scene
 - Natural incorporation of numerous visual effects with unified concepts
 - Trade-off between quality and performance
- Rasterization
 - Focus on light transport along viewing rays
 - Specialized realizations of global illumination effects
 - Well-established, parallelizable algorithms
 - Popular in interactive applications

Some Ray Tracing History

- Ray generation
- Ray traversal
- Intersection
- Shading
- Frame buffer

Some Ray Tracing History

 Arthur Appel: Some techniques for shading machine renderings of solids, 1968.

Recursive Ray Tracing

- Ray generation
- Ray traversal
- Intersection
- Shading
- Frame buffer

Viewing rays return a radiance.
Shadow rays return a radiance.
Reflection and refraction rays return a

Reflection and refraction rays return a radiance.

Recursive Ray Tracing

 Turner Whitted: An Improved Illumination Model for Shaded Display, 1980.

Stochastic Ray Tracing

Position

 Consider randomly sampled reflection / refraction rays to approximately solve the rendering equation

Ray Tracing

 More light transport paths → more visual effects, realism and improved accuracy

Viewing rays

Viewing and shadow rays

Recursive stochastic ray tracing

[Thomas Kabir: Wikipedia Raytracing]

Ray Tracing - Capabilities

- Reflection
- Refraction
- Soft shadows
- Caustics
- Diffuse interreflections
- Specular interreflections
- Depth of field
- Motion blur

[sean.seanie, www.flickr.com] rendered with POVray 3.7

Ray Tracing - Challenges

- Ray-primitive intersections
 - Spatial data structures for accelerated ray traversal
 - Dynamic scenes are particularly challenging
- Number of rays (quality vs. costs)
 - More rays typically improve the rendering quality
- Recursion depth (quality vs. costs)
 - Dependent on the recursion depth, effects are captured or not, e.g. transparency or caustics

Outline

- Organization
- Concepts
- Applications
- History
- Summary

Aspects for High-quality Image Synthesis

- Radiometric quantities
- Reflection properties of surfaces / materials
- Rendering equation
- Radiosity
- Monte Carlo ray tracing
- Ray-primitive intersections (see key course)
- Data structures for ray traversal

Announcement

- Monday, 10:15, Advanced Computer Graphics
- Monday, 16:15, Simulation in Computer Graphics
- Wednesday, 10:15, Rendering Seminar
- Wednesday, 12:15, Animation Seminar
- Thursday, 10:15, Proseminar Graphik
- Tuesday next week, 12:15, Simulation Tutorial
- Tuesday next week, 14:15, Rendering Tutorial
- No tutorials tomorrow