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Motivation

— Rendering algorithm

— Global illumination approach
— Global solution of a linear system

— Considers global illumination
(direct and indirect)

— View-independent solution
— Limited to Lambertian surfaces I ‘

— Diffuse global Illumination

Wikipedia: Radiosity
(Computergraphik)
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Outline

— Context

— GGoverning Equation
— System

— Solver

— Discussion
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Towards Image Generation

W

specular diffuse
Light is emitted Light is absorbed and Cameras
at light sources scattered at surfaces capture light

— Sources emit light
— Surfaces absorb and reflect light
— Rendering algorithms compute light at sensors
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Towards Image Generation

Light
Material
Reflectance equation
Rendering equation

Solving the rendering equation
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Radiosity - Rendering Algorithm

Light

o

Material

Reflectance equation

4

Rendering equation == Radiosity equation

4

Solving the radiosity equation
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Outline

— Context

— GGoverning Equation
— System

— Solver
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Notation

— Incident radiance onto a point
Li(p,w;), L(p < w;)
— Exitant radiance from a point

Lo(p,wo), L(p — wo)
— BRDF at a point

f?“(pa wiawo)a f’l”(pa W; < wO)
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Reflectance Equation

— Relation between irradiance and exitant radiance
dL(p = w,) = fr(p,w; <> w,) dE(p < w;)

— |rradiance is induced by radiance
dL(p — w,) = fr(p,w; <> wy) L(p + w;) cos(w;,n,) dw;

— Integration over the hemisphere = reflectance equation
Lip = wo) = [ fr(p,wi <> wo) L(p <+ w;) cos(w;,ny,) dw;

— Reflectance equation establishes a relation
between incident and exitant radiance
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Reflectance vs. Rendering Equation

— Reflectance equation relates incident and exitant
radiance at surfaces

— Rendering equation incorporates emissive surfaces,
.e. light sources

L(p = wo) = Le(p = wo) + [, fr(P,wi ¢ wo) L(p < w;) cos(w;, np) dw;

— Exitant radiance is the sum of emitted and reflected
radiance
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Ray-Casting Operator

— Incident radiance L(p < w;) at a point p is equal to the
exitant radiance L(p’ — —w;) from another point p’

— Ray-casting operator p’ = r.(p, w;)

— Nearest intersection from p into direction wj; p
— Radiance — Wi
— L(p+ w;) = L(r.(p,w;) > —w;) Lip ¢ w;) =
- L(p+ w;) =L(p' —» —w;) /LZL(p’ — —w;
— If r.(p,w;)does not exist, L(p + w;)
s user-defined, e.g. emission from sky p
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Rendering Equation

/

— L(p = Wo) = Le(p = wo) + [ fr(P,wi ¢ wo)L(p" = —w;) cos(w;, np)dw;

— Establishes relations
among exitant radiances

— Governs the computation
of exitant radiances from
all scene points into all
directions

[Akenine-Moller et al.]
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Solution of the Rendering Equation

— Exitant radiances from all scene points into all directions

(P — wo)

7& /7\§’7\Vﬁ 7&

Ey Ly Ly
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Rendering of the Solution

— At an arbitrarily placed and oriented sensor
— (Cast a ray through position p in an image plane into direction w;
— Lookup L(p « w;) = L(r:(p,w;) = —w;) = L(p" — —w;)

KD 7&%
/p\\ =
=

view L(p’ — w
plane

scene

R
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Outline

— Context

— GGoverning Equation
— System

— Solver

— Discussion
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Simplified Setting

— Lambertian material

— Exitant radiance independent from direction

— Radiance into arbitrary direction can be
computed from radiosity L(p — w,) = 22

7T

— Discretized scene representation with faces,
e.g., triangles
— Assume constant radiosity per face
= Problem is simplified to n radiosity values for n faces

= ninstances of the rendering equation govern the solution
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Goal - System of Governing Equations

— Simplified setting results in a linear system
with unknown radiosity values B; at faces

11 A12 ce afln\ /Bl S1
a1 a929 “. don B2 S9
anl .- Ann—1 afnn) \Bn Sn

— Radiosity B; at face / depends on radiosities B; at
faces j which are visible from tace |
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Hemispherical and Area Form

— Differential solid angle corresponds
to a differential surface area

— If an infinitesimally small area dA, at position p’
converges to zero, then the solid angle dw; also
converges to zero and the relation dw; = COS(;;"@""p')dAp,
s correct in the limit -
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Hemispherical and Area Form

— Hemispherical form of the rendering equation
L(p = wo) = Le(p = wo) + J, [r(D, wi > wo)L(P' = —w;) cos(w;, ny)dw;

can be written in area form
L(p— w,) = Le(p — wo)+

IS ffr(p; W, wo)L(p' N _wi)cos(wq;,np)’r;os(—w@-,np/)dAp’

pp’

Hp = 4((4)@, ’np)

0, = L(—w;, Ny )
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Area Form of the Rendering Equation

— Integral over all differential surface areas

obtained from the ray-casting operator p’ = r(p, w;)
L(p— w,) = Le(p — wo)+

cos(w;,np) cos(—w;,m /)

fg f?“(pa W; <7 wo)L(p’ — —wz-) - dApf

pp’

— Integral over all differential surface areas = of a scene

L(p — wy) = Le(p — wo)+
[o [r(p,w;i <> wo)L(x — —w;)V(p, @) Cos(wi’np)rgos(_w“nw)dAm

o s

visibility
function
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Visibility Function

cos(w;,myp) cos(—w;

Me) 4 A,

R fS f?“(pawi A (""’O)L(gE — _wz)v(pa .’L') =

px

— Position x contributes to the integral,
if it is visible from p

L2
V(pawl) —
V(pa 332) =0
V(pa 5133) =1
p
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Radiosity Integral Equation

— Rendering equation
L(p — w,) = Le(p — wy)+
[o [r(p,wi <> wo)L(x — —w;)V(p, a:)Cos(wi’np)qgos(_wi’nm)dAm

px

— Radiance can be computed from radiosity

for Lambertian surfaces: L(p — w,) = 22

— Radiosity equation
B(p) = Be(p) + [5 fr (b, w; ¢ wo) B(x)V (p, @) “@rmlenlwnna) g 4,

px

cos(w;,ny) cos(—w;,Ny Constant BRDF
B(p) = B, (p) -+ %p) fs B(m)V(p, .SC) ( )T2 ( )dAa: focn)’nLSafnnbertian

X
b surfaces
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Kernel

. K(p, SL‘) _ V(p, )cos(wz,np)cos( W;, My ) > ()

2
’I"i"l"pm

— Radiosity equation B(p) = B.( p) [ K (z)dA,

— Kernel weights the contribqun of patch xfor the
radiosity at patch p and vice versa

K(p,X) gets larger

- if p and x are oriented
towards each other

- if p and x are closer
to each other
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Kernel

oL 4 X

Large K(p,X) Small K(p,x) Small K(p,x) K(p,x)=0

— Indicates the “importance” of patch x for patch p
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Discretization

— Continuous form of the radiosity eguation

p) Js K

— B(p) = Be(p

(z)dA,

Radiosity at points

— Infinite number of equanns for infinite number of unknowns

— Discretization (Finite Element MethoQ)
— One unknown per face / triangle / finite element
— n equations for n unknowns

/1 — p1 K114
—paKo1 Aq

\ _annl Al

—p1 K245
1 — paKo2As
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Discretization

— Continuous form of the radiosity eguation

p) Js K

— B(p) = Be(p

(z)dA,

Radiosity at points

— Infinite number of equanns for infinite number of unknowns

— Discretization (Finite Element MethoQ)
— One unknown per face / triangle / finite element
— n equations for n unknowns

/1 — p1 K114
—paKo1 Aq

\ _annl Al

—p1 K245
1 — paKo2As

University of Freiburg - Computer Science Department - 27

_lelnA \
_leQnA

( g;\

5./

B,
( B@;\

\5../

Radiosity
at faces



From Differential Areas to Finite Areas

— Start with, e.g., a triangulated scene representation
— Assume constant radiosity over area A;. B(a;) = const = B;
— Assume constant reflectance over area A; . p(z;) = const = p;
— Integrate radiosity over a face / with area A4,
— Radiosity equation for face /

Jg, B(®i)dAy, = [g Be(zi)dAs, + [o p(x:) [g K(zi, ) B(x)dA,d A,

A;B; = A;Bei + pi [g [¢ K (i, @) B( )dAdixi

— B, B.; are radiosity and emitted radiosity per face /
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From Differential Areas to Finite Areas

— [ K(z;,z)B(z)dA, IS an integral over all faces of a scene

— Can be vvmtten as 2. Jg, K(ws, ;) B(x;)dA,,
— Integral over a face j, summed over all faces

— Radiosity equation
Asz = AiBei + p; fS- fS K(Jiz, LB)B(SU)dAdi%
B, = B,.; + ,OZAL fS- Zj fS- K(.’EZ, fL’j)B(aC‘])dij dAxZ Division by A
B,,; — Bei -+ p%ALZ Zj fSi ij K(.”I}@, JJJ)B(ZBJ)dAZBJdAZCZ
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From Differential Areas to Finite Areas

B; = Bei + pig; 225 Js, Jg, K (i, z5)B(z;)dAs;dA,,

— Constant radiosity over area A;, i.e. B(z;) = const = B,
B; = Bei + pig; 23 By [, Js, K (s, 25)dAs;dAs,

— Form factor: F; = & [5, [s, K(=i,2;)dA,dA,,

— Almost discretized radiosity equation
B; = Bei + ), piFi; B;
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Form Factor - A First Approximation

F; = A Us, fs (5, 5)d A, dA,,
— Assume constant kernel for two faces i and J:

K(mi, azj) — const = Kij Bad for pairs of faces that see each other only partially
| . — K.. A.
Fij = 4. Kij [5, [5, dAz;dAs, = KA,

— Choose representative positions p:,p; on faces/and |
Fij _ V(pi’pj)cos(wz,nz)cos( w“nj)A

5
pip;

Non-zero for faces
that “see” each other 0;
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Discretization of the Radiosity Equation

— Continuous form, per surface position
B(p) — Be(p) £+ %P) fS B(ZC)V(p, CL') COS(wi,nP)T(;OS(_wi,na:)dAa:

px

— Discretized form, per face / triangle  Finite Element Method
B; = Bei + ) _; pitijB;
B;— ), piFijBj = Be;
— B.; IS a source, i.e. the known emitted radiosity at face
— B, B; are unknown radiosities at faces jand |
— pi, Fy; are known coefficients
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System of Linear Equations

— n equations for n unknown radiosities at n faces

B; — >, piFijB; = Be;

B;—> ;i piFijBj =0

NAAERRA,
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If Be; = 0 for all
faces, the solution
would be B.=0
for all faces.



System of Linear Equations

/1—01F11 —p1Fi2 —p1tin \ /Bl\ /361\
—p2Fo1 1 — paFoo . —p2toy, Bo Beo
\ _pnFnl <. _pnan—l 1 — pnan) \Bn) KBen)
Matrix with known coefficients, Unknown Known
reflectances and form factors. radiosities. source
Indirect illumination. Describes, terms.
how faces illuminate each other. Direct
illumi-
nation.
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Outline

— Context

— GGoverning Equation
— System

— Solver

— Discussion
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Solving the Linear System

— Typically with iterative schemes, e.g. relaxed Jacobi
— |nitia|ize, e.g., B? — 0 Superscript numbers indicate the solver iteration
— Iteratively update B;*' = B} + =55 (Bei — (Bl = X_, piFi; BY))
— Intuition
— Changes from B! to B!*! are proportional to
Bei — (B} — 3, piFi; BY) |
the solver has converged and B!t = B!
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Summary

— Scene modeling / meshing

— Computation of form factors for pairs of patches

— Solve linear system

— Set Up a camera

— Project scene onto view plane / cast rays into the scene
— Lookup radiosity / reconstruct radiance per pixel
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Meshing Example

T+3LDFX_Inter a_02 ealistic+Edged Faces ] [+ ] [DFX_Interior_Camera_02 ] [Realistic + Edged Faces

High resolution

[Aayush Chopra]
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Rendering of the Solution

Final rendering from an arbitrary position and orientation.

A h Chopr
University of Freiburg - Computer Science Department - 39 Replst Cnepie]



Outline

— Context

— GGoverning Equation
— System

— Solver

— Discussion
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Form Factor Computation

— Important and expensive

— Worst case
— Inside of a convex polygon
— All faces see each other
— Complexity of a naive form

factor computation is qua- ol
dratic in the number of faces

— System matrix is fully filled
with non-zero entries Vi, Vj: Fij #7 0
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Form Factor Solutions

Form Factor Solutions

— Examples ,

Analytic Numeric

I I I
Special  Diff. Area  Polygon
Cases to Polygon to Polygon

I
O =~ ~— Diff. Area to Area Area to Area

lan vy P’ . : | :
Contour Monte Carlo Hierarchical
<-Z \ W] I

Hemisphere Sampling Area Sampling

Michael F. Cohen, John R. Wallace:
Radiosity and Realistic Image Synthesis.
Academic Press Professional, Boston.

I ! ! ] 1
Hemicube Single Plane Monte Carlo Contour  Monte Carlo Uniform

e ma N ::: V 7
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Form Factor Properties

— Positive
zg _ A fs fS CL‘Z, cos(wz n;) cos(—w; nj)dA dA > ()

wr2
0

— Reciprocity relann
K(a':i, ch) _ V(CUZ', wj)cos(wq, M) cos(—wi ) K(Zl’,'j, 337,)

= A; Fyi
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Form Factor Properties

S, Fij = A Js, 0, s, Viwnay) <lesndentoenmiy g, da,,
= s, b COS“::’””dw@-dAmi

TiTg

— AA fSi TdA,, =1

ZjFijzlipiZjFijSljpiZj#iFijSl—p@'Fm’

— Important for the convergence of iterative solvers
— Diagonally dominant system matrix
— Sum of magnitudes of non-diagonal entries per row
is smaller than the magnitude of the diagonal entry
— Surface properties influence convergence
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System Notation

/1—01F11 —p1Fi2 =D \ (Bl\
—p2ka1 1 — pakag —pa2tan, By
\ _pn.an,l . : . _pnan—l 1 — pnan) \Bn)
(Pan p1F12 plFlfn,\
p2ko1  paFog e p2Fon
i = : : . :
Kpnﬁnl S pnan—l pnan/

(I-F)B=B. B=B,+FB
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System Interpretation

— Radiosity equation per point
— B(p) = Bo(p) + [ (P, wi > wo)B(x)V (p, ) & Winp)coslzwing g 4

2
T

— System of per-face discretized radiosity equations
- B=B.+FB
— B overall radiosity at all faces
— B, radiosity at all faces due to emission

— F B radiosity at all faces due to the
reflection of incident flux from all faces
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System Solution

(I - F)B =B,
B=(I-F)"'B,

— Neumann series

. 1 00 L Theinverse does not always exist. In particular,
(I F) _ Zk:() F there is no solution for unphysical settings.

B=B.+FB.,+FFB,+FFFB,+ ...
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Terms in the Neumann Series

—-Bb=B.+FB.+ FFB,+ FFFB, + ...
— B, emitted radiosity

— F B, reflected radiosity due to emitted radiosity B,
(emitted radiosity after one bounce at a surface)

— FFB, reflected radiosity due to radiosity that
was reflected due to emitted radiosity B,
(emitted radiosity after two bounces at surfaces)

— FFFB, ..
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Terms in the Neumann Series

—-Bb=B.+FB.+ FFB,+ FFFB, + ...
— B, contribution of emitted light to the solution
— F B, contribution of emitted light after one bounce
— FF B, contribution of emitted light after two bounces
— FFFB, contribution of emitted light after three bounces
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Terms in the Neumann Series

— Example contributions to terms

(FFBe) “ '
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Visualizing the Neumann Series

.+ FB, B.+FB.+FFB,
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Terms in the Neumann Series

— Patches t

B-B,+FB,+FFB,+FFFB, + ...
— Emissive patches are im

emissive patches are im

potentially important
Highly reflective patches

DOrtant

nat have large form factors with respect to

DOrtant

Pairs of patches with large form factors f£;; are

with large reflectance

coefficients p; are potentially important
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Jacobi Solver

— Jacobiwith, e.g., =5 =1 B/*' = Be; + >, piFy; B!
— B'*' = B, + FB!
— Iterations
- B'=0
- B'=B,
- B?=B.+ FB! = B, + FB,
- B°=B.,+FB?=B,+ F (B, + FB,)
— B.+ FB. + FFB,
— Intuition does not necessarily apply to other solvers
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Solver Convergence

— Radiosity contributions B. FB. FFB. FFFB,
should get smaller with each iteration

— Some faces in a scene should partially absorb flux
— Faces should not generate flux, i.e. pi>1

/PlFll p1F12 p1F1fn,\ 0<p; <1
F F By, _
F_ 102-21 P2.22 | ;02-2 ij@,j_l
\pnFnl 5 o o pfn,an—l pnan/
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