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Motivation

 Rendering algorithm

 Global illumination approach

 Global solution of a linear system 

 Considers global illumination
(direct and indirect)

 View-independent solution

 Limited to Lambertian surfaces

 Diffuse global Illumination
Wikipedia: Radiosity 
(Computergraphik)
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Outline

 Context

 Governing Equation

 System

 Solver

 Discussion
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Towards Image Generation

 Sources emit light 

 Surfaces absorb and reflect light

 Rendering algorithms compute light at sensors



Light is emitted 
at light sources

Light is absorbed and
scattered at surfaces

specular diffuse

Cameras 
capture light


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Towards Image Generation

Light

Material

Reflectance equation

Rendering equation

Solving the rendering equation 
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Radiosity – Rendering Algorithm

Light

Material

Reflectance equation

Rendering equation           Radiosity equation

Solving the radiosity equation 
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Outline

 Context

 Governing Equation

 System

 Solver

 Discussion
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Notation

 Incident radiance onto a point

 Exitant radiance from a point

 BRDF at a point
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Reflectance Equation

 Relation between irradiance and exitant radiance

 Irradiance is induced by radiance

 Integration over the hemisphere  reflectance equation

 Reflectance equation establishes a relation 
between incident and exitant radiance 
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Reflectance vs. Rendering Equation

 Reflectance equation relates incident and exitant 
radiance at surfaces

 Rendering equation incorporates emissive surfaces, 
i.e. light sources

 Exitant radiance is the sum of emitted and reflected 
radiance 
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Ray-Casting Operator

 Incident radiance                      at a point p is equal to the 
exitant radiance                       from another point p’

 Ray-casting operator

 Nearest intersection from p into direction     

 Radiance





 If                 does not exist,  
is user-defined, e.g. emission from sky
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Rendering Equation



 Establishes relations 
among exitant radiances

 Governs the computation 
of exitant radiances from 
all scene points into all 
directions  

[Akenine-Möller et al.]
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Solution of the Rendering Equation

 Exitant radiances from all scene points into all directions

Cornell box
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Rendering of the Solution

 At an arbitrarily placed and oriented sensor

 Cast a ray through position p in an image plane into direction

 Lookup 

view
plane

scene
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Outline

 Context

 Governing Equation

 System

 Solver

 Discussion
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Simplified Setting

 Lambertian material

 Exitant radiance independent from direction

 Radiance into arbitrary direction can be 
computed from radiosity

 Discretized scene representation with faces, 
e.g., triangles

 Assume constant radiosity per face

 Problem is simplified to n radiosity values for n faces

 n instances of the rendering equation govern the solution 
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Goal - System of Governing Equations

 Simplified setting results in a linear system 
with unknown radiosity values      at faces

 Radiosity      at face i depends on radiosities       at 
faces j which are visible from face i
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Hemispherical and Area Form

 Differential solid angle corresponds 
to a differential surface area

 If an infinitesimally small area          at position   
converges to zero, then the solid angle       also 
converges to zero and the relation
is correct in the limit 
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Hemispherical and Area Form

 Hemispherical form of the rendering equation

can be written in area form
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Area Form of the Rendering Equation

 Integral over all differential surface areas
obtained from the ray-casting operator

 Integral over all differential surface areas of a scene 

visibility
function
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Visibility Function



 Position    contributes to the integral, 
if it is visible from
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Radiosity Integral Equation

 Rendering equation

 Radiance can be computed from radiosity 
for Lambertian surfaces:

 Radiosity equation

Constant BRDF
for Lambertian
surfaces
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Kernel



 Radiosity equation

 Kernel weights the contribution of patch x for the 
radiosity at patch p and vice versa

K(p,x) gets larger
- if p and x are oriented

towards each other
- if p and x are closer

to each other
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 Indicates the “importance” of patch x for patch p

Kernel

Large K(p,x) Small K(p,x) Small K(p,x) K(p,x) = 0
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Discretization

 Continuous form of the radiosity equation



 Infinite number of equations for infinite number of unknowns

 Discretization (Finite Element Method)

 One unknown per face / triangle / finite element 

 n equations for n unknowns

Radiosity at points

Radiosity 
at faces



Matthias Teschner

Advanced Computer Graphics
Radiosity 2



University of Freiburg – Computer Science Department – 27

Discretization

 Continuous form of the radiosity equation



 Infinite number of equations for infinite number of unknowns

 Discretization (Finite Element Method)

 One unknown per face / triangle / finite element 

 n equations for n unknowns

Radiosity at points

Radiosity 
at faces
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From Differential Areas to Finite Areas 

 Start with, e.g., a triangulated scene representation

 Assume constant radiosity over area     :

 Assume constant reflectance over area     :    

 Integrate radiosity over a face i with area

 Radiosity equation for face i

 are radiosity and emitted radiosity per face i
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From Differential Areas to Finite Areas

 is an integral over all faces of a scene

 Can be written as

 Integral over a face j, summed over all faces

 Radiosity equation 

Division by Ai
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From Differential Areas to Finite Areas

 Constant radiosity over area     , i.e.  

 Form factor: 

 Almost discretized radiosity equation
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Form Factor – A First Approximation

 Assume constant kernel for two faces i and j: 

 Choose representative positions          on faces i and j

Non-zero for faces 
that “see” each other 

Bad for pairs of faces that see each other only partially
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Discretization of the Radiosity Equation

 Continuous form, per surface position

 Discretized form, per face / triangle

 is a source, i.e. the known emitted radiosity at face i

 are unknown radiosities at faces i and j

 are known coefficients 

Finite Element Method
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System of Linear Equations

 n equations for n unknown radiosities at n faces 

If Bei = 0 for all 
faces, the solution 
would be Bi = 0 
for all faces.    
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System of Linear Equations

Known
source 
terms.
Direct
illumi-
nation.

Unknown
radiosities.

Matrix with known coefficients,
reflectances and form factors. 
Indirect illumination. Describes,
how faces illuminate each other.
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Outline
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 Governing Equation

 System

 Solver

 Discussion
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Solving the Linear System

 Typically with iterative schemes, e.g. relaxed Jacobi

 Initialize, e.g., 

 Iteratively update

 Intuition

 Changes from      to         are proportional to

 If                                                , i.e.                                      ,   
the solver has converged and 

Superscript numbers indicate the solver iteration
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Summary

 Scene modeling / meshing

 Computation of form factors for pairs of patches

 Solve linear system

 Set up a camera 

 Project scene onto view plane / cast rays into the scene

 Lookup radiosity / reconstruct radiance per pixel
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Meshing Example

[Aayush Chopra]

Low / adaptive resolution High resolution
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Rendering of the Solution

Final rendering from an arbitrary position and orientation.

[Aayush Chopra]
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Outline

 Context

 Governing Equation

 System

 Solver

 Discussion
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Form Factor Computation

 Important and expensive

 Worst case

 Inside of a convex polygon

 All faces see each other

 Complexity of a naive form 
factor computation is qua-
dratic in the number of faces

 System matrix is fully filled 
with non-zero entries
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Form Factor Solutions

 Examples Michael F. Cohen, John R. Wallace:
Radiosity and Realistic Image Synthesis.
Academic Press Professional, Boston.
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Form Factor Properties

 Positive

 Reciprocity relation
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Form Factor Properties

 Important for the convergence of iterative solvers
 Diagonally dominant system matrix 
 Sum of magnitudes of non-diagonal entries per row 

is smaller than the magnitude of the diagonal entry
 Surface properties influence convergence
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System Notation
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System Interpretation

 Radiosity equation per point



 System of per-face discretized radiosity equations



 overall radiosity at all faces

 radiosity at all faces due to emission

 radiosity at all faces due to the 
reflection of incident flux from all faces 
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System Solution

 Neumann series 
The inverse does not always exist. In particular, 
there is no solution for unphysical settings.
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Terms in the Neumann Series



 emitted radiosity  

 reflected radiosity due to emitted radiosity
(emitted radiosity after one bounce at a surface)

 reflected radiosity due to radiosity that 
was reflected due to emitted radiosity 
(emitted radiosity after two bounces at surfaces)

 … 
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Terms in the Neumann Series



 contribution of emitted light to the solution

 contribution of emitted light after one bounce

 contribution of emitted light after two bounces

 contribution of emitted light after three bounces
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Terms in the Neumann Series

 Example contributions to terms
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Visualizing the Neumann Series

[Pat Hanrahan]
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Terms in the Neumann Series

 Emissive patches are important

 Patches that have large form factors with respect to 
emissive patches are important

 Pairs of patches with large form factors      are 
potentially important 

 Highly reflective patches with large reflectance 
coefficients     are potentially important
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Jacobi Solver

 Jacobi with, e.g.,                :



 Iterations









 Intuition does not necessarily apply to other solvers
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Solver Convergence

 Radiosity contributions 
should get smaller with each iteration

 Some faces in a scene should partially absorb flux

 Faces should not generate flux, i.e.


