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From Radiosity to Raytracing

− Radiosity equation governs light transport 
for diffuse surfaces.  How to describe 
light transport for general surfaces?

− How to solve for the light transport?

− How to compute the relevant part of 
the light transport towards a sensor?
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Stochastic Raytracing

− Light transport towards the sensor requires to solve

− Monte Carlo integration approximates 
the reflectance integral

− E.g., 

− Trace rays into the scene 

− Compute radiance along this ray

− Associate an area / solid angle with each ray

− Accumulate all contributions
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Outline

− Diffuse vs. general global illumination

− Monte Carlo integration

− Sampling of random variables
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Governing Equations

− Rendering equation

− Governing equation for general global illumination methods

− Radiosity equation

− Governing equation for diffuse global illumination methods
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A Solution Strategy - Radiosity

− Finite Element Method 

− Start with a continuous form / function

− Discretization 

− Solving for a vector with unknown radiosities
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An Alternative Strategy

− Start with the general form of the rendering equation, 
e.g. in hemispherical form

− Solving for a function of unknown radiances

− I.e., radiance at all surface positions into all directions
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Operator Form of the Rendering Equation

− Operators transform a function into another one

− Scattering operator

− Applied to an incident radiance function                  , exitant 
radiance after one bounce / scattering step is returned

− operates on an entire function, i.e. on all incident 
radiances for all positions    and direction 

See, e.g.: Eric Veach: Robust Monte Carlo Methods for Light 
Transport Simulation, Ph.D. thesis, Stanford University, 1997.



◼University of Freiburg – Computer Science Department – 9

Operator Form of the Rendering Equation

− Propagation operator

− Applied to an exitant radiance function                       ,
incident radiance at     from direction     is returned  

− Radiance is preserved / propagated along the line
between    and 

− and      can be reversed, i.e. 

p’ indicates the raycast operator applied to p

See, e.g.: Eric Veach: Robust Monte Carlo Methods for Light 
Transport Simulation, Ph.D. thesis, Stanford University, 1997.
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Operator Form of the Rendering Equation

− Light transport operator

− Composition of scattering and propagation

− Maps an exitant radiance function to the exitant 
radiance function after one scattering step

− Remember:     maps exitant radiance to incident radiance 
propagated along a direction. Then,     maps incident 
radiance to exitant radiance after scattering

See, e.g.: Eric Veach: Robust Monte Carlo Methods for Light Transport Simulation, Ph.D. dissertation, Stanford University, 1997.
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Operator Form of the Rendering Equation

− Can be written as  

− Light transport equation

− relates exitant radiance functions 

− Represents the light propagation equilibrium

Infinite number of equations with an infinite number of unknown exitant radiances



◼University of Freiburg – Computer Science Department – 12

Light Transport Equation

− Solving for the unknown radiance function

− Neumann series



◼University of Freiburg – Computer Science Department – 13

Light Transport Equation

− Discussion 

− Radiance function is a sum of 

− Emitted radiance

− Emitted radiance after one scattering

− Emitted radiance after two scatterings 

− … 
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Terms in the Neumann Series

− Example contributions to terms
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Forward Raytracing

− Send rays / propagate radiance from all light source 
positions into all directions 

− At all intersection points   , solve the integral

for all direction     

− Trace rays to propagate 

− At all intersection points   , solve the integral

for all direction     
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Forward Raytracing

− At a sensor: Accumulate radiance contributions of rays 
after n scattering steps, i.e. compute  

Sensor
Exemplary rays

Light source
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Operator Form of the Rendering Equation

− Can be written as  

− Light transport equation

− relates exitant radiance functions 

− Represents the light propagation equilibrium

Infinite number of equations with an infinite number of unknown exitant radiances
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Light Transport Equation

− Solving for the unknown radiance function

− Neumann series
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Light Transport Equation

− Discussion 

− Radiance function is a sum of 

− Emitted radiance

− Emitted radiance after one scattering

− Emitted radiance after two scatterings 

− … 
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Backward Raytracing

− Consider rays from the sensor into the scene

− Propagate radiance from visible light sources

−  part of      visible to the sensor

− At intersection points    with the scene, compute 
radiance
that is propagated in direction      towards the sensor

−  part of        visible to the sensor

− …



◼University of Freiburg – Computer Science Department – 21

Backward Raytracing

− Trace rays from the sensor into the scene  

Sensor
Exemplary rays

Light source
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Setting at Sensor

− How to compute                  and what is its 
the relation to                                   ? 

Light
source

Sensor

Scene
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Setting at First-Level Intersections

− is the part 
of        visible to the sensor

− Computation of       
requires             

towards
sensor
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Setting at Second-Level Intersections

− is the part of
visible to the sensor

− Computation of       
requires                  

towards
p1
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Summary

− Recursive evaluation of 

− Each recursion level computes parts of the functions
that are visible to the sensor 
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Numerical Integration

− The integral         is approximately computed
with a sum of samples

− For each sample i,

− A ray is cast into the scene

− Intersection with the scene is computed

− Radiance along the ray is computed    
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Numerical Integration

− Typically, 
is considered

− For                      , light source areas are sampled and 
rays towards those positions are processed 

− For               , the respective solid angle is sampled 
and rays towards those directions are processed
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Numerical Integration

− Due to the recursive nature, the number of processed 
rays grows exponentially with the recursion level 

−  Monte Carlo integration
− Efficient for multidimensional integral

− Adaptive sample distribution 

− Very flexible in terms of the number of used samples

− Even one sample can be used to approximate an integral

 e.g., Path tracing 
− At each recursion level, trace a fixed number of rays to light 

sources and one ray into the scene (which generates a ray path)
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Outline

− Diffuse vs. general global illumination

− Monte Carlo integration

− Sampling of random variables



◼University of Freiburg – Computer Science Department – 31

Goal

− Approximating the solution of the light transport 
equation

− Recursive evaluation of 

− Each recursion level computes parts of the functions
that are visible to the sensor 
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Numerical Integration – Fixed Sample Size

− E.g. Riemann sum

−

− More / smaller samples  better accuracy

− dimensional integrals require       samples
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Numerical Integration – Adaptive Sample Size

− E.g., Monte Carlo integration

− ,  adaptive sample size 

− More / smaller samples  better accuracy

− dimensional integrals work with arbitrary sample numbers

− Sample size is only approximated  noise
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Stochastic Raytracing - Concept

− Approximately evaluate the reflectance integral 
by

− Tracing rays into randomly sampled 2D directions 

− Computing the incoming radiances

− Integral is approximated with 

− 2 dimensional sample directions

− is an approximation of the solid angle
of sample direction 
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Introduction

− Challenges

− Approximate the integral as exact as possible

− Trace as few rays as possible / use as few samples as possible

− Trace relevant rays / use relevant samples

− Rays / samples to light sources are very relevant
(Rays / samples to occluded light sources are irrelevant)

− For diffuse surfaces, rays / samples in normal direction are 
more relevant than rays / samples perpendicular to the normal

− For specular surfaces, rays / samples in reflection direction are relevant
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Properties

− Benefits

− Processes only evaluations of the integrand 
at arbitrary surface points in the domain 

− Works for a large variety of integrands, 
e.g., it handles discontinuities

− Appropriate for integrals of arbitrary dimensions

− Allows for non-uniform sample patterns / 
adaptive sample sizes 
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Properties

− Drawbacks

− Using n samples, the scheme converges 
to the correct result with O (n½)

− I.e., to half the error, 4n samples are required

− Errors are perceived as noise, 
i.e. pixels are arbitrarily too bright or dark
(due to the erroneous approximation of the sample size)

− Evaluation of the integrand at a point and for a direction
is expensive (ray intersection tests)



◼University of Freiburg – Computer Science Department – 38

Continuous Random Variables

− Motivation: random sampling of directions

− Continuous random variables

− In contrast to discrete random variables,
infinite number of possible values 

− Canonical uniform random variable

− Sample sets with arbitrary distributions 
can be computed from
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Probability Density Function PDF p(x)

− Motivation: PDF governs the size / 
solid angle of a sample / sample direction

− Probability of a random variable taking certain value ranges 

−

−

−

− Example
− Uniform PDF for

−

The probability, that the random variable is in the specified domain, is 1.

The probability, that the random 
variable has a certain exact value x0=x1, is 0.
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Cumulative Distribution Function CDF P(x)

− Motivation: CDFs are required to generate sample sets
for arbitrary PDFs from uniform sample sets

− Probability of a random variable to be less or equal to 

−

−

−
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Expected Value

− Motivation: expected value of an estimator function
is equal to the reflectance integral

− Expected value              of a function        is defined as the 
weighted average value of the function over a domain

− with 

− Properties

−

− For independent random variables Xi

Processes an infinite number of 
samples x according to a PDF p(x)
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Expected Value

− Examples for uniform PDF
−

−

−
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Monte Carlo Estimator - Uniform Random Variables

− Motivation: approximation of the reflectance integral 

− Goal: computation of 

− Uniformly distributed random variables 

− Probability density function 

− Monte Carlo estimator

− Expected value of       is equal to the integral

−

Constant and integration to one
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Monte Carlo Estimator - Uniform Random Variables
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Monte Carlo Estimator - Uniform Random Variables

− PDF

− Estimator

− Integral 

−

− Function value

− Approximate sample size 
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Examples - Uniform Random Variables

− Integral

− Estimator

− For an increasing number of uniformly distributed 
random variables     , the 
estimator converges to one 

−

[Suffern]Uniformly distributed
random samples

Sample size approx. 1/N
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Monte Carlo Estimator - Non-uniform Random Variables

− Monte Carlo estimator 

−

p (Xi)  0 
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Monte Carlo Estimator - Non-uniform Random Variables

− PDF

− Estimator

− Integral 

−

− Function value

− Approximate sample size 



◼University of Freiburg – Computer Science Department – 49

Approximate Sample Size

− Sample size / distance for uniform PDF:

− Sample size for non-uniform PDF: 
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− E.g.,

− Samples      are two-dimensional

− Uniformly distributed random samples

− Probability density function

− Monte Carlo estimator 

− Approximate sample size is

Monte Carlo Estimator - Multiple Dimensions
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− E.g.,

− Uniformly distributed random samples

− Probability density function

− Monte Carlo estimator 

− Approximate sample size 

Monte Carlo Estimator - Multiple Dimensions

Sample size 
approx. 9/9

Sample size 
approx. 9/14
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Monte Carlo Estimator - Integration over a Hemisphere

− Approximate computation of the irradiance at a point

− Estimator
− Choosing a PDF

− Should be similar to the shape of the integrand
− As incident radiance is weighted with         , 

it is appropriate to generate more samples 
close to the top of the hemisphere  

−

This flexibility is an important aspect of Monte Carlo integration.
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Monte Carlo Estimator - Integration over a Hemisphere

− Probability distribution

− Estimator

If  and  are sampled according to PDF p(, )
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Monte Carlo Estimator - Integration over a Hemisphere

− Integral

− PDF

− Estimator

− Function value                         for direction 

− Approximate sample size / solid angle

− For large 

− The PDF in terms of the solid angle is 
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Monte Carlo Integration - Steps

− Choose an appropriate 
probability density function

− Generate random samples according to the PDF

− Evaluate the function for all samples

− Accumulate sample values weighted with their 
approximate sample size
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Monte Carlo Estimator - Error Reduction

− Importance sampling

− Motivation: contributions of larger 
sample values are more important

− PDF should be similar to the shape 
of the function

− Optimal PDF

− E.g., if incident radiance is weighted 
with          , the PDF should choose 
more samples close to the normal 
direction 

[Suffern]
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Monte Carlo Estimator - Error Reduction

− Stratified sampling

− Domain subdivision into strata 

− E.g., handling direct and indirect illumination differently

−
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Monte Carlo Estimator - Integration over a Hemisphere

− Approximate computation of the irradiance at a point

− Estimator
− Choosing a PDF

− Should be similar to the shape of the integrand
− As incident radiance is weighted with         , 

it is appropriate to generate more samples 
close to the top of the hemisphere  

−

This flexibility is an important aspect of Monte Carlo integration.
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Outline

− Diffuse vs. general global illumination

− Monte Carlo integration

− Sampling of random variables

− Inversion method

− Rejection method

− Transforming between distributions

− 2D sampling

− Examples
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Motivation - Rendering Equation

− Hemispherical form

− Area form
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Motivation - Monte Carlo Integration

− Choose an appropriate 
probability density function

− Generate random samples according to the PDF

− Evaluate the function for all samples

− Accumulate function values weighted 
with their approximate sample size
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Inversion Method

− Mapping of a uniform random 
variable to a goal distribution

− Discrete example

− Four outcomes with probabilities 
and

− Computation of the cumulative 
distribution function 

[Pharr, Humphreys]

1         2         3        4
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− Discrete example cont.
− Take a uniform random variable
− has the desired distribution

− Continuous case
− and         are continuous functions
− Start with the desired PDF
− Derive
− Compute the inverse 
− Obtain a uniformly distributed variable
− Compute                    which adheres to  

Inversion Method

[Pharr, Humphreys]

1         2         3        4
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Inversion Method - Example 1

− Power distribution
− E.g., for sampling the Blinn microfacet model

− Computation of the PDF
−

− PDF 
− CDF
− Inverse of the CDF  
− Sample generation

− Generate uniform random samples
− are samples from the distribution
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Inversion Method - Example 2

− Exponential distribution
− E.g., for considering participating media

− Computation of the PDF
−

− PDF 
− CDF
− Inverse of the CDF  
− Sample generation

− Generate uniform random samples
− are samples from the distribution
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Outline

− Context

− Diffuse vs. general global illumination

− Monte Carlo integration

− Sampling of random variables

− Inversion method

− Rejection method

− Transforming between distributions

− 2D sampling

− Examples
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− Draws samples according to a function 
− Dart-throwing approach
− Works with a PDF         and a scalar     with 

− Properties
− is not necessarily a PDF
− PDF, CDF and inverse CDF 

do not have to be computed
− Simple to implement
− Useful for debugging purposes

Rejection Method
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− Sample generation
− Generate a uniform random sample
− Generate a sample     according to 
− Accept      if 

Rejection Method

a b

[Pharr, Humphreys]
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Outline

− Context

− Diffuse vs. general global illumination

− Monte Carlo integration

− Sampling of random variables

− Inversion method

− Rejection method

− Transforming between distributions

− 2D sampling

− Examples
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Transforming Between Distributions

− Computation of a resulting PDF, when a function is
applied to samples from an arbitrary distribution

− Random variables       are drawn from 

− Bijective transformation (one-to-one mapping)

− How does the distribution           look like?
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Transforming Between Distributions

−

− Example 

−

−

−
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Transforming Between Distributions

− Multiple dimensions

− is an n-dimensional random variable 

− is a bijective transformation

− Transformation of the PDF

−
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Transforming Between Distributions

− Example (polar coordinates)

− Samples          with density   

− Corresponding density            with                 and 

−

−
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Transforming Between Distributions

− Example (spherical coordinates)

−

−

−

−

− Example (solid angle)

−

−

−
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Outline

− Context

− Diffuse vs. general global illumination

− Monte Carlo integration

− Sampling of random variables

− Inversion method

− Rejection method

− Transforming between distributions

− 2D sampling

− Examples
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Concept

− Samples from a 2D joint density function

− Procedure
− Compute the marginal density function

− Compute the conditional density function

− Generate a sample      according to    

− Generate a sample      according to 

− Marginal density function
− Integral of            for a particular     over all    -values

− Conditional density function
− Density function for     given a particular  
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Outline

− Context

− Diffuse vs. general global illumination

− Monte Carlo integration

− Sampling of random variables

− Inversion method

− Rejection method

− Transforming between distributions

− 2D sampling

− Examples
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Uniform Sampling of a Triangle

− Sampling an isosceles right triangle of area 0.5
− u, v can be interpreted as Barycentric coordinates
− Can be used to generate samples for arbitrary triangles

−

− Marginal density function  
−

− Conditional density 
− Inversion method  

−

−

u

v
(u, 1-u)

[Pharr, Humphreys]
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Uniform Sampling of a Triangle

− Inversion method cont.

− Inverse functions of the cumulative distribution functions  

−

−

− Generating uniformly sampled random values      and

− Applying the inverse CDFs to obtain     and 

u is generated between 0 and 1

v is generated between 0 and 1-u=(1-)½
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Uniform Sampling of a Hemisphere

− PDF is constant with respect to a solid angle

−

−

− Marginal density function  
−

− Conditional density for 
−

− Inversion method  
−

−

[Suffern]
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Uniform Sampling of a Hemisphere

− Inversion method cont.
− Inverse functions of the cumulative distribution functions  
−

−

− Generating uniformly sampled random values      and
− Applying the inverse CDFs to obtain     and 

− Conversion to Cartesian space
−

−

−

− is a normalized direction 
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Uniform Sampling of a Hemisphere

− Illustration for 

Generate less samples 
for smaller angles 
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Cosine-Weighted Sampling of a Hemisphere

− PDF is proportional to       : 
−

−

− Marginal density function  
−

− Conditional density for 
−

− Inversion method  
−

−

[Suffern]
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Cosine-Weighted Sampling of a Hemisphere

− Inversion method cont.
− Inverse functions of the cumulative distribution functions  
−

−

− Generating uniformly sampled random values      and
− Applying the inverse CDFs to obtain     and 

− Conversion to Cartesian space
−

−

−

− is a normalized direction 

x- y- values uniformly sample a unit
disk, i.e., cosine-weighted samples
of the hemisphere can also be obtained
by uniformly sampling a unit sphere
and projecting the samples onto the
hemisphere
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Cosine-Weighted Sampling of a Hemisphere

− Illustration for 

Generate less samples 
for smaller and larger 
angles  Cosine-weighted

hemisphere
(top view, side view)

[Suffern]


