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From Radiosity to Raytracing

— Radiosity equation governs light transport
for diffuse surfaces. ® How to describe
ight transport for general surfaces?

— How to solve for the light transport?

— How to compute the relevant part of
the light transport towards a sensor?
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Stochastic Raytracing

— Light transport towards the sensor requires to solve
L(p = wo) = Le(p — wo) + fs fr(P,wi <> wo)L(p" — —w;)G(p,p’)dA,

— Monte Carlo integration approximates
the reflectance integral
— E.g., > [r(p,wi & wo) L(Pp' — —w;)G(p,p')Ap
— Trace rays into the scene
— Compute radiance along this ray
— Associate an area / solid angle with each ray
— Accumulate all contributions
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Outline

— Diffuse vs. general global illumination
— Monte Carlo integration

— Sampling of random variables
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Governing Equations

— Rendering equation
— Governing equation for general global illumination methods
L(p = wo) = Le(p = wo)+
Jg Fr(Pwi 4 wo)L(m — —w;)V (p, ) L Lune) coslowima) g g,

px

— Radiosity equation
— Governing equation for diffuse global illumination methods

L(p — w,) = 5(p) fr(pywi < w,) = @

7

B(p) = Be(p) + "2 [ B(@)V (p.2) =umugelennilg,

2
Tpa:
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A Solution Strategy - Radiosity

— Finite Element Method
— Start with a continuous form / function
B(p) = Be(p) + 22 [ B(a)V (p, ) erm)gslownna) g 4
— Discretization -
B=B,+ FB
B=(I-F) B,
— Solving for a vector with unknown radiosities
(I-F)"' =3 F"
B=B.+FB.+FFB.+ FFFB, + ...
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An Alternative Strategy

— Start with the general form of the rendering equation,
e.g. in hemispherical form

L(p = wo) = Le(p = wo) + Jo fr(P,wi < wo)L(p  w;) cos(wi, nyy)dw;

— Solving for a function of unknown radiances L(p — w,)
— l.e,, radiance at all surface positions into all directions
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Operator Form of the Rendering Equation

— Operators transform a function into another one

— Scattering operator
(Kh)(p = wo) = [ fr(D,wi > wo)h(p  w;) cos(w;, np)dw;

— Applied to an incident radiance function L(p «+ wj;), exitant
radiance after one bounce / scattering step is returned
L(p— w,) = (KL)(p + w;)

— K operates on an entire function, i.e. on all incident
radiances for all positions p and direction w;

See, e.g.: Eric Veach: Robust Monte Carlo Methods for Light
Transport Simulation, Ph.D. thesis, Stanford University, 1997.
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Operator Form of the Rendering Equation

— Propagation operator

(Gh) (p — wi) = h(p’ — —wi) p’indicates the raycast operator applied to p

— Applied to an exitant radiance function L(p’ — —w;) ,
incident radiance at p from direction w; is returned
L(p+ w;)=(GL)(p" — —w;)

— Radiance is preserved / propagated along the line
between p and p’

— pand p’ can be reversed, i.e. L(p' + —w,) = (GL)(p — w,)

See, e.g.: Eric Veach: Robust Monte Carlo Methods for Light
Transport Simulation, Ph.D. thesis, Stanford University, 1997.
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Operator Form of the Rendering Equation

— Light transport operator
T=KG
— Composition of scattering and propagation

— Maps an exitant radiance function to the exitant
radiance function after one scattering step

— Remember: G maps exitant radiance to incident radiance
propagated along a direction. Then, K maps incident
radiance to exitant radiance after scattering

See, e.g.. Eric Veach: Robust Monte Carlo Methods for Light Transport Simulation, Ph.D. dissertation, Stanford University, 1997.
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Operator Form of the Rendering Equation

L(p = wo) = Le(p = wo) + Jo fr(Pywi < wo)L(p  w;) cos(wi, nyy)dw;
— Can be written as
L(p— w,) =Le(p— wo) + (KGL)(p — w,)

— Light transport equation

L = L., + T L Infinite number of equations with an infinite number of unknown exitant radiances

— T relates exitant radiance functions
— Represents the light propagation equilibrium
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Light Transport Equation

L=L.+TL
— Solving for the unknown radiance function
I-T)L =L,
L=(I-T)"'L,
— Neumann series
L = ZZio(TkLe)
~L.+TL.+TTL.+TTTL. + ...
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Light Transport Equation

— Discussion

— Radiance function is a sum of
— Emitted radiance L.
— Emitted radiance after one scattering T,
— Emitted radiance after two scatterings TT' L.

L~L.+TL +TTL+TTTL,+...
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Terms in the Neumann Series

— Example contributions to terms

lLe ” ﬂ uTGLe

TTL, “ U_
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Forward Raytracing

— Send rays / propagate radiance from all light source
positions into all directions = L.

— At all intersection points p, solve the integral
Li(p = wo) = [, fr(P,w; <> wo)G L, cos(w;, ny,)dw;

for all direction wo= TL.
— Trace rays to propagate TL,

— At all intersection points p, solve the integral
Ly(p = wo) = [, [r(D,wi < wo)G L1 cos(w;, iy )dw
for all direction w,= TTL.
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Forward Raytracing

— At a sensor: Accumulate radiance contributions of rays
after n scattering steps, i.e. compute L + TL. + TTL. + ...

/ght SIOLICS

Sensor

Exemplary rays
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Operator Form of the Rendering Equation

L(p = wo) = Le(p = wo) + Jo fr(Pywi < wo)L(p  w;) cos(wi, nyy)dw;
— Can be written as
L(p— w,) =Le(p— wo) + (KGL)(p — w,)

— Light transport equation

L = L., + T L Infinite number of equations with an infinite number of unknown exitant radiances

— T relates exitant radiance functions
— Represents the light propagation equilibrium
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Light Transport Equation

L=L.+TL
— Solving for the unknown radiance function
I-T)L =L,
L=(I-T)"'L,
— Neumann series
L = ZZio(TkLe)
~L.+TL.+TTL.+TTTL. + ...
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Light Transport Equation

— Discussion

— Radiance function is a sum of
— Emitted radiance L.
— Emitted radiance after one scattering T,
— Emitted radiance after two scatterings TT' L.

L~L.+TL +TTL+TTTL,+...
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Backward Raytracing

— Consider rays from the sensor into the scene
— Propagate radiance from visible light sources
— = part of L. visible to the sensor

— At intersection points p with the scene, compute
radiance L(p — w,) = fQ fr(p,w; <> w,)Le(p < w;) cos(w;, ny,)dw;
that is propagated in direction w, towards the sensor

— = part of TL. visible to the sensor
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Backward Raytracing

— Trace rays from the sensor into the scene

ight source

L./ TTL,

X TL,
Sensor

Exemplary rays
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Setting at Sensor

L(py + —w,) = \ L(p1 — w,) 7
L — W, P
pol (P1 )/ o \ 1
_ — W, Scene
Sensor
I [ Light
ql 1 source
Lgel) = [
Le(q" — —1) ILe(q’ — 1)

— How to compute L(p; — w,) and what is its
the relationto L, +TL, + TTL, + ... ?
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Setting at First-Level Intersections

L(p1 = w,) = fS fr(p1,w; <> wo)L(p2 — _wi)G(plap2)dAp2
— fLight Sources e (Pla W; <= wo)Le (P2 — —w?:)G(Pth)dApz
+ Jaene Jr(P1,wi <> Wo)L(p2 = —w;)G(p1, p2)dAp,

T fLight Sources * *° |S the part
of TL. visible to the sensor
L(p1 <— wz)

— Computation of Jscene - L(ps — —w;
requires L(p, — —w;)

D2

)

L(pl — wo)

towards
sensor

P1
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Setting at Second-Level Intersections

L(p2 = wo) = [g fr(P2,wi <> wo)L(p3s — —w;)G (P2, p3)dA,,
— fLight e fr(p%wi — wo)Le(p.?; — _wi)G(p%pB)dApg
+ fScene fr(D2,w; <+ w,)L(p3 — —wz)G(P%PS)dApg

T fLight Sources * *° |S the part Of
TTL. VisiDle to the sensor
L(p2 <— wz) =

— Computation of Jseene- - L(ps — —w;)
requires L(ps — —w;)

L(p2 — wo)

towards
oF

P2
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Summary

— Recursive evaluation of
L(p — wo) = [g fr(p,wi <> wo)L(p' = —w;)G(p,p')dA,
= [Liaht Sources Ir (P> Wi € Wo)Le(p' = —wi)G(p, p')dA,
+ J5eene fr(Ps wi > wo) L(p' = —w;)G(p,p')dAy

— Each recursion level computes parts of the functions
L., TL.,TTL,,... that are visible to the sensor
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Numerical Integration

— The integral [;... is approximately computed
with a sum of samples >, ...
— For each sample /,
— Aray is cast into the scene
— Intersection with the scene is computed
— Radiance along the ray is computed
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Numerical Integration

o Typlca”yl fS T T fScene e T fLight Sources " " ° ~ Zscenei o T ZLight Source; * -

IS considered

— FOr 2vign souree, -+, light SOUrce areas are sampled and
rays towards those positions are processed

— FOr Xscene, -+, the respective solid angle is sampled
and rays towards those directions are processed
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Numerical Integration

— Due to the recursive nature, the number of processed
rays grows exponentially with the recursion level

— = Monte Carlo integration
— Efficient for multidimensional integral
— Adaptive sample distribution
— Very flexible in terms of the number of used samples
— Even one sample can be used to approximate an integral

= e.g., Path tracing

— At each recursion level, trace a fixed number of rays to light
sources and one ray into the scene (which generates a ray path)
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Outline

— Diffuse vs. general global illumination
— Monte Carlo integration

— Sampling of random variables
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Goal

— Approximating the solution of the light transport
equation L =372 (T*L.)

— Recursive evaluation of
L(p = wo) = Le(p — wo) + [ fr(P,wi ¢ wo)L(p' = —w;)G(p,p')dAy

— Each recursion level computes parts of the functions
Le,TL.,TTL,,... that are visible to the sensor
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Numerical Integration - Fixed Sample Size

— E.g. Riemann sum

~ [Jf@dex T, fzi)de Az = b5
— More / smaller samples = better accuracy
— d dimensional integrals require N¢ samples

|:x
b
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Numerical Integration - Adaptive Sample Size

— E.g., Monte Carlo integration
— [ f(x)dz =~ Y, f(z:)Az;, adaptive sample size Az;
— More / smaller samples = better accuracy
— d dimensional integrals work with arbitrary sample numbers
— Sample size is only approximated = noise

f(r) == f(x;)
N

X
a AZEZ b -
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Stochastic Raytracing - Concept

— Approximately evaluate the reflectance integral
Jo fr(p, wi > wo)L(p +— w;) cos(w;, Ny )dw; by
— Tracing rays into randomly sampled 2D directions
— Computing the incoming radiances

— Integral is approximated with
Ei fr(pa w; <= WO)L(p — wz) COS(w,L-, np)AQz
— 2 dimensional sample directions w; = (0;, ¢;)

— AQ; is an approximation of the solid angle
of sample direction w; = (6;, ¢;)
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Introduction

— Challenges
— Approximate the integral as exact as possible
— Trace as few rays as possible / use as few samples as possible

— Trace relevant rays / use relevant samples

— Rays / samples to light sources are very relevant
(Rays / samples to occluded light sources are irrelevant)

— For diffuse surfaces, rays / samples in normal direction are
more relevant than rays / samples perpendicular to the normal

— For specular surfaces, rays / samples in reflection direction are relevant
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Properties

— Benefits

— Processes only evaluations of the integrand
at arbitrary surface points in the domain

— Works for a large variety of integrands,
e.g., it handles discontinuities

— Appropriate for integrals of arbitrary dimensions

— Allows for non-uniform sample patterns /
adaptive sample sizes

University of Freiburg - Computer Science Department - 36



Properties

— Drawbacks

— Using n samples, the scheme converges
to the correct result with O (n%)

— lL.e,, to half the error, 4n samples are required

— Errors are perceived as noise,
.e. pixels are arbitrarily too bright or dark
(due to the erroneous approximation of the sample size)

— Evaluation of the integrand at a point and for a direction
IS expensive (ray intersection tests)
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Continuous Random Variables

— Motivation: random sampling of directions

— Continuous random variables x

— In contrast to discrete random variables,
infinite number of possible values

— Canonical uniform random variable 0 < ¢ < 1

— Sample sets with arbitrary distributions
can be computed from ¢
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Probability Density Function PDF p(x)

— Motivation: PDF governs the size /

solid angle of a sample / sample direction
— Probability of a random variable taking certain value ranges
— p(z) >0 Vz € |a,b]

_ < < _ [T The probability, that the random
PT(ZCO =20s xl) fwo p(a?)da: variable has a certain exact value x,=x,, is 0.

— f; p(a:)da: =1 The probability, that the random variable is in the specified domain, is 1.

— Example
— Uniform PDFfor 0 < X <5
— 1= fo5 p(x)dx = p(x) f05 dz =5p(z) pl@)=3
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Cumulative Distribution Function CDF P(x)

— Motivation: CDFs are required to generate sample sets
for arbitrary PDFs from uniform sample sets

— Probability of a randOm variable to be less or equal to =
— P(z)=Pr(X <z)= [ pz

— P(a) =0 < P(x )Sl—P(b)

— Pr(zg < X <z1) = P(z1) — P(x0)
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Expected Value

— Motivation: expected value of an estimator function

'S equal to the ref

— Expected value E
vve|ghted average

ectance integral

f(z)] Of a function f(z) is defined as the

value of the function over a domain b

Processes an infinite number of
— Elf(x)] = [, f( ) dz with [, p(z) dz =1 .

— Propemes
— FElaf(z)] = aE[f(z)]

samples x according to a PDF p(x)

— ED . f(Xo)] =D, Elf(X))] For independent random variables X,
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Expected Value

— Examples for uniform PDF p(=)
— f(@) =cos(z) D =[0,7] p(z)=;

Elcos(z)] = [, cos(z) £ dz = =(—sinm +sin0) = 0

- f( )—af D = [0, 6] p(fc)Z%

foa:—da: %Q—O =

- f(l')/

Elf(2)] = 525 [, f(z)de
2 f(z)de = E[f(2)](b— a)

T

1

1
a b—a—p(x) b
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Monte Carlo Estimator - Uniform Random Variables

— Motivation: approximation of the reflectance integral
— Goal: computation of [ f(x)dz
— Unitormly distributed random variables Xx; € [a, ]
— Probability density function p(«) = 32 Constant and integration to one
— Monte Carlo estimator Fy =2 S2Y (X))
— Expected value of Fy is equal to the integral [, f(z)dz
~ E[Fy] = [, f(
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Monte Carlo Estimator - Uniform Random Variables

E[Fy] = B %5 ¥, f(X)]
— b_Ta Z¢:1 E[f(Xz)]
— boa SV [0 f(2)p(x)da

=ba Y [, flz)pide
— W Zq::1 fa, f(z)dx
= [ f(z)da
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Monte Carlo Estimator - Uniform Random Variables

— PDF p(2) = &=
— Estimator Fy =523 £(X;)
— Integral

— [P f@)dem e Y FOG) = T, f(X) 5 = TN, F(X) 7
— Function value f(X;)
— Approximate sample size x—x
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Examples - Uniform Random Variables

— Integral [ 5z*dz =1
— EStimator Fy = % qu,\il 5)(;l Sample size approx. 1/N

— For an increasing number of uniformly distributed
random variables Xx;, the

. R

estimator converges (O one M/ A
N —a / -
— Fyv=X,., f(X) %" N
Fy = (b—a)g 3L, (X)) L
= (b- a)f(a:) e
Uniformly distributed
E|Fy] = f f(x random samples Ui
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Monte Carlo Estimator - Non-uniform Random Variables

— Monte Carlo estimator Fy =48 fX) g0

(X54)
i N X;
— B[Fv] = B [+ £N, £69]

b f(x
= Y X [, L8p(e)dz
b
— % Z?J,il fa, f([E)dCU
b
— fa f(x)dx

S
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Monte Carlo Estimator - Non-uniform Random Variables

— PDF p(z)
— Estimator Fy = i Z]il ig&;
— Integral

b F(Xi Al

- fa f(z)de ~ N Zz 1 p(Xg = 2im1 f(Xz)N pl(Xi)
— Function value f(X;)

— Approximate sample size 5
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Approximate Sample Size

— Sample size / distance for uniform PDF: = *§* = x5ix
p(z)1 f(z) “74—’—‘-ﬁsfgi)

] ' b

a X;

1

— Sample size for non-uniform PDF. ~ w5
p(x)] @) T

/ ‘ZE

a X; b
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Monte Carlo Estimator - Multiple Dimensions

- kg, [ ), flzy)dedy

— Samples X; are two-dimensional

— Unitormly distributed random samples
(z0,y0) < Xi = (%3, 9:) < (21,41)

— Probability density function »(X:) = 7251

— Monte Carlo estimator
Fy = &i=tofiniol 70 | £(X;)

— Approximate sample size is 1=z —vo)
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Monte Carlo Estimator - Multiple Dimensions

o —é% fljl

(z,y)dxdy

— Uniformly distributed random samples

— Probability density function p(x;) =
— Monte Carlo estimator Fy =23V f(
— Approximate sample size

4

4

Sample size
approx. 9/9

4

1

1

1

4

_1
4—-14—1 9

X;)

Sample size
approx. 9/14
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Monte Carlo Estimator - Integration over a Hemisphere

— Approximate computation of the irradiance at a point

= [, Li(p,w) cos Odw
= fO% fo (P, 0, ®) cos O sin 0dOd¢
N L?; ,9@',(],5@' COSQ@' Sil’l@i
- EStImatOr FN — N Zz 1 p(X; — N Zizl (p p(@lj(bi)

— ChQQS|ﬂg a PDF This flexibility is an important aspect of Monte Carlo integration.
— Should be similar to the shape of the integrand
— As incident radiance is weighted with cos 6,
it is appropriate to generate more samples

close to the top of the hemisphere
— p(0,¢) x cosb
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Monte Carlo Estimator - Integration over a Hemisphere

— Probability distribution
fzqﬁr ¢ p(w)dw =1 p(0, ) = cosb
fo% fo% ¢ cosfsinfd dfd do =1

& % 1
c=1
(9 (Zb) _ 008981119
— Estimator
Fu = § T, bissgpggnes

N T 5 -
= X3 Li(p,0i,0i) = [T JiF Li(p, 0, ¢) cos Osin 0d0d

If @and ¢ are sampled according to PDF p(g ¢  --2-
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Monte Carlo Estimator - Integration over a Hemisphere

— Integral ;™ Jy’ Li(p, 0, ¢) cos Osin 0dddg
_ PDF p(6,¢) = cosbsind
— Estimator & Xizy Li(p, 0:, 1)
= ZfL Li(p,0i, ¢i) cos 0; Freos 9,
— Function value Li(p, 6:, ¢;) cos6; for direction (6;, ¢:)

s

— Approximate sample size / solid angle wcose,
— For large N
— The PDF in terms of the solid angle is p(w;) = =%

T
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Monte Carlo Integration - Steps

— Choose an appropriate
probability density function

— Generate random samples according to the PDF
— Evaluate the function for all samples

— Accumulate sample values weighted with their
approximate sample size
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Monte Carlo Estimator - Error Reduction

— Importance sampling

— Motivation: contributions of larger
sample values are more important

— PDF should be similar to the shape i |
of the function a =
— Optimal PDF »(@) = 5% [Suffern]
— E.g., if incident radiance is weighted
with cos @, the PDF should choose

more samples close to the normal
direction
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Monte Carlo Estimator - Error Reduction

— Stratified sampling
— Domain subdivision into strata
— E.g,, handling direct and indirect illumination differently

— L(p = w,) = Le(p = wo) + fs fr(D,wi <> wo)L(p" = —w;)G(p,p’)dAy
= L.(p — w,)

T fLight Sources f'r (p’ Wj < wO)Le (p, — —wi)G(p, p’)dAp/
+ Jscone Jr(Pywi ¢ wo) L(P' = —w;)G(p, p')dAy
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Monte Carlo Estimator - Integration over a Hemisphere

— Approximate computation of the irradiance at a point

= [, Li(p,w) cos Odw
= fO% fo (P, 0, ®) cos O sin 0dOd¢
N L?; ,9@',(],5@' COSQ@' Sil’l@i
- EStImatOr FN — N Zz 1 p(X; — N Zizl (p p(@lj(bi)

— ChQQS|ﬂg a PDF This flexibility is an important aspect of Monte Carlo integration.
— Should be similar to the shape of the integrand
— As incident radiance is weighted with cos 6,
it is appropriate to generate more samples

close to the top of the hemisphere
— p(0,¢) x cosb
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Outline

— Diffuse vs. general global illumination
— Monte Carlo integration

— Sampling of random variables
— Inversion method
— Rejection method
— Transforming between distributions
— 2D sampling
— Examples
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Motivation - Rendering Equation

— Hemispherical form
L(p — w,) = Le(p — w,) + fQ fr(p,w; > wo)L(p" = —w;) cos(w;, ny)dw;
— Area form
L(p — wy,) = Le(p — wo)+
Jo Fr(pyw;i 4 wo)L(x — —w;)V (p, x) L2 Wimp) eosCwine) g 4

px
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Motivation - Monte Carlo Integration

— Choose an appropriate
probability density function

— Generate random samples according to the PDF
— Evaluate the function for all samples

— Accumulate function values weighted
with their approximate sample size
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Inversion Method

— Mapping of a uniform random :
variable to a goal distribution
— Discrete example

— Four outcomes with probabilities ——— 5
P1,DP2,P3,P4 aﬂd sz =1

11 Py

— Computation of the cumulative | s
distribution function P@) =3"_, p;

Py Py Py Py

1 2 3 4
[Pharr, Humphreys] __&_
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Inversion Method

— Discrete example cont. .

— Take a uniform random variable ¢ o pg Z
— P7'(¢) has the desired distribution
— Continuous case B R

— P and P! are continuous functions 5
— Start with the desired PDF p(x) [Pharr, Humphreys]
— Derive P(z) = [ p(z')da’

— Compute the inverse P~!(z)

— Obtain a uniformly distributed variable

— Compute X; = P~1(¢) which adheres to p(z)

University of Freiburg - Computer Science Department - 64



Inversion Method - Example 1

r) = 4z3
— Power distribution p(z) < = : "
— E.g., for sampling the Blinn microfacet model = P@=""
— Computann of the PDF
_ f0c$”d$—1:>c n:f =1l=c=n+1
— PDF e (n+1)fc
— CDF p S p(a’)da’ = 2"+
= Inverse ofthe CDF Pi@) = e :
— Sample generation Vo X=owE

— Generate uniform random samples o <¢ <1
— X ="/ are samples from the distribution p(z) = (n+ 1)a"
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Inversion Method - Example 2

— Exponential distribution p(z) oc e™ I by =1 a5
— E.g., for considering participating media |
— Computation of the PDF
— Jo ce®dz=—% e =2 =1
— PDF pl@)=ae
D e ] x--sy
— Inverse of the CDF p(z) = 22
— Sample generation

— Generate uniform random samples o<¢ <1
— x =-nl=9 3re samples from the distribution p(z) =a e~

............................
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Outline

— Context
— Diffuse vs. general global illumination
— Monte Carlo integration

— Sampling of random variables
— Inversion methoad
— Rejection methoao
— Transforming between distributions
— 2D sampling
— Examples
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Rejection Method

— Draws samples according to a function f(x)

— Dart-throwing approach

— Works with a PDF p(z) and a scalar ¢ with f(z) < c¢- p(x)
— Properties

— f(x) is not necessarily a PDF

— PDF, CDF and inverse CDF

do not have to be computed
— Simple to implement
— Useful for debugging purposes
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Rejection Method

— Sample generation
— Generate a uniform random sample 0 < ¢ < 1
— Generate a sample X according to p(x)
— Accept X if &-c-p(X) < f(X)

/’ e opfx)
[

fix)
L

a b

[Pharr, Humphreys]
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Outline

— Context
— Diffuse vs. general global illumination
— Monte Carlo integration

— Sampling of random variables
— Inversion methoad
— Rejection method
— Transforming between distributions
— 2D sampling
— Examples
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Transforming Between Distributions

— Computation of a resulting PDF, when a function is

ap

pDlied to samples from an arbitrary distribution
Random variables X; are drawn from pz(z)
Bijective transformation (one-to-one mapping) Y; = y(X;)

How does the distribution py(y) look like?
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Transforming Between Distributions

— Pr{Y <y(x)} = Pr{X < z}

Py(y) = Py(y(x)) = Pr(x)
py(y) = %

— Example pu(z) =22 0<z <1
— y(x) =sinz x(y) = arcsiny

— y'(x) = cosx

_ pz(x) 22 2 arcsin y __ 2arcsiny

— py(y) " |cosz|  |cosz| = |cosarcsin(y)| 1—12
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Transforming Between Distributions

— Multiple dimensions
— X, is an n-dimensional random variable

— Y; = T(X;)is a bijective transformation
— Transformation of the PDF

ory T
( ) oz 0Ty,
- n) = Y JT“’”(a; i )
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Transforming Between Distributions

— Example (polar coordinates)
— Samples (r,0) with density p(r,0)
— Corresponding density p(z,y) with  =rcosf and y = rsind

— ( cosf) —rsinf

_ _ 2 . 2 g\
Jr(x) = il 7 cosd ) |Jr(x)| = r(cos® 0 +sin“6) = r

— p(a:,y) — %p(?‘, 9) p(’l“, 9) =T -p(:l:‘,y)
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Transforming Between Distributions

— Example (spherical coordinates)
— x =rsinfcoso
— gy =rsinfsin g
— z=rcosf
— p(r,0,¢0) =r?sinf - p(x,y, 2)
— Example (solid angle)
- Priw e Q} = [, p(w)dw
— dw =sinf df do
— p(0,¢) =sinf - p(w)
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Outline

— Context
— Diffuse vs. general global illumination
— Monte Carlo integration

— Sampling of random variables
— Inversion methoad
— Rejection method
— Transforming between distributions
— 2D sampling
— Examples
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Concept

— Samples from a 2D joint density function p(z,y)

— Procedure
— Compute the marginal density function p.(z) = [ p(x,y)dy
— Compute the conditional density function py(y!x) = 2y
— Generate a sample X according to p. ()
—~ Generate a sample Y according to py(y|X) = 254

— Marginal density function
— Integral of p»(z,y) for a particular = over all y-values

— Conditional density function
— Density function for v given a particular =
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Outline

— Context
— Diffuse vs. general global illumination
— Monte Carlo integration

— Sampling of random variables
— Inversion method
— Rejection method
— Transforming between distributions
— 2D sampling
— Examples
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Uniform Sampling of a Triangle

— Sampling an isosceles right triangle of area 0.5
— U, vV can be interpreted as Barycentric coordinates
— (Can be used to generate samples for arbitrary triangles

— p(u,v) =2

— l\/largmal den5|ty function 1
— pu(u fo p(u,v) dv—2f01“7):21_u) y (U, 1-u)
— Cond|t|ona| den5|ty po(vfu) = B = 1

u
Inver5|on method
— P f02—2u’du—2u—u
_ P ’U’U) fO — 1l—u
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Uniform Sampling of a Triangle

— Inversion method cont.
— Inverse functions of the cumulative distribution functions

—u=1—-+V1-¢& u is generated between 0 and 1
— v=E611-& v is generated between 0 and 1-u=(1-&)"

— Generating uniformly sampled random values &1 and &2
— Applying the inverse CDFs to obtain v and v
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Uniform Sampling of a Hemisphere

— PDF is constant with respect to a solid angle p(w) = ¢
— [Lipwdw=1 = cf, ,dw=1 = c= 5
— p(w) = 3= = p(b,¢) = 22 ,
— l\/larginal den5|ty function \

— po(8) = Jo" p(6,6)dp = [} Sld¢ = sin g P
_ Condmonal density for ¢ / , -

— py(0]0) = 1;(99(’35)) = 5x , ‘\
— Inversion method

— Py(0) = f09 sin #’df’ = — cosf + 1

— Py(¢10) = Jy =d¢’ = £
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Uniform Sampling of a Hemisphere

— Inversion method cont.
— Inverse functions of the cumulative distribution functions
— 6 = arccos(1 — &)
— ¢ =27y
— Generating uniformly sampled random values & and &
— Applying the inverse CDFs to obtain ¢ and ¢
— Conversion to Cartesian space
— x =sinfcos ¢ = cos(2m&s) /1 — (1 — &;1)?
— y=sinfsin¢ = sin(27&2)\/1 — (1 — &1)?
— z=cosfl=1—-&

— (7,9,2)7 iSs @ normalized direction
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Uniform Sampling of a Hemisphere

— |llustration for ¢

1.8

1.2

Dé
0.4] Generate less samples
| for smaller angles 6
o
o 0.2 0.4 0.6 0.5 1

0 = arccos(i - 51)
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Cosine-Weighted Sampling of a Hemisphere

— PDF is proportional to cosf: p(w) o cosd
— [y cpw)dw=1= IO% fo% ¢ cos@sinf df do = ¢ 27rf0% cosfsinf df =c2mr3 =1
— p(6,¢) = £ cosfsind
— Marginal density function "
— po(0) = fo%p(ﬁ, ¢)dep = fO% L cosfsinfdg = 2cosfsinb | u
— Conditional density for ¢ ‘
— p¢(qb|9) — 1;(99(’;}5)) — %
— Inversion method
— Py(0) = f09 2 cos @ sin6'df’ = 2 {— 00822 Ql}z
:2(—#4—%) — sin? 0
— Py(9l0) = [7 £do' = £ -
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Cosine-Weighted Sampling of a Hemisphere

— Inversion method cont.
— Inverse functions of the cumulative distribution functions
— 6 = arcsin(1/&;)
— ¢ =27
— Generating uniformly sampled random values &1 and &2
— Applying the inverse CDFs to obtain 6 and ¢

— Conversion to Cartesian space i« y-values uniformly sample a unit

. o _ iy disk, i.e., cosine-weighted samples

z = sin cos ¢ = cos(2m&2) V& of the hemisphere can also be obtained
— y =sinfsin ¢ = sin(27&2) V& by uniformly sampling a unit sphere
L g — el — m and projecting the samples onto the

hemisphere

— (x,9,2)" is a normalized direction _
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Cosine-Weighted Sampling of a Hemisphere

— |llustration for o

1.8

0.4+

1.2

0.8

Generate less samples
for smaller and larger
angles 0

0.2 0.4 0.6 0.5 1

- arcsin(&)

circumference

- ! > SO
\'-..-."."“.-." LI S Pt K e
. Y LA - . . Sene ol
L RO S IR A S ORISR
v .-..'..-...: o._".'... .
Set ee Nt e e, e,
o B S urrern
s e tae

Cosine-weighted
hemisphere
(top view, side view)
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