Image Processing and Computer Graphics

Adam Kortylewski Max Argus Thomas Brox Matthias Teschner

> UNI FREIBURG

Organization

Computer Graphics

Matthias Teschner

Image Processing

Adam Kortylewski Max Argus Thomas Brox

https://cg.informatik.uni-freiburg.de/ teaching.htm https://lmb.informatik.uni-freiburg.de/ lectures/image_processing/

> UNI FREIBURG

Computer Graphics Modeling – Rendering – Simulation Introduction

Matthias Teschner

UNI FREIBURG

Modeling – Rendering – Simulation

© Warner Bros. Scanline VFX V-Ray

University of Freiburg – Computer Science Department – 5

UNI FREIBURG

Modeling – Rendering – Simulation

© Double Aye V-Ray

> UNI FREIBURG

Modeling – Rendering – Simulation

FIFTY2 Technology

FREIBURG

Modeling – Rendering – Simulation

FIFTY2 Technology

Application Areas

- Visual effects (movies, commercials)
- Architecture
- Engineering
- Medical imaging
- Scientific visualization
- Games
- Virtual reality / augmented reality

– Light

- Energy or photons transported along lines
- Generated by light sources, measured / absorbed by sensors, interacts at surfaces and with participating media
- Modeling
 - Geometry, materials, participating media, illumination
- Rendering
 - Computation of light transport
- Simulation
 - Dynamic rigid bodies, deformable objects and fluids

CGMeetup: CGI VFX Breakdown HD "Making of Share a Coke Vfx by ARMA" | CGMeetup. [Youtube]

CGMeetup: CGI VFX Breakdown HD "Making of Share a Coke Vfx by ARMA" | CGMeetup. [Youtube]

MAKING OF "SHARE A COKE"

Music by: Chocolate Puma & Firebeatz I Can't Understand (Original Mix)

Outline

- Organization
- Our research
- Image generation
- Course topics

Graphics Courses

- Key course
 - Image processing and computer graphics (modeling, rendering, simulation)
- Specialization courses
 - Advanced computer graphics (global illumination)
 - Simulation in computer graphics (deformable and rigid solids, fluids)
- Lab course, Master project, Master thesis
 - Simulation track, rendering track

Seminars / Projects / Theses in Graphics

Semester	Simulation Track	Rendering Track
Winter	Simulation Course	
Summer	Key Course Lab Course - Simple fluid solver Simulation Seminar	Key Course Lab Course - Simple Ray Tracer Rendering Seminar
Winter	Master Project - PPE fluid solver Rendering Seminar	Rendering Course Master Project - Monte Carlo RT Simulation Seminar
Summer	Master Thesis Research-oriented topic	Master Thesis Research-oriented topic

Material – Exam

- Slide sets and recordings
- Slides, recordings, exercises, solutions and test exam on https://cg.informatik.uni-freiburg.de/teaching.htm
- Written exam

Selected Readings

- Thomas Akenine Moeller et al.: *Real-time rendering*. Taylor & Francis, 2018.
- Matt Pharr, Wenzel Jakob, Greg Humphreys.
 Physically based rendering: From theory to implementation. Morgan Kaufmann, 2016.
 Free online version: http://www.pbr-book.org/

– Andrew S. Glassner.

Principles of digital image synthesis. Morgan Kaufmann, 1995. Free download on https://www.realtimerendering.com/

- Steve Marschner, Peter Shirley. *Fundamentals of computer graphics*. CRC Press, 2015.
- Alan Watt. 3D computer graphics. Addison-Wesley, 1999.
- James D. Foley, Andries van Dam, Steven K. Feiner.
 Computer graphics: principles and practice. Pearson Education, 2014.
- Andrew S. Glassner. An introduction to ray tracing. Elsevier, 1989.

Exercises

- Introduction to OpenGL >3.0
 - Programming interface for rendering
- Four exercises
- Two tasks / topics per exercise
 - Related to rasterization, homogeneous notation, projection, Phong shading (check course curriculum)
- Support
 - NN
- Optional

Recommended Prerequisites

- Linear algebra
 - Vector
 - Matrix
- Calculus
 - Differentiation
 - Integration
- Programming language
 - C++, ...

Outline

- Organization
- Our research
- Image generation
- Course topics

Gissler et al., ACM Transactions on Graphics, 2019

Lagrangian Simulation

Fluid and Solid Parcels

University of Freiburg – Computer Science Department – 23

N N N N

Parcel Movement for Fluids

University of Freiburg – Computer Science Department – 24

FREIBURG

Typical Steps of a Fluid Solver

- Neighbors j of i
- Predicted velocity $\boldsymbol{v}_{i}^{*} = \boldsymbol{v}_{i}^{t} + \Delta t \left(\nu \nabla^{2} \boldsymbol{v}_{i}^{t} + \boldsymbol{g} \right)$
- Pressure

$$\nabla \cdot \boldsymbol{v}_i^* + \nabla \cdot (-\Delta t \frac{1}{\rho_i^t} \nabla p_i^t) = 0$$

- Velocity and position $v_i^{t+\Delta t} = v_i^* - \Delta t \frac{1}{\rho_i^t} \nabla p_i^t$ $x_i^{t+\Delta t} = x_i^t + \Delta t v_i^{t+\Delta t}$

UNI FREIBURG

Neighbor Search

- Huge numbers of neighbors have to be estimated
- Uniform grid
 - Sorted list
 - Compact hashing
 - 1 million samples: 20 ms
 - 1 billion samples: 30 s
- Minimized secondary data structures

Ihmsen et al., *Computer Graphics Forum*, 2011.

University of Freiburg – Computer Science Department – 26

FREIBURG

Pressure Computation

- Solving a pressure
 Poisson equation
 - Matrix-free
 - OpenMP, MPI
 - Up to 1 billion samples on desktop PCs

Ihmsen et al., *IEEE Transactions on Visualization and Graphics*, 2014.

$$\nabla \cdot \boldsymbol{v}_{i}^{*} + \nabla \cdot \left(-\Delta t \frac{1}{\rho_{i}^{t}} \nabla p_{i}^{t}\right) = 0$$

$$\downarrow$$

$$\begin{pmatrix}a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn}\end{pmatrix}\begin{pmatrix}p_{1}^{t} \\ p_{2}^{t} \\ \vdots \\ p_{n}^{t}\end{pmatrix} = \begin{pmatrix}s_{1} \\ s_{2} \\ \vdots \\ s_{n}\end{pmatrix}$$

UNI FREIBURG

Applications

Pixar Animation Studios, Emeryville

FIFTY2 Technology, Freiburg

Studio Claudia Comte, Grancy / BerlinRobotics Innovation Center DFKI, BremenUniversity of Freiburg – Computer Science Department – 28

Fluids Meet Art

Fluids in Engineering

Time: 0.0100s

Outline

- Organization
- Our research
- Image generation
- Course topics

Setup Aspects

- Light
- Scene
 - Light sources, sensor / eye / camera
 - Geometry, materials / reflection properties
 - Participating media, e.g. haze, fog
- Dynamics
 - Simulation of fluids, elastic and rigid solids

Rendering Aspects

- What is visible by the sensor?
 - Rasterization
 - Ray Tracing
- Which color / intensity does it have?
 - Local evaluation of governing equations (Phong illumination model)
 - Global evaluation of governing equations for light interaction at surfaces (rendering equation) and in participating media (volume rendering equation)

Light

- Modeled as energy parcels / photons that travel
 - Along geometric rays
 - At infinite speed
- Emitted by light sources
- Scattered / absorbed at surfaces
- Scattered / absorbed by participating media
- Absorbed / measured by sensors

Light travels along rays

Incoming light is scattered and absorbed at surfaces Participating media scatters and absorbs light Sensors absorb light

> UNI FREIBURG

Color

- Photons are characterized by a wavelength within the visible spectrum
- Distribution of wavelengths \Longrightarrow spectrum \Longrightarrow color

$$\begin{split} \Phi &= \int_{\text{VisibleSpectrum}} \Phi_{\lambda}(\lambda) d\lambda \\ &\approx \sum_{i} \Phi_{\lambda}(\lambda_{i}) \Delta \lambda_{i} \\ &\approx \Phi_{\text{red}} \Delta \lambda + \Phi_{\text{green}} \Delta \lambda + \Phi_{\text{blue}} \Delta \lambda \end{split}$$

$$\Phi_{\lambda}(\lambda_3)$$

 $\Phi_{\lambda}(\lambda)$: number of photons per time with a wavelength in a range $\Delta\lambda_{i}$ around λ_{i} .

University of Freiburg – Computer Science Department – 36

FREIBURG

Governing Equations

- Light is affected by surfaces and by participating media
- Processes described by governing equations
 - Rendering equation
 - Volume rendering equation

Light at Surfaces

- Governing equation for reflected light at surfaces into a particular direction given incident light from all directions

FREIBURG

Light in Volumes

- Governing equations for light changes along rays through participating media, e.g. haze or fog
- Setting

$$L(\boldsymbol{p}_1, \boldsymbol{\omega}) = L(\boldsymbol{p}, \boldsymbol{\omega}) + s \frac{\mathrm{d}L}{\mathrm{d}s}$$

- Absorption
- Emission
- Out-scattering
- In-scattering

$$\frac{dL}{ds} = -\kappa L(\boldsymbol{p}, \boldsymbol{\omega})$$

$$\frac{dL}{ds} = L_e(\boldsymbol{p}, \boldsymbol{\omega})$$

$$\frac{dL}{ds} = -\sigma L(\boldsymbol{p}, \boldsymbol{\omega})$$

$$\frac{dL}{ds} = L_i(\boldsymbol{p}, \boldsymbol{\omega})$$

UNI FREIBURG

Light Transport

- Governing equations enable the computation of light at all points in space into all direction

Reflected light due to material properties

UNI FREIBURG

Rendering

- At an arbitrarily placed and oriented sensor

- Cast rays into the scene
- Lookup light that is transported along these rays

Rendering Algorithms

- Approximately solve the light transport in a scene
- Radiosity
 - Computes reflected light at all surface points into all directions
 - Simplifications: No participating media, diffuse surfaces, equal reflected light per finite-size surface patch, e.g. triangle
 - Linear system with unknown reflected light per surface patch

Rendering Algorithms

- Ray Tracing, Rasterization
 - Compute visible surfaces (What is visible by the sensor?)
 - Have to be combined with shading algorithms (Which color does it have?)
 - Phong illumination model
 - Monte-Carlo Ray Tracing

Ray Tracing and Rasterization

– Solve the visibility problem

Ray Tracers compute ray-scene intersections to estimate *q* from *p*.

Rasterizers apply transformations to *p* in order to estimate *q*. *p* is projected onto the sensor plane.

UNI FREIBURG

Shading

- Solve $L(\mathbf{p}, \boldsymbol{\omega}_o) = \int_{\Omega} \max(\mathbf{p}, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) L(\mathbf{p}, \boldsymbol{\omega}_i) \cos \theta_i d\omega_i$ at a surface point \mathbf{p} with, e.g., Monte-Carlo raytracing
 - Accumulate all illumination onto p weighted with material properties mat \Longrightarrow reflected light towards sensor point q
- Phong illumination model
 - Simplified setting
 - Considers light, sensor and normal direction and material properties

Challenges for Realistic Images

- Rendering
 - Computing the entire light transport
 - Understanding simplifications introduced by practical concepts
- Modeling
 - Detailed geometry and material properties
 - Properties of participating media
 - Realistic light sources
- Simulation

Outline

- Organization
- Our research
- Image generation
- Course topics

Course Curriculum

- 1. Introduction
 - Modeling, rendering, simulation
 - Concepts, challenges, applications
- 2. Visibility with Ray Tracing
- 3. Shading
- 4. Homogeneous coordinates
 - Prerequisite for projection
- 5. Visibility with projection

Course Curriculum

- 6. Rasterization
 - Concepts for vertex and fragment processing
- 7. Curves and surfaces
- 8. Particle fluids
- 9. Summary and outlook
 - Test exam
 - Radiosity, Monte Carlo ray tracing, simulation

- Organization
- Our research
- Image generation
- Course topics