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Rendering

— Visibility / hidden surface problem
— ODbject projection onto sensor plane

— Ray-object intersections
with ray casting

— Light transport / shading
— Rendering equation
— Phong illumination model

[Jeremy Birn]
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Ray Casting

— Computes ray intersections with the
representation of a scene to estimate
the projection of the scene onto the sensor

Ray Casting computes ray-scene
intersections to estimate g from p.
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Ray Tracing - Concept

Ray 1

Qutgoing light from source
Incoming light at surface
Direct illumination

Ray 2

Outgoing light from source
Incoming light at surface
Direct illumination

Ray 3

Outgoing light from surface
Incoming light at surface
Indirect illumination

Ray 4
Outgoing light from surface
Incoming light at sensor
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Ray Tracing - Challenge

Ray 4
/ Incoming light at the sensor
\ / Main goal of a ray tracer

_ - Ray 1,2, 3, ..
‘//"l \\‘ Incoming / outgoing light
f at all other paths is required
| 7 / to compute light at ray 4
I Ray 2 7
I -’
| _< Ray4d Ray 3
! -7 Two surfaces illuminate each other.
! Outgoing light from g towards p
depends on outgoing light from
p p towards g which depends on ...
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Ray Tracing - Terms

Secondary RN
ray

\\[ / - Primary rays

N

7\ g

start / end at sensors

Secondary rays
do not start / end

I
Secondary ray / L7 Shadow rays
shadow ray e ” primary start / end at light sources
. " - ray
N
p
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Ray Casting and Ray Tracing

— Primary rays solve the visibility problem
— What is visible at the sensor?
— Ray casting

— Secondary rays are used to compute the light
transport along a primary ray towards the viewer
— Which color does it have?
— Shading model / rendering equation
— Ray tracing
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Ray Casting and Ray Tracing

Ray Tracing
Incoming light from Computation of the light
direction w); along that is transported along
a secondary ray primary rays. Which color

does it have? Secondary

Egﬁi)auit;?i% ) rays are used.
of position p. @ @
What is visible
at the sensor? Primary L(Pa wo) — fQ . dw;
'y Outgoing light into direction w,,
I — (primary ray) is a sum of incident light
D from all directions (secondary rays)
Position p weighted with material properties.

Position
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Ray Casting - Concept

— Ray
— A half-line specified by an origin o and a direction d
— Parametric form r(t) = o+ td with 0 <t < o0

— Nearest intersection <oy ¢
' ‘ (1)
with all objects he;s e
to be computed, i.e.
intersection with 7% B A—
minimal t > 0 |

-0 ® = hit point with ¢t > O
. ‘= @ = hit point with t < 0
view plane
(@) (b)

Orthographic camera with parallel rays [Suffern] — __&_
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Implicit Surfaces

— Function s implicitly defines a set of surface points
— For a surface point (z,4,2): f(z,y,2) =0

— An intersection occurs, if a point on a ray satisfies
the implicit equation f(z,y,2) = f(r(t)) = f(o+td) =0
— E.g., all points p = (z,5,2) 0N a plane with surface
normal n and offset r satisfy the equation n-(p—7) =0

— The intersection with a ray can be computed based on ¢
n- (O + td — T‘) =0 t= (r;?c)l'n if d is not orthogonal to n
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Implicit Surfaces - Normal

— Perpendicular to the surface
— Given by the gradient of the implicit function

0 0 0
n=Vf(p)= (252, 2p 2Lr))

— E.g,forapointp=(z,y,z)onaplane f(p)=n-(p—r)=0

n — Vf(p) — ((%nw(x R Tﬂ?)v %ny(y o Ty)v %nZ(Z o Tz)) — (nwvnyvn?:)
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Implicit Surfaces

Implicit surface

ps3
Ray-surface intersection

n-(o+td—r)=0
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Quadrics

— E.8.
— Sphere

— Ellipsoid
— Paraboloid

— Hyperboloid
— Cone
— Cylinder

— Represented by quadratic equations, i.e.
Zero, one or two intersections with a ray
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erboloid of One Sheet

[Wikipedia: Quadric]
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http://upload.wikimedia.org/wikipedia/commons/a/a1/Quadric_Ellipsoid.jpg

Quadrics - Sphere

— At the origin with radius one f(p) =2*+y*+22—-1=0
(0z + tde)? + (0y + tdy)? + (0, +td,)* — 1 =0

— Quadratic equationin t

At? + Bt +C =0 A=d;+d;+d. B=2(d.o,+d,o,+d,0,)
tl,Q — _Bi\/QB‘;_ZLAC C — Oi + 03 + Oz — 1

— Surface normal
n = Vf(p) = (2z,2y,2z)
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Quadrics - Sphere

j P2
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Ray 1: 7(t) = 0 + td;
B? —4AC < 0

Ray2: T(t) = o + td>

—B4+vVB2—4AC
t192 — \/QA

P12 =0+t 2ds

Ray3: 7(t) = 0 + td3

ty = 52
pP3 = 0 + t3ds



Quadrics - Example
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Parametric Surfaces

— Are represented by functions with 2D parameters
:C:f(u,’lj) y:g(u,v) <~ = h(uav)

— Intersection can be computed from a (non-linear)
system with three equations and three unknowns

0y +td, = f(u,v) oy +td, = g(u,v) o, +td, = h(u,v)
— Normal vector
n(u,v) = (4L, 52,98) x (4,5, 2

Tangent Tangent
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Parametric Surfaces, e.g., Cylinder, Sphere

— Cylinder about z-axis with parameters ¢ and v
r=cos¢ 0<¢<2r
Yy = sin ¢
Z = Zmin T V(Zma,x — Zmin) 0<rvr<l
— Sphere centered at the origin with parameters ¢ and ¢
x = cos ¢sinf 0<op<2m
y = sin ¢ sin 0 0<o<m
2z = cos

— Parametric representations are used to render
partial objects, e.g. émin < ¢ < Pmax
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Parametric Surfaces, e.g., Disk, Cone

— Disk with radius r at height h along the z-axis
with inner radius r; with parameters v and v

¢ = UDmax 0<u<l
r=((1—-v)r;+vr)coso 0<rv<l1
y = ((1 —v)r; + vr)sin ¢
z=h
— Cone with radius r and height h and parameters v and v
¢ = UPmax 0<u<l
x=7r(l—1r)cos¢ 0<rv<i

y=r(l—v)sing

2z =vh -
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Compound Objects

— Consist of components
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Constructive Solid Geometry CSG

— Combine simple objects to complex geometry using
Boolean operators

Difference of a cube and a sphere.
Sphere intersections are only
considered inside the cube. Cube
intersections are not considered
inside the sphere.

[Wikipedia: Constructive Solid Geometry] [Wikipedia: Computergrafik]
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Constructive Solid Geometry CSG

— Closed surfaces / defined volumes required

Union INntersection Difference B-A
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Implementation

— Estimate and analyze all intersections
— Consider intervals inside objects

— Works for closed surfaces
— Union /

— (Closest intersection 7

— |Intersection
— (Closest intersection with

A inside B or closest
intersection with B inside A /' E

— Difference ...
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Triangle Meshes

— Popular approximate surface representation
— Surface vertices connected to faces

[Wikipedia: Stanford bunny]
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Triangles

— Parametric representation (Barycentric coordinates)
p(b1,b2) = (1 — by — ba)po + b1 p1 + bapo Vertices p,, p,, p, form a triangle.

p is an arbitrary point in the plane
by >0 bo >0 b1 + b <1 of the triangle.

Po

P = po + bre; + baes
= po + b1(p1 — Po) + b2(pP2 — Po)
= (1 —by — ba)po + b1p1 + bapo
————

D1 bo

€s = P2 — Po €1 = P1 — Po

D2

University of Freiburg - Computer Science Department - 30



Barycentric Coordinates - Properties

— p(bo, b1,b2) = bopo + bip1 + bapo

— bo+ by +by =1

—bp=b0=0 = by=1 = p(by,b1,b2) =po
= Point corresponds to a triangle vertex

—bp=0 = bi+ba=1 = p(bo,b1,b2) =0po+ b1p1 + (1 — b1)p2
= Point located on a triangle edge

— bp>0Ab; >0Ab >0 = Pointlocated inside triangle

— by <0Vb <0Vby <0 = Pointlocated outside triangle
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Triangles

— Potential intersection point is on
the ray and in the triangle plane

o+td = (1 —by —b2)po + bip1 + bap2

Point on Point in the triangle plane
the ray (not necessarily inside the triangle)

o — po = —td+ bi1(p1 — po) + b2(pP2 — Po)
€1 =DP1—Po €2=P2—Po S=0—DPo
t

(—d €1 62) bl = S8
b2
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Triangles - Intersection

— Solution

¢ (s X e1) e
bl = (d><e:.Lg)-e.1 (d X 82) - S
b2 (sxep)-d

— Non-degenerated triangle ana ,  [riple product
.  {dxez)e Volume ofa
ray not parallel to triangle plane: paralielepiped
— Intersection inside triangle: 51 >0 b, >0 b +b <1
— Intersection in front of sensor: ¢ >0
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Motivation

— Simple geometry with
an efficient intersection
test encloses a complex
geometry

— Rays that miss the
simple geometry are
not tested against the
complex geometry

Simple
geometry
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Axis-Aligned Bounding Box (AABB)

— Characteristics
— Aligned with the principal coordinate axes
— Simple representation (an interval per axis)
— Efficient intersection test
— Can be translated with object
— Update required for other transformations
— Alternatives
— Object-oriented boxes, k-DOPs, spheres
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AABB

— Boxes are representec

oy slabs

— Intersections of rays
with slabs are analyzed
to check for ray-box

iNntersection

— E.g. non-overlapping ray
intervals within different
slabs indicate that the
ray misses the box

Yo

[S

St
uffern] (b) - A interval
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AABB - Intersection Test

— Ray-plane intersection
- n-(o+td—7r)=0

3
.
.
.
.
.
.
.
.
.
.
\\
.
.
\\
. .
= t

h \\. 1

~

~ ~
\\ “
'\\‘ S
- —— x interval
.
\\
1 -

_ (r—o).
t — ’r’nOd mn
— Intersection with x-slab | )
— (1’ 0, O) . (0 + td — (330’1, 0,0)) =0 [Suffem]\“x\ /.tS |
0,1 —Og () \z Jmens
tOJ:: ’dn ’

— Intersection with y-slab
- (09 170) ' (O+td - (OnyO,laO)) =0

_ Yo,1—o0
lo3 = BT .
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AABB - Intersection Test

— Overlapping ray intervals inside
an AABB indicate intersections

~
~
Ay
N
: 1
-~
~
~

., xinterval
\, Y interval

interval S, //Nerlap . / 9verlap
) > interval

interval
y interval [Suffern]

x interval Yo
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Bounding Volume Hierarchies (BVH)

— AABBs can be combined

to hierarchies

Pale

AABB

A A A A Obea

primitives
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BVH - Intersection Test

— Traversing the BVH

— It a box is intersected,
test its children

— log n box tests for an
object with n faces

— Efficient pruning of I
irrelevant regions A

— Memory and pre-
processing overhead
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Motivation

— Ray casting of fluid surfaces

Ray-surface intersection

Fluid particles without explicit surface representation
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Density Mapping onto Grid

o
| ® o ©
Pair o o
¢ ®
® ® ® ® ® P = Pfluid @
Pfuid ° o
® o © o
@ o O ® ‘$z‘
: ®
® ® ® P < Pfluid ® o
Fluid particles Density interpolation
with densities at grid cells, e.g.

plx;) = Zj VipauiaW ([|z; — x4))
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Density Interpolation in a Grid Cell

— Trilinear interpolation of scalar values inside a grid cell

) plu,v,w) = (1—u)(1—v)(1 - w)pooo +

o (1 —u)(1 —v)(w)poor +
s (1= w)(v)(1 = w)poro +
5o (u)(1 —v)(1 —w)p1roo +

N (u)(1 —v)(w)p101 +

(1 —w)(v)(w)por1 +

P (u)(v)(1 = w)p110 +

(1.0 (u)(v)(w)p111
[Parker et al ]

Proo
(xpYozg)
(1,0,0)
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Ray-Isosurface Intersection

£010 £110

— Define an iso-value
Pair < Piso < PAuid
— Ray r(t) = o+ td L

— Compute wu,v,w,t with L —
p(u, v, w) = piso and —~ P, v, w) = piso
ro + u(x; — xp)
Yo +v(y1 —yo) | =o+1td
£000 0010

20 -+ ’bU(Zl — Z())
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Intersection Normal

— Gradient of the density field

op(x,y,z op(x,y,z op(z,y,z
n = V(z,y,2) :( p(axy ) p(ayy ) p(azy ))

— Approximated, e.g., with finite differences

_ (=D vjwe
e = 20 k=01"ay—mp  Pidk

_ (=D ujwy
Ny = qu,j,k:()?l Y1 —Yo Pijk

_ (=D " uv;
nz—2¢,j,k:0,1 1—zg  Pijk
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Ray Casting

— Very versatile concept to compute
what is visible at a sensor
— Implicit surfaces, parametric surfaces

— Expensive for complex geometries
— Spatial data structures, e.g. bounding volume hierarchies

— Can be simple
— Linear or quadratic formulations (plane, triangle, sphere)

— Can be involved
— Implicit representation of iso-surfaces
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