Computer Graphics
Homogeneous Notation

Matthias Teschner

|
UNI
FRE:BURG



What is visible at the sensor?

— Visibility can be resolved by ray casting
or by applying transformations
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Matrix in homo-

geneous notation

Ray Casting computes
ray-scene intersections
to estimate g from p.
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p

Rasterizers apply transformations
to p in order to estimate q. p is
projected onto the sensor plane.



Outline

— Motivation

— Homogeneous notation
— Transformations
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Motivation

— Transtormations in modeling and rendering
— Position, reshape, and animate objects, lights, cameras
— Project 3D geometry onto the camera plane

— Homogeneous notation

— 3D vertices (positions) and 3D normals (directions)
are represented with 4D vectors

— Transformations are represented with 4x4 matrices

— All transformations of positions and directions are
consistently realized as a matrix-vector product
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Transformations - 2D
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Four faces / primitives /

polygons, four points / Translation. Scale.
vertices, four normals.
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|dentity transform. Rotation. Shear.
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Coordinate Systems and Transformations

L ocal coordi-

nate system
of an object

L ocal coordi-

nate system
of a camera

N e Model transforms o
MTI M2l M3 [ ]
[
o o o
> °
A ®
[
L J
I View trans- ’
B formV -

Global coordinate system with one camera
and three instances of the same object
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Coordinate Systems and Transformations
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. . ° Inverse view trans-
\ form V1 applied to
Y ° all objects and the
° camera
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Global coordinate system with
one camera and three objects
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View space /
¢ Camera space.

Working in view space is motivated
by simplified implementations.
E.g., rays start at 0 in view space.
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Modelview Transform

[
A o o
Local coordi- .
nate system A .
of an object o o
> ° °
Transformation from local ¢
into view space is realized |
with the modelview transform. .
L ocal coordi- I Objects: VM, V'M,, VM, . | {
nate syster — Camera: V'V =1
of a camera View space /
° Camera space.
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More Transformations

— To transform from view space positions
to positions on the camera plane

— Projection transform
— Viewport transform

— See lecture on projections
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Transformations - Groups

— Translation, rotation, reflection
— Preserve shape and size

— Congruent transformations
(Euclidean transformations)

— Translation, rotation, reflection, scale
— Preserve shape
— Similarity transtormations
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Affine Transformations

— Translation, rotation, reflection, scale, shear
— Angles and lengths are not preserved
— Preserve collinearity
— Points on a line are transformed to points on a line

— Preserve proportions
— Ratios of distances between points are preserved

— Preserve parallelism
— Parallel lines are transformed to parallel lines
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Affine Transformations

— 3D position p: p' =T(p) = Ap +1
— Affine transformations preserve atfine combinations
T a0 pi) =0 T(p;) TOr >, =1

— E.g., aline can be transformed by transforming its

control points p'

P1

T = 1P + a2P2 ' =T(x) =T (p1) + axT(ps2)
D2 /
P
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Affine Transformations

— 3D positionp: p' = Ap+t

— 3x3 matrix A represents linear transformations
— Scale, rotation, shear

— 3D vector t represents translation

— Using the homogeneous notation,
all affine transformations are representec
with one matrix-vector multiplication
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Positions and Vectors

— Positions / vertices specify a location in space
— Vectors / normals specity a direction

— Relations
position - position = vector
position +vector = position
vector +vector =vector
position + position not defined
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Positions and Vectors

— Transtormations can have different
effects on positions and vectors

— E.g., translation of a point changes
its position, but translation of a
vector does not change the vector
— Using the homogeneous notation,
transformations of vectors and
positions are handled in a unified way

Translation of
positions and
vectors.
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Outline

— Motivation
— Homogeneous notation
— Transformations
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Homogeneous Coordinates of Positions

— [z,y,2,w]" With w #0 are the homogeneous o
coordinates of the 3D position (£, %,2)" 2y, 0] =

— [z, Ay, Az, ]’ represents the same position

u
(dz A Azyt_z v ozT for gll A0

— Examples
- [2,3,4,1]" ~ (2,3,4)7T
- [2,4,6,1]T ~ (2,4,6)7
— [4,8,12,2]T ~ (2,4,6)T
— [0.2,0.4,0.6,0.1]T ~ (2,4,6)7
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Homogeneous Coordinates of Positions

— From Cartesian to homogeneous coordinates

(z,y,2)"

(z,y,2)"

_>

_>

::E, Y, 2, 1]T Most obvious, but an infinite number of options.

Az, Ay, Az, AT N #0

— From homogeneous to Cartesian coordinates

I:':L.? y7 Z? w]T

(a: Y z)T

w? w? w

University of Freiburg - Computer Science Department - 18



1D Illustration

— Homogeneous points [Az, A}’

represent the same position /
+ in Cartesian space w ,//[Alxl,Al]T o
— Homogeneous points /-
Az, AT lie on aline in / 1)~
w =1
the 2D space [z, w] V-,
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Homogeneous Coordinates of Vectors

— For varying w, a point [z,y,2,w]" is scaled and the
points (2, %, 2)" represent a line in 3D space

— The direction of this line is (z,y.2)"

— Forw — 0, the position (2,2, )" moves
to infinity in the direction (z,y,2)"

— [z,9,2,0]" iS a position at infinity in the direction of (z,y,2)"

— [z,y,2,0]" iS a vector in the direction of (z,v,2)"
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1D lllustration

4 /
/ T
1/ /./[330,’1112] ~ T2
W e
w=1\|7," -
7 T2 o, w3| ~ T L3
=4 [0, ws] 3 »
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Positions at Infinity

— Can be processed by graphics APIs, e.g. OpenGL
— Used, e.g. in shadow volumes

Rendering
of a triangle

Rendering
of a triangle

0.5

I
ek
|

with vertices

-0 O O

F_0.5]

(0.5

0
0

._1_

0.5

o

University of Freiburg - Computer Science Department - 22

with vertices

-0 O O

F_0.5]

(0.5

0
0

._1_

FREIBURG



Positions and Vectors

— If positions are in normalized form,
position-vector relations can be represented

vector +vector = vector S S N
L OZ - | OZ .
I Px ] I (% ]
position +vector = position | |+] /| =
- 1 - L O -
I Px ] I Ty ]
position - position = vector ol =
1 1
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Homogeneous Notation of Linear Transformations
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mip Mi11 Mi2
™map MM21 122
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Affine Transformations and Projections

— General form

Mmoo Mp1 Mo2 Lo
mio M1 Mi2 i
Moo Ma21 Moz 1o

| Do P1 p2 w

— m;; represent rotation, scale, shear

— t; represent translation

— p; are used for projections (see lecture on projections)
— w is the homogeneous component
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Homogeneous Coordinates - Summary

— [2,y,2,w]" with w #0 are the homogeneous
coordinates of the 3D position (£, %, 2)7

— [z,4,2,0]" is a point at infinity in the direction of (z,y,2)"
— [2,9,2,0]" is avector in the direction of (z,y,2)"

— [ moo mo1 mo2 to | is atransformation that
mio M1 Mz 1l represents rotation, scale,

m20 M21 M2z 12 N X St ot
po m1 P2 w snear, transiation, projection
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Outline

— Motivation

— Homogeneous notation
— Transformations
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Transformations

Four faces / primitives /
polygons, four points / Translation Scale
vertices, four normals.

>

|dentity transform. Rotation Shear
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Translation

— Of a position 10 0t ][ pe
0O 1 0 ¢
Ttr=109 0 1 ¢ ﬁi’ -
000 0 1 || 1 |
— Of a vector 100 6]
0O 1 0 ¢
TRv=\4 0 1 4 ;”f" -
000 1 ]| 0]
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Rotation

— Positive (anticlockwise) | COZ¢ _S?w
rotation with angle ¢ R:0)=1 0 ne coso
around the x-, y-, z-axis 00 0

- cosp 0 sing

0 1
R,(¢)=1 _ sing 0 cos¢

00
Matrices for rotations around - C?S(;b —sing 0
arbitrary axes are built by R.(¢) = simgp  cos¢ 0
combining simple rotations & N 0 0 1
and translations. 0 0 0
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Rotation - Inverse Transform

— The inverse of a rotation matrix is its transpose

1 0 0 0 1 0 0 0
R, (—¢) = 0 cos—¢p —sin—¢ O |1 0 cos¢p sing O
v | 0 sin—¢ cos—¢ O | 0 —sing cos¢ O
00 o 1] |o o 0 1
R '=R' R '=R' R:'=R!
x x Y Y z z
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Mirroring / Reflection

— Mirroring with respectto x =0,y =0,z = 0 plane

— Changes the sign of the x-, y-, Z-component

-1
P, =

o O O

— The inverse of a reflection is its transpose

Pl=pP

OO = O

0 0 1 0 0 0

0 0 0 -1 0 0
1ol = lo o 10| =7
0 1 0 0 0 1

-1 _ pT -1 _ pT
Pt =P] P;l1=P,
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Orthogonal Matrices

— Rotation and reflection matrices are orthogonal
RRT=R'R=1 R'=R'

— Ry, R, are orthogonal = R R, is orthogonal

— Rotation: det R =1, Reflection: det R = —1

— Length of a vector is preserved ||Rv|| = ||v||

— Angles are preserved (Ru, Rv) = (u,v)
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Scale

— Scaling x-, y-, z-components of a position or vector
sz 0 0 0| [ pe] [ Sabx
B 0 s, 0 O Py | | SyPy
S(Sa:asyasz)p _ 0 0 S, O pz T Szpz
0 0 o 1 || 1| | 1

— Inverse 81(s,,s,,s.) = S(+, L, L)

Sz’ Sy’ Sz

— Uniform scaling: s, =s, =s.=s

s 00 0] 1 0 0 0

0 s 0 O 01 0 0
SE)=10 0 s 0 or,eg. Ss=1¢ 91 o

0 0 0 1 | 00 0 %
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Shear

— Offset of one component with
respect to another component

— Six shear modes in 3D
— E.g., shear of x with respect to z

1 0 s 0O Pz I p:c+3pz |
10 1 0 0 Py | Dy
He:5P=10 01 0| p |=| b
0 0 0 1 || 1 ] I 1 ]

— Inverse H_!(s) = H,.(—s)
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Compositing Transformations

— Composition is achieved by matrix multiplication
— Atranslation T applied to p, followed by a rotation R
R(Tp) = (RT)p
— Arotation R applied to p, followed by a translation T
T(Rp) = (TR)p
— Note that generally TR # RT
— The order of composed transformations matters
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Examples

— Rotation around a line through t parallel
to the x-, y-, z- axis
T(t)Ryy. ()T ()
— Scale with respect to an arbitrary axis
Ry (6)S(52, 8y, 52) Rayz(—9)
— E.g., b1,bs,bs represent an orthonormal basis,
then scaling along these vectors is realized with

-
bl b2 b3 0 b1 b2 b3 0
0 0 0 1 ]S(Sf’“sy’sz) [ 0 0 0 1
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2D Example - Rotation About a Point

° o Di
t Lt  »p;
A o
° o Di
” t - t °Di g
[ ®
®

We want to rotate Translation by -t. Rotation by ¢. Translation by t.
the object points p,
around point t. T(—t)Pz‘ R(gb)T(—t)p@- T(t)R(Cb)T(_t)pi
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Rigid-Body Transform

— In Cartesian coordinates. p’ = Rp+t with R being a
rotation and t being a translation

: / 4
— In homogeneous notation: H ] = [ (ﬁ X ] H ]
— The inverse transform in Cartesian coordinates

p = R—l(pl . t) — R—lpl . R_lt — RT /7 RTt

— The inverse in homogeneous notation
p| | R t] Ty | R" —-R't p’
1] | o" 1 1] [ 0o 1 1
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Planes and Normals

— Planes can be represented by a surface normal » and
a point ». All points p with »- (p —r) =0form a plane

NPz + NyPy + NPy + (—Ngry — nyTy —Nery) =0
NypPex + NyPy + 10, +d =0

(o ny nz d)(pz py p= 1)" =0
(ne ny ny A)A T A(py py p. )T =0

— The transformed points Afp. p, p- 1] are on the plane
represented by (n, n, n, d)A~t = (A"H)T(ny ny n, )T

— If a surface is transtormed by 4, its homogeneous
notation (including the normal) is transtormed by (A=H)T

University of Freiburg - Computer Science Department - 40



Basis Transform - Translation

— Two coordinate systems

€9 JE2
Cl — (017{61762763}) t
C2 — (029 {617 €2, 63})
O, =T(t)0, L1 _P_2..

|
O, R
f :582 e
01 21 >el
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Basis Transform - Translation

— The coorc
are given

inates of p; with respect to ¢,
OV po=p1—t Pp2= T(—t)p1

— The coord

— Translati

inates of a point in the transtormea

pasis correspond to the coordinates of the
point in the untransformed basis transtormed
oy the inverse basis transform

ng the origin by ¢ corresponds

to translating the object by —t

— Rotating

the basis vectors by an angle corresponds

to rotating the object by the same negative angle
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Basis Transform - Rotation

— Two coordinate systems

Cl — (07 {617 €2, 63}) €9
C2 — (07 {bla b27 b3})
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Basis Transform - Rotation

— Coordinates of p: with respect to ¢; are given by

bI bl,a: bl,y bl,z 0
bT Dy ~ b2,:r: b2,y b2,z 0 D1
b‘2|' b3,:r; bS,y b3,z 0

s o 0 0 1

— by, by, bs are the basis vectors of ¢, with respect to ¢,
— b1,by,bs are orthonormal, represent a rotation

— Rotating the basis vectors by an angle corresponds
to rotating the object by the same negative angle
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Basis Transform - Application

— The view transform can be seen as a basis transform

— Objects are in a global system C; = (04,{e1, e2,e3})

— The camera is at 0, and oriented with {b., b,, b3}

— After the view transform, all objects are represented in
the eye or camera coordinate system C; = (Os, {b1, b2, b3})

— Placing and orienting the camera is a transformation v

— The basis transtorm is realized by applying v-to all
objects
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View Transform

CQ — (029 {bla b27 b3})

® ® ° °
\ o Inverse view trans- |
o form V1 applied to .
. . ¢ all objects and the . s |
\ camera
o View space /

> ¢ Camera space.

Global space. ’

Cl — (013{61762763}) |
Cl — Vv — CQ __E
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Summary

— Usage of the homogeneous notation is motivated
oy a unified processing of affine transformations,
perspective projections, points, and vectors

— All transformations of points and vectors are
represented by a matrix-vector multiplication

— "Undoing" a transformation is represented by
1S Inverse

— Compositing of transformations is accomplishea
by matrix multiplication
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