
Matthias Teschner

Computer Graphics
Rasterization

University of Freiburg – Computer Science Department – 2

Outline

− Context

− Rasterization-based rendering

− Vertex processing

− Rasterization

− Fragment processing

− Framebuffer update

University of Freiburg – Computer Science Department – 3

What is visible at the sensor?

− Visibility can be resolved by
ray casting or by rasterization

− If more than one scene point pi is mapped to the
same sensor position q, the scene point closest
to the viewer is selected

Ray casting computes
ray-scene intersections to
estimate q from p1 and p2.

Rasterizers apply transformations
to p1 and p2 in order to estimate q.

 

University of Freiburg – Computer Science Department – 4

Rasterization

− Computation of pixel positions in an image
plane that represent a projected primitive

Primitives represented by vertices

Line segment
(2 vertices)

Triangle
(3 vertices)

Image plane / 2D array of pixels

Vertex

University of Freiburg – Computer Science Department – 5

Rasterization and Visibility

− After rasterization, visibility can be
efficiently resolved per pixel position

− Distances of primitives to the viewer, i.e. depth
values, can be compared per pixel position

University of Freiburg – Computer Science Department – 6

Rasterization and Canonical View Volume

− Rasterization is typically implemented
for canonical view volumes

Im
a

g
e

 p
la

n
e

Im
a

g
e

 p
la

n
e

 w
it

h
 p

ix
e

ls

Im
a

g
e

 p
la

n
e

 w
it

h
 p

ix
e

ls

Side view of a scene in
a canonical view volume

z, depth

Rasterization result

z, depth z, depth

Resolved visibility

University of Freiburg – Computer Science Department – 7

Rasterization and Rendering

− Rasterization is typically embedded
in a complete rendering approach

− Rendering pipeline

− Rasterization-based rendering

− Rasterization

University of Freiburg – Computer Science Department – 8

Rasterization-based Rendering

Scene in the
canonical
view volume

Rasterization Visibility
Object in
local space

Shading Image

University of Freiburg – Computer Science Department – 9

Terms – 2D Illustration

Vertex
Primitive

Object with four
vertices and four
primitives

Fragment Pixel

Vertices: have positions and other attributes.

Primitives: are represented by vertices.

Fragments: are pixel candidates with pixel positions and other attributes.

Pixels: have a position and other attributes, in particular color.

Framebuffer: consists of pixels.

University of Freiburg – Computer Science Department – 10

Terms - Illustration

Triangle 1 with
three vertices

Rasterizer
generates
fragments.

Fragment attributes
are used to update
pixel attributes in
the framebuffer.

Triangle 2 with
three vertices

Rasterizer
generates
fragments.

Framebuffer attri-
butes can be upda-
ted. Fragments can
be discarded.

Pixels of the framebuffer

Pixels of the framebuffer

University of Freiburg – Computer Science Department – 11

Outline

− Context

− Rasterization-based rendering

− Vertex processing

− Rasterization

− Fragment processing

− Framebuffer update

University of Freiburg – Computer Science Department – 12

Main Stages

− Vertex processing

− Input: Vertices

− Output: Vertices

− Transformations

− Setting, computation, processing of vertex attributes,
e.g. position, color (Phong), texture coordinates

University of Freiburg – Computer Science Department – 13

Main Stages

− Rasterization

− Input: Vertices and connectivity information

− Output: Fragments

− Primitive assembly

− Rasterization of primitives

− Generates fragments from vertices and connectivity information

− Sets or interpolates fragment attributes from vertex
attributes, e.g. distance to viewer (depth), color, texture
coordinates

University of Freiburg – Computer Science Department – 14

Main Stages

− Fragment processing

− Input: Fragments

− Output: Fragments

− Fragment attributes are processed, e.g. color

− Fragments can be discarded

− Framebuffer update

− Input: Fragments

− Output: Framebuffer attributes

− Fragment attributes update framebuffer attributes, e.g. color

University of Freiburg – Computer Science Department – 15

Main Stages - Overview

[Lighthouse 3D]

Framebuffer
Update

University of Freiburg – Computer Science Department – 16

Discussion

− Realization motivated by computational efficiency

− Vertices and fragments are processed
independently in the respective stages

− Stages are supported by graphics hardware GPU

− OpenGL, DirectX, Vulkan are software interfaces to GPUs

Vertex
Data

Texture
Data

Vertex
Shader

Connectivity
Data

Primitive Assembly
Rasterization

Fragment
Shader

Geometry
Shader

Tessellation
Shader

Compute
Shader

University of Freiburg – Computer Science Department – 17

Outline

− Context

− Rasterization-based rendering

− Vertex processing

− Rasterization

− Fragment processing

− Framebuffer update

University of Freiburg – Computer Science Department – 18

Transformations of Vertex Positions

− Scene modeling

− Object placement

− Camera placement

− Internal camera parameters,
i.e. focal length

− Vertices of object i
are transformed with Scene in the

canonical
view volume

Object in
local space

University of Freiburg – Computer Science Department – 19

Transformations of Vertex Positions

− GPU rasterizers assume that all vertex
positions are in clip / NDC space.

− Only vertices inside the canonical view volume,
e.g. , are processed

− Transformation can
realize user-defined scene setups

− Alternatively, the scene can be setup within the
canonical view volume and rendered with parallel
projection. Then, transformations are not required.

University of Freiburg – Computer Science Department – 20

Vertex Attributes

− Position

− Z-component in NDC space is referred to as depth value.
Represents distance to the camera plane.

− Color

− Can optionally be defined or computed with Phong, if
surface normal, light and material properties are available

− can be used for rendering effects, e.g. transparency

− Texture coordinates, e.g.

− For lookup and processing of additional data, i.e. textures

University of Freiburg – Computer Science Department – 21

Outline

− Context

− Rasterization-based rendering

− Vertex processing

− Rasterization

− Fragment processing

− Framebuffer update

University of Freiburg – Computer Science Department – 22

Rasterization

− Input

− Vertices with connectivity
information and attributes

− Color, depth, texture coordinates

− Output

− Fragments with attributes

− Pixel position

− Interpolated color, depth,
texture coordinates

University of Freiburg – Computer Science Department – 23

Line Rasterization

− Line begins and ends at integer-valued
positions and

− Algorithm defined for line slopes between 0 and 1

− Generalized by employing symmetries

− One fragment per integer x-value

− First fragment:

− Next fragment: or

− Last fragment: [Wikipedia: Rasterung von Linien]

University of Freiburg – Computer Science Department – 24

Bresenham Line Algorithm

− Based on the current fragment , the algorithm
decides whether to choose or

− Line representation:

− is evaluated at the midpoint
between and

−

choose NE, i.e.

−

choose E, i.e.
[Wikipedia: Rasterung von Linien]

University of Freiburg – Computer Science Department – 25

Incremental Update of the Decision Variable

− Decision variable

− Incremental update from to
− choose NE,

− choose E,

− In case of :

− In case of :

University of Freiburg – Computer Science Department – 26

Bresenham Algorithm - Initialization

− For start fragment ,
the decision variable can be initialized as

− Floating-point arithmetic is avoided by
considering :

University of Freiburg – Computer Science Department – 27

Bresenham Algorithm - Implementation

void BresenhamLine(int xb, int yb, int xe, int ye) {

int dx, dy, incE, incNE, d, x, y;

dx = xe - xb; dy = ye - yb;

d = 2*dy - dx; incE = 2*dy; incNE = 2*(dy - dx);

x = xb; y = yb;

GenerateFragment(x, y);

while (x < xe) {

x++;

if (d <= 0) d += incE; /* choose E */

else {d += incNE; y++; } /* choose NE */

GenerateFragment(x, y);

}

}

University of Freiburg – Computer Science Department – 28

Polygon Rasterization

− Compute intersections of non-horizontal
polygon edges with horizontal scanlines

− Intersections are computed for scanlines

− Fill pixel positions in-between
two intersections with fragments
− Scan from left to right

− Enter the polygon at the first
intersection, leave the polygon
at the next intersection

− Works for closed polygons [Wikipedia: Rasterung von Polygonen]

University of Freiburg – Computer Science Department – 29

Polygon Rasterization

− For each polygon edge

− Process all scanlines intersected by the edge

− Invert all positions with an x-component
larger than the intersection point

[Wikipedia: Rasterung von Polygonen]

University of Freiburg – Computer Science Department – 30

Attribute Interpolation

− Attributes are interpolated
from vertices to fragments

− Challenge in case of perspective projection:
Linear interpolation in view space cannot be
realized by linear interpolation in clip space

University of Freiburg – Computer Science Department – 31

Attribute Interpolation

[Kok-Lim Low: Perspective-
Correct Interpolation]

Perspective projection of a line AB. t / (1-t)
is not equal to s / (1-s). Therefore, linear
interpolation in clip space between a and b
does not correspond to a linear interpolation
between A and B in view space.

Linear interpolation in view space

Non-linear interpolation in clip space

Linear interpolation of I / Z and 1 / Z
in clip space

University of Freiburg – Computer Science Department – 32

Attribute Interpolation

− Perspective projection transform

− Linear relation between in clip space
and in view space

− or can be used in the interpolation

In view space: In clip space:

University of Freiburg – Computer Science Department – 33

Outline

− Context

− Rasterization-based rendering

− Vertex processing

− Rasterization

− Fragment processing

− Framebuffer update

University of Freiburg – Computer Science Department – 34

Fragment Processing

Pixels of the framebuffer
with attributes, in

particular color

Vertices with
connectivity

and attributes

Fragments
(pixel candidates)

with attributes

Fragment
attributes are

processed

University of Freiburg – Computer Science Department – 35

Fragment Processing

− Fragment attributes are processed

− Fragment attributes are tested
− Fragments can be discarded

− Fragments can pass a test and fragment attributes
can be used to update framebuffer attributes

− Processing and testing make use of
− Fragment attributes (position, color, depth, texture coord)

− Textures (n dimensional arrays of data)

− Framebuffer data that is available for each pixel position
− Depth buffer, color buffer, stencil buffer, accumulation buffer

University of Freiburg – Computer Science Department – 36

Fragment Processing

Vertex
- Color
- Depth

…

Texture
- Color

… Connectivity

Rasterization

Fragment
- Color
- Depth

…

Framebuffer
- Color
- Depth

…

Vertices of a primitive

How vertices are
connected to a primitive

Additional
data

Final image

Pixel
candidates

University of Freiburg – Computer Science Department – 37

Attribute Processing - Examples

− Texturing

− Combination of fragment color and texture data

− Fog

− Adaptation of fragment color using
fog color and fragment depth

− Antialiasing

− Adaptation of fragment alpha value

University of Freiburg – Computer Science Department – 38

Texturing

Texture

Textured object

University of Freiburg – Computer Science Department – 39

Texturing – 2D Example

Texture coordinates
are typically defined
or computed for vertices

Rasterizer interpolates
texture coordinates from
vertices to fragments

Texture data

Is used for processing the
attributes of the fragment

University of Freiburg – Computer Science Department – 40

Tests - Examples

− Scissor test

− Check if fragment position is inside a specified rectangle

− Alpha test

− Check range of the fragment alpha value

− Used for, e.g., transparency and billboarding

− Stencil test

− Check if framebuffer stencil value at the
fragment position fulfills a certain requirement

− Used for, e.g., shadows

University of Freiburg – Computer Science Department – 41

Depth Test – Resolving Visibility

− Depth test

− Compare fragment depth value with the
framebuffer depth value at the fragment position

− If the fragment depth value is larger than the
framebuffer depth value, the fragment is discarded

− If the fragment depth value is smaller than the
framebuffer depth value, the fragment passes and
its attributes replace the current color and depth
values in the framebuffer

University of Freiburg – Computer Science Department – 42

Depth Test

Current
framebuffer

Incoming
fragments
triangle 1

Updated
framebuffer

Current
framebuffer

Incoming
fragments
triangle 2

Updated
framebuffer

[Wikipedia]

University of Freiburg – Computer Science Department – 43

Outline

− Context

− Rasterization-based rendering

− Vertex processing

− Rasterization

− Fragment processing

− Framebuffer update

University of Freiburg – Computer Science Department – 44

Blending

− Combines the fragment color with the
framebuffer color at the fragment position

−

FramebufferFragment

Position

Color

Alpha

Position

Color

University of Freiburg – Computer Science Department – 45

Summary

− Rasterization combined with a
depth test can resolve visibility

− Rendering pipeline employs rasterization

− Vertex processing

− Rasterization

− Fragment processing

− Framebuffer update

− Implemented on graphics hardware

