Computer Graphics
Rasterization

Matthias Teschner

|
UNI
FRE:BURG

Outline

— Context

Rasterization-based rendering
Vertex processing
Rasterization

-ragment processing
-ramebuffer update

University of Freiburg - Computer Science Department - 2

What is visible at the sensor?

— Visibility can be resolved by
ray casting or by rasterization

_————\

Ray casting computes
ray-scene intersections to
estimate g from p, and p.,.

Rasterizers apply transformations
to p; and p, in order to estimate q.

— If more than one scene point p; is mapped to the
same sensor position g, the scene point closest
to the viewer is selected

University of Freiburg - Computer Science Department - 3

Rasterization

— Computation of pixel positions in an image
plane that represent a projected primitive

Triangle //1\\
(3 vertices) p \
A \
\
A
e —
Line sggment —
(2 vertices) Vertex =1
Primitives represented by vertices Image plane / 2D array of pixels

University of Freiburg - Computer Science Department - 4

Rasterization and Visibility

— After rasterization, visibility can be

efficiently resolved per pixel position

Distances of primitives to the viewer, i.e. depth
values, can be compared per pixel position

5

A\
\
\
A
)

University of Freiburg - Computer Science Department - 5

FREIBURG

Rasterization and Canonical View Volume

— Rasterization is typically implemented
for canonical view volumes

v | 1%
9 AT | 9 —
) QI | | I Q |
© s h = o=,
a L T F— = |
Q) | | | | | Q |
oY0) - | | | | - |
e o Wb 2
_ Q I | l I QL
00 | - | 60
© 1 H | ©
£ | £
» 7z, depth » 7z, depth » 7z, depth
Side V'eV.V Of‘?‘ >CEneIn Rasterization result Resolved visibility
a canonical view volume

University of Freiburg - Computer Science Department - 6

Rasterization and Rendering

— Rasterization is typically embedded
in a complete rendering approach

Rendering pipeline
Rasterization-based rendering

Rasterization

University of Freiburg - Computer Science Department - 7/

Rasterization-based Rendering

P -———

| o0—o0
™ TS
o——O
: I
/
4
/
"
™
"
.

Obiect in Scene in the
) canonical Rasterization Visibility Shading
local space .
view volume

University of Freiburg — Computer Science Department - 8

Image

FREIBURG

Terms - 2D lllustration

g |

NYVVVVVVVVVVVYVYYVYY

™ VYVVVVVVVVVYVYVYYVYYY

. L — ;]
| | b ' |
| | % { |
| | b =' I
- |
Object with four
Vertex o . .
e vertices and four Fragment 11 Pixel
Primitive — o
primitives
Vertices: have positions and other attributes.
Primitives: are represented by vertices.
Fragments: are pixel candidates with pixel positions and other attributes.
Pixels: have a position and other attributes, in particular color.

Framebuffer: consists of pixels.

University of Freiburg - Computer Science Department - 9

FREIBURG

Terms - lllustration

Triangle 1 with
three vertices

Triangle 2 with
three vertices

Fragment attributes
are used to update
pixel attributes in
the framebuffer.

Rasterizer

generates Pixels of the framebuffer

fragments.
Framebuffer attri-
butes can be upda-

| ted. Fragments can

be discarded.

Rasterizer

generates Pixels of the framebuffer

fragments.

University of Freiburg — Computer Science Department - 10

FREIBURG

Outline

— Context

Rasterization-based rendering
Vertex processing
Rasterization

-ragment processing
-ramebuffer update

University of Freiburg - Computer Science Department - 11

Main Stages

— Vertex processing
— Input: Vertices
— Qutput: Vertices
— Transformations

— Setting, computation, processing of vertex attributes,
e.g. position, color (Phong), texture coordinates

University of Freiburg - Computer Science Department - 12

Main Stages

— Rasterization
— Input: Vertices and connectivity information
— Qutput: Fragments
— Primitive assembly

— Rasterization of primitives
— Generates fragments from vertices and connectivity information

— Sets or interpolates fragment attributes from vertex
attributes, e.g. distance to viewer (depth), color, texture
coordinates

University of Freiburg - Computer Science Department - 13

Main Stages

— Fragment processing
— Input: Fragments
— Qutput: Fragments
— Fragment attributes are processed, e.g. color
— Fragments can be discarded

— Framebuffer update
— Input: Fragments

— Output: Framebuffer attributes
— Fragment attributes update framebuffer attributes, e.g. color

University of Freiburg - Computer Science Department - 14

Main Stages - Overview

Framebuffer
Update

e l—

Vertices Transt Vertices
o ']
@ Geom. Ops. ©
0 —
Q o]] o
®
Colored Fragments Fragments
Interpolation
w0
® o

LINE(@ o), TRIAMGLE(®@ & ©

Connectivity
nformation

hSSEﬂ]DI}f
_, —

Raster

University of Freiburg - Computer Science Department - 15

|

O_._____,_._--—-O

~/

[Lighthouse 3D]

Discussion

— Realization motivated by computational efficiency

— Vertices and fragments are processed
independently in the respective stages

— Stages are supported by graphics hardware GPU
— OpenGL, DirectX, Vulkan are software interfaces to GPUSs

Connectivity
~ Data
Vertex Vertex Tessellation Geometry Primitive Assembly Fragment
Data Shader Shader Shader Rasterization Shader
Texture
- Data

University of Freiburg - Computer Science Department - 16

Outline

— Context

Rasterization-based rendering
Vertex processing
Rasterization

-ragment processing
-ramebuffer update

University of Freiburg - Computer Science Department - 17

Transformations of Vertex Positions

— Scene modeling PV M,

— Object placement M;
— Camera placement v y

— Internal camera parameters, | 1 I
Z

.e. focal length P
— Vertices p of object /
are transformed with Object ir
1),:: 1)‘/:1]»4;1) local space

University of Freiburg - Computer Science Department - 18

Scene in the
canonical
view volume

Transformations of Vertex Positions

— GPU rasterizers assume that all vertex
positions are in clip / NDC space.

— Only vertices inside the canonical view volume,
eg (-1...1,-1...1,—-1...1), are processed

— Transformation p’ = PV-'M;p can
realize user-defined scene setups

— Alternatively, the scene can be setup within the
canonical view volume and rendered with parallel
projection. Then, transformations are not required.

University of Freiburg - Computer Science Department - 19

Vertex Attributes

— Position (pe,py,p=,)T

— Z-component in NDC space is referred to as depth value.
Represents distance to the camera plane.

— Color (R,G,B,A)T

— Can optionally be defined or computed with Phong, it
surface normal, light and material properties are available

— A can be used for rendering effects, e.g. transparency

— Texture coordinates, e.g. (u,v)
— For lookup and processing of additional data, i.e. textures

University of Freiburg - Computer Science Department - 20

Outline

— Context

Rasterization-based rendering
Vertex processing
Rasterization

-ragment processing
-ramebuffer update

University of Freiburg - Computer Science Department - 21

Rasterization

— Input

— Vertices with connectivity
information and attributes
— Color, depth, texture coordinates

— Output
— Fragments with attributes ~ \\
— Pixel position ca \

— Interpolated color, depth,

texture coordinates

University of Freiburg - Computer Science Department - 22

Line Rasterization

— Line begins and ends at integer-valuead
DOSItioNS Py = (zs,35) aNd Pe = (Te, Ye)

— Algorithm defined for line slopes between 0 and 1
— Generalized by employing symmetries

— One fragment per integer x-value
— First fragment: (zp, y»)
— Next fragment: (zp +1,4) Or Yo
(xp + 1,yp + 1) +
— Last fragment: (ze,ve) o0

[Wikipedia: Rasterung von Linien]

University of Freiburg - Computer Science Department - 23

Pe

Bresenham Line Algorithm

— Based on the current fragment (z;, %), the algorithm
decides whether to choose (x; + 1,v:;) Or (@i +1,y; + 1)

— Line representation: F(z,y) =az 4+ by +c=0
— F s evaluated at the midpoint F<0
between (z; + 1,v:) and (z; + 1,y + 1) NE
F 1 LYy >0 >
— F(z; + ,yi+§)> o F(+1,
choose NE, i.e. (z; +1,y; +1) yit+5)
: F
choose E, i.e. (z; +1,y;) o Y
[Wikipedia: Rasterung von Linien] ===

University of Freiburg - Computer Science Department - 24

Incremental Update of the Decision Variable

— Decision varia
— Incremental u

— d; > 0= choose NE, diy1 = F(x; 4 2,y; + 1+ %)

Ole d?, :F(a:i—l—l,yi—l—%)

ndate from d; tO d;uq
F(z,y)=ax +by+c

a=Ay="Ye —Yp

— d; < 0= choose E, di+1:F($i—|—2,yi—|—%) b=—Az =z — .
—Incaseof d; >0:

ANE = d'H—l_dz' = Ay-(CUZ'—FQ)—ALE'(yi—F%)—I—C—(Ay'(CUi—Fl)—ACU'(yi—f—%)—l—C)
ANE = Ay — Az

— In case of d; <

0!

Ap =dit1—d; = Ay-(2;42)— Az (yi+3)+c— (Ay-(2;+1) — Az (y;+ 3) +¢)

Ap = Ay

University of Freiburg - Computer Science Department - 25

Bresenham Algorithm - Initialization

— For start fragment ps = (@4, w),
the decision variable can be initialized as
dy=F(xp+Lyp+3)=Ay-(xp+1)—Az- (o + 1) + ¢
:Ay-a:b—Ax-yb—kc—!—Ay—%A:c
= F(xp,yp) + Ay — %A.CC
= Ay — %AQZ‘
— Floating-point arithmetic is avoided by
considering 2- F(z,y). di = 2Ay — Az
Ap =2Ay
Ang = 2Ay — 2Ax

University of Freiburg - Computer Science Department - 26

Bresenham Algorithm - Implementation

void BresenhamLine (int xb, int yb, int xe, int ye) {
int dx, dy, incE, incNE, d, x, vy’
dx = xe - xb; dy = ye - yb;
d = 2*dy - dx; 1incE = 2*dy; incNE = 2*(dy - dx);
x = xb; v = yb;

GenerateFragment (x, V)

while (x < xe) {

X++;
if (d <= 0) d += incE; /* choose E */
else {d += incNE; y++; } /* choose NE */

GenerateFragment (x, V)

University of Freiburg - Computer Science Department - 27

Polygon Rasterization

— Compute intersections of non-horizontal
polygon edges with horizontal scanlines

— Intersections are computed for scanlines y =y; +0.5

— Fill pixel positions in-between
two intersections with fragments
— Scan from left to right

— Enter the polygon at the first
intersection, leave the polygon
at the next intersection

o V\/OFkS fOr ClOS@d pO|ygonS [Wikipedia: Rasterung von Polygonen] -=2S-

University of Freiburg - Computer Science Department - 28

O = N W B wuv O

Polygon Rasterization

— For each polygon edge
— Process all scanlines intersected by the edge

— Invert all positions with an x-component
arger than the intersection point

[Wikipedia: Rasterung von Polygonen]

University of Freiburg — Computer Science Department - 29

FREIBURG

Attribute Interpolation

— Attributes are interpolatec
from vertices to fragments

— Challenge in case of perspective projection:
Linear interpolation in view space cannot be
realized by linear interpolation in clip space

University of Freiburg - Computer Science Department - 30

Attribute Interpolation

< d > A (X, Z,), attribute = 1, It — Il -+ t(IQ — Il)
i a (uy, d) Linear interpolation in view space
,/‘/(T’(u\. dl‘_ ----------- :
e _ VA .
:4—.I'=’:::: _______ § Iy =11 + sZ14+(1—s)Zy (12 Il)
virtual b (;";{)‘ _ _ o _
camera 2 Non-linear interpolation in clip space
0. 0) | B (X,. Z»), attribute = I,
image f_1_|_s(f_2_f_1)
plane 0<s<1,0<r<] J. = & 72 21
5 L_|_8(L_L)
Z1 Zo5 Z4
Perspective projection of a line AB. t/ (1-t) Linear interpolation of //Zand 1 /7
is not equal to s/ (1-s). Therefore, linear in clip space

interpolation in clip space between aand b
does not correspond to a linear interpolation

between A and B in view space. [Kok-Lim Low: Perspective-

Correct Interpolation]
University of Freiburg - Computer Science Department - 31

Attribute Interpolation

— Perspective projection transtorm

/chlip\ / % 0 :_i_% 0 \ (leeW\
Ycelip . 0 152_”() L 0 VleW
Zclip B 0 0 Jtn 2fn

_2fn
f—n f—n Vlew
wchp/ \ 0 0 1 0) \ 1
— Linear relation between wa, in clip Space
aNd Zyiew 1N VIEW SPACE welip = Zyiew

— Zyew O waip CAN De used in the interpolation

~
o

Iq I I Iy Ip I
. z—1+5(z—2—z—1) . w_1+8(w2_w1)

In view space: [g = n — In clip space: g = - " "
z—1+8(z—2—z—1) w—1+3(w—2 w_l)

University of Freiburg - Computer Science Department - 32

Outline

— Context

Rasterization-based rendering
Vertex processing
Rasterization

-ragment processing
-ramebuffer update

University of Freiburg - Computer Science Department - 33

Fragment Processing

Fragment
attributes are
processed
Vertices with Fragments Pixels of the framebuffer
connectivity (pixel candidates) with attributes, in
and attributes with attributes particular color
-sE-——
Dk

University of Freiburg — Computer Science Department - 34

Fragment Processing

— Fragment attributes are processed

— Fragment attributes are tested
— Fragments can be discarded
— Fragments can pass a test and fragment attributes
can be used to update framebuffer attributes
— Processing and testing make use of
— Fragment attributes (position, color, depth, texture coord)
— Textures (n dimensional arrays of data)

— Framebuffer data that is available for each pixel position
— Depth buffer, color buffer, stencil buffer, accumulation buffer

University of Freiburg - Computer Science Department - 35

Fragment Processing

How vertices are
connected to a primitive

Additional
Texture data
- Color

Connectivity
Final image

Vertex
- Color

Fragment Framebuffer
- Color - Color
- Depth - Depth

- Depth

Pixel
candidates

Vertices of a primitive

University of Freiburg - Computer Science Department - 36

FREIBURG

Attribute Processing - Examples

— Jexturing
— Combination of fragment color and texture data

— Fog

— Adaptation of fragment color using
fog color and fragment depth

— Antialiasing
— Adaptation of fragment alpha value

University of Freiburg - Computer Science Department - 37

Texturing

Texture

Textured object

University of Freiburg — Computer Science Department - 38

UNI

FREIBURG

Texturing - 2D Example

d(’u,) s used for processing the
’ attributes of the fragment

(ug, v2) ////"' <
— -

j/ (ug,vy) oY

/
/ "
us, Us /
(13, v3) (u1,v1) (ug,vy)
Texture data d

Texture coordinates Rasterizer interpolates
are typically defined texture coordinates from
or computed for vertices vertices to fragments

University of Freiburg — Computer Science Department - 39

FREIBURG

Tests - Examples

— SCIssor test

— Check it fragment position is inside a specified rectangle
— Alpha test

— Check range of the fragment alpha value

— Used for, e.g., transparency and billboarding
— Stencil test

— Check if framebuffer stencil value at the
fragment position fulfills a certain requirement

— Used for, e.g., shadows

University of Freiburg - Computer Science Department - 40

Depth Test - Resolving Visibility

— Depth test

— Compare fragment depth value with the
framebuffer depth value at the fragment position

— If the fragment depth value is larger than the
framebuffer depth value, the fragment is discarded

— If the fragment depth value is smaller than the
framebuffer depth value, the fragment passes and
its attributes replace the current color and depth
values in the framebuffer

University of Freiburg - Computer Science Department — 41

Depth Test

[\
gt
)
D5
o O
3¢
o
- (©

[\

[

Incoming
fragments
triangle 1

Current
framebuffer

NG

5|5 ||

[= £} e cf s = e

b
AR

5—5

515|565 @ o]

5|5|5|5|5]|5[5(=

BIG5[5|o|m|m|lo|w
B|B || oo am|w|e
B oo oo oo oo oo |as
o | o | o0 | oo | o6 [o) on [

3|5[(5]|5|5(w|w|w

5—5—5

w [un [

w [un [0

i [e

5|5]|5]|5|5|5]5]|

_____..____._. _.__._.

+

8]8

-+

Incoming
fragments

E_m

00 | D0 | 00 | 0D | 00| 0D 00| 0D

0 | OOy | 00 | 0D | 00| 0D) 00) 0D
0 | 00y || O | 0D | O | O | 00 | 00
WWW-W-W-WWWF
00 | a0 | a0 | a0 | 00| a0 | b | a0
a0 | a0 | a0 | 0b | 00| 60 | af | a0

oo oo oo |oe | oo ao oo 0o
oo oo| oo oo | oo oo oo e |

5/5]5|5]|5] 0 o|w
5/5]5|5|x] | mw
515|500 o] oo
515 = o)
5| = oo|oo ||| ool
oo | 00| 00|00 oo cof 00| 00|

1
odnAaijdd
“ZD

[Wikipedia]

Updated
framebuffer

triangle 2

Current

framebuffer
University of Freiburg - Computer Science Department - 42

Outline

— Context

Rasterization-based rendering
Vertex processing
Rasterization

-ragment processing
-ramebuffer update

University of Freiburg - Computer Science Department - 43

Blending

— Combines the fragment color Cg with the
framebuffer color Cp (g)at the fragment position xg

— Ciy(xy) = afp - Cir + (1 — afy) - Cp ()

Ly Position Lfr Position
—/
Cfr Color o Cfb(wfr)Color
Oty Alpha
Fragment Framebuffer

University of Freiburg - Computer Science Department - 44

Summary

— Rasterization combined with a
depth test can resolve visibility

— Rendering pipeline employs rasterization
— Vertex processing
— Rasterization
— Fragment processing
— Framebuffer update

— Implemented on graphics hardware

University of Freiburg - Computer Science Department - 45

