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Course Topics

— Rendering

— What is visible at a sensor? Rendering
— Ray casting
— Rasterization / Depth test Modeling Simulation
— Which color does it have?
- Phong Computer
_ MOdeHng Graphics

— Parametric curves
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Idea

Using parametric curves
for modeling purposes.

z(0)
2(0.5)

z(t) = (:;&)) =57 ¢

Curve is defined by functions.
Unintuitive coefficients c,.

t’i

Specifying the curve
with a small number
of control points.

Po

z(t) = 3o piwi(?)

Curve is computed as weigh-
ted sum of control points.

Intuitive coefficients p;.

Modifying the curve by
moving the control points
should be intuitive.

D2
° Po
D3 *D1
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Applications

— Animation
— Simple, flexible and intuitive user interaction

iClone Animation Curve Editor
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Applications

— Font modeling
— High-quality rendering in case of scaling or shearing

15 16 24 25
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Polynomial Curves

— Parametric curve in the plane z(t) = («(t),y(t))"

— Parametric curve in 3D space (t) = (x(t),y(t), 2(t))"

— If z(¢) and y(t) are polynomials, =(t) is a polynomial curve
— Highest power of ¢ is the degree of the curve

— If the functions have the form &3 with p(t) and q(#)
peing polynomials, z(t) is a rational curve
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Examples

y(t) |
| z(0)
00 ol.z 0|.4 ol.s OI.8 .1 X (t)
42
x(t) = (4t — 2, (4t — 2)%)" z(t) = (7p i)
Polynomial curve Rational curve
of degree 2 of degree 2

University of Freiburg - Computer Science Department - 9



Outline

— Introduction

— Polynomial curves

— Bezier curves

— Matrix notation

— Curve subdivision

— Differential curve properties
— Piecewise polynomial curves
— B-spline curves

University of Freiburg - Computer Science Department - 10



Bezier Curves

— Are polynomial curves

— Represented by control points
— n+1 control points for a curve of degree n

— Have various mathematical properties which
support their processing and analysis

— Simple and intuitive usage
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Low-Degree Bezier Curves

— Constant Bezier curve (degree 0) «(t)=po t€[0,1] po= (po.q0)

— Linear Bézier curve (degree 1) (0.5)

x(t) =(1—t)po+tp1 t€]0,1] e
T Po = (pO’QO) D1 = (pl 611)T
x(t) = ((1 —t)po + tp1, (1 —t)qo + tq1) )

e

— Quadratic Bézier curve (degree 2)
x(t) = (1—1t)%po+2(1 —t)tp; +t2py t €[0,1]
— Control points p;

— First and last control point are interpolated P2
— Other control points are approximated *Po
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Examples

— Linear Bézier curve
— Control points: po = (1,2)7 p1 = (3,4)7
— Curve: x(t) = (1 —t)pg + tp:
=(1—-t+3t,20—-t)+4) =1 +2t,2+2t)7
— Quadratic Bézier curve
— Control points: po = (1,2)" p1=(4,—-1)" p2=(8,6)"
— Curve: =(t) = (1 —t)?*po + 2(1 — t)tp; + tpo
= (1 +6t+1t2,2—6t+10t%)7
— Control points define a parametric curve int
— Bezier curves are polynomials in t
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[llustration

— Linear: z(t) = (1 —t)po + tp:
— Interpolation between two points
— Quadratic: x(t) = (1 —t)*po + 2(1 — t)tp; + tpo
= (1—t)[(1 = t)po + tp1] +t[(1 — t)p1 + tp2)]
— Interpolation between the interpolation results of two points

(1 _t)pl _|_tp2 .p2 . Do D5
pl.\ t:.().25 t.: 0.5 t.: 0.75 .—_._.7._ " / m x(1)
N0 1 — t x(0.5)
\. t=0.5 \ 1 — '[',' tpl /
(1 —1t)po + tp1 \ ) 2(0.25)
o\t 0.25 +1°po
Po® po' Po ® z(0)
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Cubic Bezier Curves

— Interpolation of the interpolation results of the
interpolation results of two control points

-~ a:(t):(l—t){(l—t)
+t{(1—t)

(1 —t)po +tp1.

:(1 —t)p1 + th:

+ 1

+1

(1= t)p1 + tpa) |

(1= t)pa + tps] |

— x(t) = (1—1)%po +3(1 —t)*tp; + 3(1 — t)t*py +t°ps  t € ]0,1]
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Cubic Bezier Curves

— Four control points p

— Larger variety of shapes compared

to linear and quadratic Bézier curves
D2 D1 P2 ) D1
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General Bezier Curves

— Bézier curve of degree n with n+1 control points p;
x(t) =, o Bin(t)pi te]0,1]

— Binomial coefficients: Z%5m = (7)

(o) I
(1) (1) 11 Curves of degree larger three
07 M are not often used. Designing a
C) ) () = 1 2 1 curve with more than four control
(3) (3) (3) (3) . 3 3 1 points gets more difficult. Instead,
o/ \1/) \2) {3 piecewise cubic or quadratic
(61) (‘11) (‘21) (é) (j) 1 4 6 4 1 Bézier curves are used.
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Bernstein Polynomials

0.8 - b 08 f 08

0.2 F B 02 1 02

Il 1 1 1 0 1 1 L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 06 0.8 1

Boi(t)=(1—-1) Boo(t) = (1 —t)? Bos(t) = (1 —1t)?
Bia(t) =t Bia(t) =2(1 —#)t By s(t) = 3(1 —t)*t
By o(t) = t? B 3(t) = 3(1 — t)t?
B3 s(t) = >
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Boa(t) = (1 —t)*
Bia(t) = 4(1 — )3t
B 4(t) = 6(1 — t)%t?
B3 4(t) = 4(1 — t)t°
Bya(t) =t*



Bernstein Polynomials - Properties

— Partition of unity: > Bia(t) =1 te€][0,1

— Positivity:
— Symmetry:
— Recursion:

Bin(t) >0 t € [0,1]
Bn—i,n (t) — szn(l — t) 1=20,..., n

Bin(t)=(1—=1)B; n_1(t) + tB;—1.n-1(t)
1= O, ey, B—l,n—l(t) = Bn,n—l =0

University of Freiburg - Computer Science Department - 19



Bezier Curves - Properties

— Endpoint interpolation:
x(0) = Z?:o B’i,n(o)pi — Po x(l) = Z?:o B’i,n(l)pi — Pn

— Endpoint tangent:

cgl_af(o) = n(p1 — Po) ‘é—‘f(l) =n(pn — Pn—-1)

— Convex hull:
x(t) € CH(po,. .., p,) tel0,1]
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Bezier Curves - Properties

0 0.2 0.4 0.6 0.8 1 1.2
p3 = x(1)
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Bezier Curves - Properties

— Invariance under affine transformations
— M(Z?:O Bi,n(t)pi) = > o Bin(t)Mp;
— M is a transformation matrix
— p; are the control points

— Transforming a point on the curve corresponds
to computing the point on the curve from the
transformed control points

— Bézier curves can be transformed
by transforming their control points
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Bezier Curves - Properties

— Points =(t) on a Bézier curve are a linear combination
of the control points p; weighted with Bernstein
polynomials at ¢

— Cubic Bézier curve
x(t) = poBo3(t) + p1B13(t) + p2Ba3(t) + p3B33(t)

Bos(t) = (1-1t)°
By s(t) = 3(1 —t)%t
B 3(t) = 3(1 — t)t?
B3 s(t) = t*
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Bezier Curves - Properties

— Cubic Bézier curve

B; 5(t) describes the influence
of control point p;

All points x(t) on the curve with

t € (0,1) are influenced by all

control points B; 5(t) B (t;_ (1% "

x(0) = Bo,3(0)po =1 - po B1:3(t) =3(1—t)%

x(l) = 33,3(1)p3 = 1-p3 Ba3(t) = 3(1 — t)t*
B3 s(t) = t*
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Bernstein Polynomials - Matrix Notation

— Quadratic

— Cubic

Boa(t) = (1 —1)? By o(t) 1 -2 1 1
B1,2(75) — 2(1 - t)t Bljg(t) = 0 2 —2 t
BQ’Q(t) == t2 B2,2(t) 0 O 1 t2
SEZ
Bps(t) = (1 - t)® (Bojg(t)\ (1 —3 3 —1\
By 3(t) = 3(1 — )%t Bljg(t) 10 3 -6 3
Bys(t) = 3(1 — t)¢? Bos(t)] (0 0 3 =3
33,3(@ — ¢3 \Bgag(t)/ \\0 0 0 1 /
S;B,GZ
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Polynomial Bases

— {1,t,¢*,#%} is the canonical basis for cubic polynomials
— Elements (monomials) are linearly independent
— All cubic polynomials are linear combinations of the elements
— {Bos(t), B13(t), B2s(t), B3 3(t)} IS an (alternative)
Bernstein basis for cubic

— S8 with

_ Bez
— 83

A

polynomials

represents a basis transform

&)
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Polynomial Bases

— Basis transforms

_ Bez
— S3

11
1 2
0 0 1
0 0

A

)

1) Bo 3(t)
( t _ (SBez)—l /81,3(t)\
t2 ] V8 Bs 3(t)
\#*/ \Bs.(t)

1 = Bos(t) + B1,3(t)
t = +B13(t) + 2Bo3(t)
t? = %ngg(t) -+ ng3(t)

t> = Bz 3(t)
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Bezier Curves

— Cubicin 2D
x(t) = Bo3(t)po + B1,3(t)p1 + B2 3(t)p2 + B3 3(t)p3

(Bos(0) 1)
BlS(t) Bez t
z(t)=(po P1 P2 P3) | gy | =@ prop2 ps) S5
\33,3(75)) \t3}

By 3(t)
Gio) -G o & % (ﬁzzzgzg
t

_(Po P1 P2 P3
go 41 42 (g3
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Bezier Curves

— Cubicin 2D
1 -3 3 -1 1
(x(t) _ (Po P1 P2 P3 o 3 -6 3 t
y(t) o ¢ ¢ g){0 0 3 =3[
o 0 0 1 t3
Curve Geometry Spline Basis
matrix mMatrix (canonical)

(Bernstein)

— General spline formulation
— Piecewise polynomial function
— CL‘(t) — GST(t) Curve = Geometry * Spline basis * Power basis
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General Spline Formulation

— x(t) = GST(t)
— Examples
— 2D cubic Bézier curve

1 -3 3 -1\ /1
(fb‘(t))_(po p1 D2 pg) 0 3 -6 3 t
yt)) \o @ @ ¢ 0 0 3 -3 t2
0 0
— 3D quadratic Bézier curve

(1) po p1 p2\ (1 -2 1 1
(y(t)) = (qO q1 Q2) (0 2 —2) (t)
z(t) rg r1 To 0 0 1 t2
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General Spline Formulation

— Examples

-3 3 -1

— 3D cubic Bézier spline
1
0 3 —6 3 ||¢
0 0 3 =3]]|¢
0

(1) Po p1 P2 D3
vyl =1 @ ¢ g3
2(t) rg 1 T2 T3 0o 0 1 3

— Transformed 3D cubic Bézier spline

- - (1 -3 3 -1 1

z(1) Po P1 P2 D3 0 3 -6 3 ;
Mlyt)|=|M|w @ ¢ g 0 o 3 -3l
z(t) ] ro o2 13/ \g g o0 1 3

The curve can be transformed by transforming the control points.
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General Spline Formulation

— Examples
— 2D cubic Catmull-Rom spline
— Interpolates control points p1,p2: (0) = p; and (1) = p,

0 -1 2 -1\ /1
z(t)\ _ (po p1 p2 p3\1[2 0 -5 3 t
y(1) o ¢ ¢ g¢l)2l0 1 4 =3]||¢
0O 0 -1 1 t3

> ~~ 7 N——
SSR T;
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Catmull-Rom Spline

P-1
[
; Po
0.8 - - .
P2
| zi(t) = (P-1 Po P1 P2) S5 T5(1) 'm\(t) z1 (1)
B oz(t)=(po p1 P2 P3)SSRTs(1) o
0.2} CR mg(t) pl
ol W z3(t) = (p1 p2 P3 Pa) S§VT5(1)
[
.Basis. funcfioné Fach curve interpolate_s p3
R between two control points
S37T'(t) using four control points o
P4
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Conversion From Canonical to Bezier

)= 7 >()

— How to compute the control points (po> | (;_ol) | (pz) | (p3>

do q1 q2 q3
— We have
1 -3 3 -1 1
(ac(t))_(a b ¢ d) _(po 1 P2 pg) 3 -6 3 t
yit)) \e f g h) ] \wo @1 @ ¢ 0 3 -3]||¢¢
0 0 1 t3
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— (Given a curve in canonical form ( )
y(t)

o~
o OO =



Conversion From Canonical to Bezier

1 -3 3 —1
a b ¢ d\ (po p1 p2 p3\|0 3 -6 3
e f g h) \w @ ¢ ¢/|0 0 3 -3
0O O 0 1
1 1 1 1
(a b ¢ d) 0 % % 1 :(po pP1 P2 p3)
e f g h){0 0 35 1 o 91 G2 g3
0O 0 0 1
— Example

1+t+4t*+¢° T . N
$(t) — (1—|—t—|—t2—|—t3) = pOZ(lal)Tapl — (%a%) ap22(272) y P3 = (474)
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Conversion From Canonical to Bezier

— Example 9
t) = ! :

o0 =31 ¢4 50
= pOZ(OJS)Tapl — (% 3)T7 6
p2= (3 %)T;P?, =(1,9)" 5
3@
Do o
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De Casteljau Algorithm

— Evaluation of a curve point =(¢) for a given t € [0,1]
— lllustration for z(t) = GSF*Ts(t)
z(t) = (1= t)[ (1 —t)pg +tpy ] +t[ (1 - t)p} +tp} ]

p} D1
z(t) = p5 = (1 —t)pj + tpi
P! P i et oP:

———O

K pi=(1-1)p} +1tp;
2(0.25) Py = (1 —t)pY + tp§ t=0.25

z(t) = p§ = (1 — t)py + tpi
®+t=10.25

oo

py° p
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De Casteljau Algorithm

— Cubic Bézier curve with control points po, p1, p2, p3

po
1
) —_— ’273 7: ’ ¢ .. j 'j

po=p0 pi=p1 pPi=p> D)=p;
py = (1—t)pg +tp} pi=(1-1t)p} +tpy p3 = (1—1)ps + tpy
p; = (1 —t)ps+tp1 pi=(1—1)p1 +1tp;
P() = (1- t)Po + tp%
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Subdivision of a Cubic Beézier

: Po
— @Given a curve from po to ps P2 7
generate two curves from po ) "”(tsp“t/

tO (tspiic) aNd from z(tspic) 1O P3 f\ D

given a value 0 < g < 1 y
— Applications
— Rendering: Subdivide a curve towards quasi linear segments.

— Modeling: Modify a part of a curve without changing the
other one. Adding degrees of freedom without increasing
the curve degree.
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Subdivision of a Cubic Beézier

. . Po
— Use de Casteljau algorithm o A
pZO = Di 1= 0, ]_, 2, 3 ° w(tsplit/;meﬁ
. - - Lright °
P, = (1 — topiit) ] L tsplitpg_|_11  (tspiit) = P P1
i=1,2,3 i=0,...,3—] _—

— Two resulting curves after split
ziere(t) = (P§ Py D5 DY) S5=T5(t)
Tignt(t) = (0§ P1 p3 DY) S5=T5(t)
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Subdivision of a Quadratic Bezier

Tiefe (1) = Bo2(t)po + B12(t)p1 + B22(t)p2 t € |0, tspiit]
Tiefe (t1) = Bo,2(t; - tspiit)Po + B12(t1 - tspiit)P1 + B22(t; - tepiie) P2 t; € [0, 1]
N Matrix notation

1
Tiere(t;) = (Po P1 P2) S5 ( tr -+ tspiit )

(tl ) tsplit) 2

Goal: Compute control points puo,pr1,pr2 With

1
Tiere(t1) = (Pro P11 Pr2) S5 (tz) t; € [0, 1]

ty
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Subdivision of a Quadratic Bezier

1

Tiere(t) = (Po P11 P2) S5 | b1 - tpiit

(tl ) tsplit)2

1 0 0 1 . g th

_ Be o ewriting the curve

@iere(t1) = (Po P P2) S O Lspii 20 té with the canonical basis

0 0 tsplit tl

5 L0 0 By 1 1 Rewriting the curve

Tiere(t1) = (Po P1 P2) S5 |0 tspie O | (S5%) 83 | ¢, with the Bernstein

0 0 oy t? basis functions

(Pl,o P11 Pl,z)
Geometry matrix
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Subdivision of a Quadratic Bezier

1 0 0 1 -2 1 1 0 0 1 1 1
SSE10 teoie O | (SEHT=(0 2 2|0 tpwe O 0 % 1
0 0 thp 0 0 1 0 0 tiy) \0 0 1
1 1- tsplit (1 - tsplit)2
=10  Zsplit 2tspiit (1 — Lspiit)
2
0 0 tsplit
I 1 — tspiit (1 — teplit)? Transformation from
(pl,O D11 Pl,2) = (po P1 pg) 0 tspﬁt 2tsplit(1 — tsplit) old control pOiﬂtS to
0 0 to it new control points
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Subdivision of a Quadratic Bezier

Di,o = Do

pl 1 — ( spllt)pO + tsplltpl
D12 = ( spllt)2p0 + 2tspllt(l —
)

( spllt [(

PLo =Py D1 =D}

Tiere(t) = (P pS D) SE=Th(t)
wright(t) — (p(Z) p% pg) SZBGZTQ(t)

Right sub-curve derived in the same way.

tsplit)pl + t§p|itp2
— spllt)pO + tsplitpl}
+t [(1 — tepiit)P1 + tsplitPQ}

D2 = P}

0
D
P} o—s oz
P% = (1 - t5plit)p(1)
+tsplitp8
P(% = (1 - t5plit)p8
\ +tsplitp(1)
pY
0
D
e oz
Pg = (1 - t5plit)P(1)
‘Hfsplitp%
Py
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Differential Curve Properties

— Derivatives: velocity / tangent, acceleration

— Can be considered when connecting
polynomials to splines, e.g. continuous
velocity, acceleration in-between adjacent
polynomials
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Tangent

— Tangent vector t(t) at a curve point x(t) = (x(t),y(t))"
S the direction of the curve at that point

tAt (t) o (QT(t—FAt),y(t—f—AAtz)T—(CL‘(t),y(t))T .’B(t) ./
_/
t(t) — limAt_>0 tAt (t)
- p(t+AD)—z(t) 1 y(t+a)—y(®)\ ' b(t)
— (llmAt—>O At , Jimag—0 At )
t(t) — i—‘f(t) — (d—f(t), i—?(t))-r If x(t) and y(t) are differentiable.
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Tangent - Bezier Curves

— Linear Bézier curve
x(t) = (1 —1t)po +tp: pi = (pi,ai)"
t(t) = (S (t), L))"
— (pl — Po,q1 — QO)T — P1 — Po
— Quadratic Bézier curve
z(t) = (1 —1t)°po + 2(1 — t)tp1 + t°po
t(t) = —2(1 —t)po + 2(1 — 1)p1 — 2tp1 + 2tp>
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Tangent - Bezier Curves

— Cubic Bézier curve

— x(t) = (1 —t)%>po + 3(1 — t)%tp1 + 3(1 — t)t2py + t3ps

— Tangent: ¢(t) = —3(1 —t)*po + 3(1 — t)*p1 — 6(1 — t)tp1 + 6(1 — t)tps — 3t>ps + 3t>p3
— Tangents t(0) and #(1)

— Linear: t(0) = p1 — po t(1) = p1 — po

— Quadratic: ¢(0) =2(p1 — po) t(1) = 2(p2 — p1)

— Cubic: t(0) = 3(P1 —po) t(1) = 3(ps — p2)

— Degreen:  t(0) =n(p1 —po) t(1) =n(pn — Pn_1)
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Tangent - Bezier Curves

— Matrix notation

1 -3 3 -1 1
0 3 —6 3 t
tt)=(o Pr P> P3) |, o 5 _a|d@|p
0o 0 0 1 t3
1 -3 3 -1 0
0 3 —6 3 1
=0 1 P2 P3) |y o 3 3| o
0o 0 0 1 3t2
—3 6 -3 |
_ 312 oo |,
= \Po P1 P2 DP3 0 6 _9 2
0 0 3
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Velocity

— If tis interpreted as time, v(t) = 92 (1)
S a velocity, i.e. position

change per time w075), o "M
— Magnitude of v(0-5>/'m =

the velocity is # 2(0.5)

o(t) = | §2(2)] V(02 / :

vlt) = (21& +115t2>

‘\w (0.25) z(t) = (3 124 5t3> |
o

x( Example
lllustration
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Acceleration

— If tis interpreted as time, a(t) = $(t) = (L2 (1), TE)T
IS an acceleration, i.e. velocity change per time
— Linear Bézier curve
— x(t) = (1 = t)po + tp
—a(t)=0
— Cubic Bézier curve
— x(t) = (1 —t)’pg + 3(1 — t)%tp1 + 3(1 — t)t?py + t°p3
— a(t) =6(1 —t)pp — 12(1 — t)p1 + 6tp1 + 6(1 — t)p2 — 12tpy + 6ips
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Derivatives - Bezier Curves

— GGeneral forms
(cji_?(t) - Z?:_ol n(pir1 — Pi)Bin-1(t)

2 n—
%ng(t) = Z¢=o2 n(n — 1)(Pz'+2 — 2pip1 + Pz')Bz',n—Q(t)
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Ck Continuity

— A parametric curve x(t) = (z(t),y(t))"
is Ck continuous, if the first k
derivatives of z(¢) and y(¢) exist
and are continuous

— Used to characterize seams
for piecewise polynomial curves

RN

(Y continuity at x

—~/

C' continuity at x
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Continuity at Seams

1 - -

— (! - continuity T - a:r\.
— Curve endpoint positions are not equal d

— (0 _ continuity CT continuity at x

— Curve endpoint positions are equal T =,
~ (7 - continuity r\\

— Tangent continuity ! co continuity at x

— (Y and first derivatives at endpoints are equal .

— (¢ - continuity /

— Curvature continuity T =
- r
— (" and second derivatives at endpoints are equal v = v,

o
C" continuity at x

University of Freiburg - Computer Science Department - 59



Outline

— Introduction

— Polynomial curves

— Bézier curves

— Matrix notation

— Curve subdivision

— Differential curve properties
— Plecewise polynomial curves
— B-spline curves

University of Freiburg - Computer Science Department - 60



Motivation

— Interpolation of n control points
— Higher-order polynomials suffer from oscillations

vv(\.\//]\/

— Connect n-1 polynomials of lower degree instead

.ﬁ.

g —_—
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Setting

— Cubic piecewise polynomials . —e
z((t) connect two control /P 1\132 o T s
poiNts p:and pi+1 Po

— Smooth connections can be 2@ (1)
obtained up to a relevant degree  p,
— (Y continuity: (1) = 2D (0) ps
— (7 continuity: v (1) = v1(0) ps = @ (1) = 2H(0)
— G’ continuity: v (1) = avtH(0) ps =x® (1) = z(®(0)

Geometric continuity G’: Same velocity direction,
but not necessarily the same velocity magnitude.
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Cubic Bezier Spline

— Connect cubic Bezier curves to Bézier splines
— Curve z(® () interpolates p{’,py’

(i+1)

— Curve z(+)(t) interpolates G —
p(()ZH) ; p:(%iﬂ) Py (i+1)
— (0 continuity: p§” =py ™" = ,
— Intermediate control points " 'p;
p, p and pi"tY, pli* can be Py "

used to obtain C! continuity

A Bézier spline formed
by two Bézier curves
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Cubic Bezier Spline - C' Continuity

. . ) ) (i+1)
— (T continuity: »®(1) = v(+1(0) Py,
- p5 e
— Velocity: s
v(t) = —3(1 — t)%py + 3(1 — t)%p, P
—6(1 — t)tp1 + 6(1 — t)tps — 3t%ps + 3t°ps
v®(1) = 3(py’ — p}’)

o0 (0) = 3(p —pi™tY)
— (7 continuity: p}’ —p¥) =p{*" — pi ™
— Can be enforced locally for each connection
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Cubic Polynomial in Canonical Form

— Curve £9(t) = a; + b;t + c;t? + d;t3 “’(it;i)
interpolates pi, pit1

— Curve 20U () = a1 + byt + ciprt? + digq 20+ (0)
interpolates Dit1,Pit+2 2 (1)

— Constraints:
CE(i)(O) — D, dﬁiﬂ (1) = d:]g;:"l) (0) p;(:)(o)
(1) = pip dza;f;) (1) = dzﬁi?l) (0)

(i+1) . d2z (V)
L (0) = Pit de? (0)=0 Typically, minimal velocity change, i.e.
2_.(i+1) Tal i
(z+1 (1) = Dito d :fit2 (1) 0 minimal curvature changes are desired.
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Cubic Polynomial in Canonical Form

— Linear system for unknown coefficients

/12 o O 0 0 0 0 0 \ ( a; \ ( D; \
I2 IQ IQ I2 0 0 0 0 bf,, Di+1
0 0 0 0 I2 0 0 0 C; Di+1
0 0 0 0 I2 IQ I2 I2 dz | Di+2
0 I2 2[2 3I2 0 —IQ 0 0 a;i1q o 0
0 0 2I, 6I, 0 0 —2I, O b1 0
0 0 2I2 0 0 0 0 0 Ci+1 0

\0 0 0 0 0 0 2L, 6L) \din/ \ o0
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Cubic Hermite

— Works with positions of and
derivatives at control points

— Given:  zW(0) = p; (1) = pi1

da( _ da (V) _
o (0) =m; (1) =m; 1,
(i) m;iq How do basis functions H look
T (t) like that use p;, p;.., M, M., as
\ coefficients?
© o
Pi Pi+1

2 (t) = p;Ho3(t) + pir1Hi,3(t) + m;Ha3(t) + my1 Hs 3(t)
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Cubic Hermite Basis - Derivation

— One coefficient:  z@(t) = a® 4 b0t + D2 4 )43
do ) (1) = p() 4+ 2D 4 33142

— Constraints:

2D (0) = p; = a® =p,
) =pit1 = a® 4+ b0 4 ) 4 40 = p, 4

G 0)=m; = b =m;
dﬁii) (1) =mip1 = b9 4+2¢® 4 3d0) =m,;
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Cubic Hermite Basis - Derivation

— Constraints in matrix notation

1 0 0 0\ [a¥ D; 1 0 0 0 Di
L1 1 1| [0 | pis N 0 0 1 0 Pit1
0 1 0 0] |9 m; -3 3 -2 -1 m;
0O 1 2 3 d("’) i1 2 —2 1 1 mi+1

— General spline formulation (arbitrary dimension)

1 0 -3 2 1
0 0 3 —=2|1|°¢t
0 1 -2 1 t2
0o 0 —1 1 t3

()= (pi pPiy1 mM; M)

Geometry Spline Basis
Curve . . .
matrix matrix (canonical)
(Hermite)
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Cubic Hermite

— Basis functions

)
) =t —2t* +¢°
)

x()(t) = p;Ho 3(t) + pip1Hy 3(t) + m;Ho 3(t) + mi 1 Hz 3(t)
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Cubic Hermite - Example

Hos(t) =1-3t"+2t° 5 — (0,0)7
Hy 3(t) = 3t° — 2t° p1 = (1,0)"
Hys(t)=t—22+¢3 mo=(0,1)"
— (__ T 0.1~
H33(t) = —t° +t° my = (-10,0)7 "7
Basis functions Geometry “%r
(L-(%) (t) — (0? O)T + (3t2 L 2t3, O)T 0.02
@ _|
2 3NT 2 3 T 25
+(0,¢ — 2t +¢3)T 4 (10t2 — 103, 0) ~

Curve
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Catmull-Rom Spline

— Variant of the Hermite spline
— Formulate derivatives with control points

- Given  2(0) = p, 2()(1) = piys
z () 2 (9)
ddt (0) = %(Piﬂ — Pi—1) ddt (1) = %(pz'+2 — i)
0 | Dit2
& (0) p: .
° ()
. Pi+1 dz__ (1)
Di—1
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Catmull-Rom Spline

— Spline formulation

1 0 =3 2
i 0o 0 3 -2 t
fﬂ()(t)z(]?z' Pit1 %(p?l—l—l_pi—l) %(p’i—{—Q_pi)) 01 -2 1 42
0 0 -1 1 t3
Hermite Hermite
geometry matrix spline matrix
00 —12 0 1 0 -3 2
. 1 0 0o -if]lfo o 3 2|t
ae()(t):(]?z'—1 Pi Pit1 Pz‘+2) 0 1 % 02 0 1 -2 1 42
00 0 3 0 0 -1 1/ \#
Catmull-Rom Catmull-Rom
geometry matrix spline matrix
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Catmull-Rom Spline

— Spline formulation

0 -1 2 -1\ /1
. 112 0 -5 3 t
.GC()(t):(pi—l Pi Pit+1 pi+2)§ 0 1 4 =3 t2
0o 0 -1 1 t3

. ~ e e

SCR T5(t)

— Basis functions

CRos(t) = 5(—t + 2t* — t3)
CRy3(t) = 3(2 — 5t% + 3t3)
CRa3(t) = 5 (t + 4t* — 3t3)
CRs3(t) = 2(—t* + %)
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Catmull-Rom Spline - lllustration

— Catmull-Rom splines o
are C! continuous
— First derivatives are | Po
equal at connections p?w -
x\* 7 (t
V()= (p-1 po p1 Pp2) SSRTB(1) (B(i“)(ﬂ p.l
mzOt)=(p0o p1 p2 p3)SSRT3(1) o

Bz =(p1 p2 ps pa) SSRT3(1) p3

Fach curve interpolates
between two control points o
using four control points P4
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Outline

— Introduction

— Polynomial curves

— Bézier curves

— Matrix notation

— Curve subdivision

— Differential curve properties
— Piecewise polynomial curves
— B-spline curves
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