
Image Processing and Computer Graphics
Prof. Dr.-Ing. M. Teschner

Exercise 1 - Transformations - Solution

1 Transformation of objects

1. There are different ways that lead to the desired transformation. However, the final trans-
formation obviously is unique except for the scaling coefficient that could be represented
in the homogeneous component or in the diagonal entries. We illustrate one possible way.

First, we transform the pointE to the origin:

T1 :=





1 0 3
0 1 −2
0 0 1



 .

Then, we rotate the object clockwise by45◦ which corresponds to a counterclockwise
rotation by315◦:

T2 :=





√
2

2

√
2

2
0

−
√
2

2

√
2

2
0

0 0 1



 .

Next, we mirror the object at thex-axis:

T3 :=





1 0 0
0 −1 0
0 0 1



 .

After that, the object is scaled by a factor of1/
√
2. Here, we could use the homogeneous

coordinate:

T4 :=





1 0 0
0 1 0

0 0
√
2



 orT4 :=





√
2

2
0 0

0
√
2

2
0

0 0 1



 .

The last step is to translate the object:

T5 :=





1 0 3
0 1 4
0 0 1



 .



AsT1 has to be applied first, it has to be the rightmost transformation, and so on. Hence,
the correct order is

M := T5T4T3T2T1

and the final model transform is

M =







√
2

2

√
2

2

7
√
2

2√
2

2
−

√
2

2

13
√
2

2

0 0
√
2






orM =





1

2

1

2

7

2
1

2
−1

2

13

2

0 0 1



 ,

depending on the representation ofT4.

2. The ModelView transform is given byV−1M which results in





√
2

2

√
2

2

√
2

2

−
√
2

2

√
2

2

5
√
2

2

0 0 1



 ·M =





√
2

2
0 11

√
2

2

0 −
√
2

2

8
√
2

2

0 0 1



 or





1 0 11
0 −1 8

0 0
√
2





2 Transformation basics in OpenGL

a) glTranslated(2, 0, 0) or

GLdoubletrans[16] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1}; glMultMatrixd(trans);

b) glRotated(45, 0, 1, 0) or

GLdoublerot[16] = {
√
2

2
, 0,−

√
2

2
, 0, 0, 1, 0, 0,

√
2

2
, 0,

√
2

2
, 0, 0, 0, 0, 1}; glMultMatrixd(rot);

c)

MT =









√
2

2
0

√
2

2
2

0 1 0 0

−
√
2

2
0

√
2

2
0

0 0 0 1









d) FirstglTranslated(), thenglRotated(). The last mentioned transformation is executed first.

e)

MVT = V−1 ·MT =









√
2

2
0

√
2

2
1

0 −1 0 2
√
2

2
0 −

√
2

2
3

0 0 0 1











3 View Transform

For simplicity, we use the non-homogeneous matrix notationin this solution.

a) The viewing direction is given byview′ = center − eye = (0,−3, 4)T . Using the cross
product, we obtains′ = view′ × up = (0, 4, 3)T . Normalizing all vectors leads to the
desired basisview = 1

5
(0,−3, 4)T ,up = (1, 0, 0)T , s = 1

5
(0, 4, 3)T .

b) We look for a linear mappingA that mapss0 to s, view0 toview andup
0

toup. Thus, one
could solve the equationAB0 = B, or one could use some basic Linear Algebra knowledge:
If A = (a1, a2, a3) with column vectorsa1, a2, a3, thenA · (1, 0, 0)T = a1,A · (0, 1, 0)T =
a2,A · (0, 0, 1)T = a3. Thus, the desired basis transformation is given by

A = (s,up,−view) =





0 1 0
4

5
0 3

5
3

5
0 −4

5



 (1)

c) If we transform the camera from the origin to its new position and orientation usingV,
the rotation has to be executed first, then the translation. Otherwise, the position would be
changed by the rotation, as the origin is always the center ofthe rotation. For the ModelView
transform, we need the inverse view transform. Thus, in thiscase, the translation has to be
executed first, and the rotation afterwards.

d) We need the inverse view transform on the ModelView stack.Therefore, the array has to be
(0, 1, 0, 0, 4

5
, 0, 3

5
, 0, 3

5
, 0,−4

5
, 0, 0, 0,−5, 1).

For the implementation, it is easier to invert the rotational and translational parts separately
and put them onto the ModelView stack.

e) Using the dot product, it is straightforward to show that the vectors are orthogonal:

up · view = (up′ − view(up′ · view)) · view
= up′ · view − (view · view)(up′ · view)

= up′ · view − up′ · view = 0.

Note that this formula holds becauseview is normalized.

Most of the solutions did not show the general case, but used the vectors given in the exercise.
Of course, this was also ok.

For the second alternative, there was a mistake in the exercise: It should beup× = s ×
view = −view×s, so the sign ofup× was wrong, but those who calculated the alternative
way recognized the mistake. Again, calculating the cross products with the special vectors
given in the exercise was a possible way.

However, it can also be shown in the general case:

up× = s× view = (view × up′)× view = −view × (view × up′)

This term is of the forma× (b× c), which is equal tob(a · c)− c(a · b). This rule can be
shown by simply calculating the components of the two cross products, or it can be found
on Wikipedia (see “Kreuzprodukt” or “Cross product”). Finally, we get

up× = −(view(view · up′)− up′(view · view))

= up′ − view(view · up′) = up


