
Image Processing and Computer Graphics
Prof. Dr.-Ing. M. Teschner

Exercise 2 - Shadow algorithm prerequisites

In the following lectures, different shadow algorithms will be introduced, e. g. shadow volumes
and shadow maps. In this exercise sheet, you should implement some prerequisites that are
necessary for the implementation of the shadow algorithms.

1 Shadow volume generation

An object that is lit by a light source (occluder) can be extruded to a so calledshadow volume,
which has the following meaning: Each object that is placed inside the shadow volume lies in
the shadow that is cast by the occluder. The idea is shown in Fig. 1.

Figure 1: Shadow volume

In this exercise, we want to calculate the geometry of the shadow volumes as a preprocessing
step for the shadow volume algorithm.

A simple algorithm would proceed as follows:

1. Loop over all faces and determine whether a face is lit by the light source or not.

2. For each lit face, project a ray through each of the face’s vertex to a point at distance 100
and create a new vertex using this point as its position.

3. Extrude the edges of each lit face away from the light to construct the faces of the shadow
volume. Therefore, construct two faces that employ the vertices of the edge and their
respective projected vertices.

4. Construct two additional faces to close the shadow volume,namely the top and bottom
faces. Note that the top face should be translated (i. e. by a 1/1000th unit) in the negative
direction of the face normal to avoid numerical problems dueto limited floating-point
precision in the shadow algorithm later on.



Hints:

• Whether a face is lit by a light source can be evaluated by calculating the dot product
of the face’s normal and the vector pointing from the face’s midpoint toward the light
source.

• Think about the orientation of the shadow volumes’ faces. Their normals should point
outwards.

• The vertices of the mesh’s faces are given in theFacedata structure such that the normal-
ized cross product of the vectorsv2 − v1 andv3 − v1 give the face’s normal.

1.1 Implementation

1. Make sure that the functionCShadow::instantiateShadow(std::string strMethod)is called
with string ”volume-shadow”from within functionCLightManager::setHasShadow(int
lightId, bool hasShadow).

2. Put the code that constructs the shadow volumes into the functionCVolumeShadow::build(int
lightId, gmVector3& lightPos).

3. Use the data types and structuresShadowVertex, ShadowEdgeandShadowFace(see the
file volume_shadow.h) to construct the shadow volumes and store them in the local vari-
ablefaceList.

4. The functionCVolumeShadow::drawSceneWithShadows()does not realize the volume
shadow algorithm in this exercise, but instead visualizes the shadow volumes generated
by your implementation and the original objects. UseglEnable(GL_CULL_FACE)and
glCullFace(GL_BACK)to test whether the triangles of your shadow volumes are oriented
correctly.

1.2 Optimizations

These tasks are optional, but the second is a good chance to get familiar with the STL container
map. A good reference can be found here:http://www.cplusplus.com/reference/.

1. Compute the projected vertices before looping over the faces to save some redundant
computations.

2. Only extrude thesilhouette edgesto construct the faces of the shadow volume. A silhou-
ette edge separates a lit face from an unlit one. Therefore, extend theCMeshclass by a
vector that contains all the mesh’s edges. Loop over all faces to find the edges, e. g. in
the functionCMesh::loadObjFile(std::string& filename)(see the file meshload.cpp). Use
the STL-map to store each edge only once. Use the edge as the key and give the location
of the edge within the edge vector as the value. Use the methods find() and insert() to
find already constructed edges and add new edges, respectively. Note that the comparison
operators< and== are already implemented for theEdgestructure (see the file mesh.h).



2 Shadow maps generation

The shadow mapping algorithm first renders the scene from thelight’s position in order to de-
termine the occluders, which are exactly those objects thatare visible from the light’s position.

In this exercise, we want to render the scene from the light’sposition and provide the results
stored in the depth buffer in the form of a texture in the second pass for depth comparisons.
Traditionally, this required the copying of the depth buffer data to a texture, which is quite time-
consuming.

Frame buffer objects (FBO) provide an efficient solution for so-calledrender-to-texture objects.
FBOs allow to define one’s own frame buffer and the buffers within, e.g. a frame buffer that
only contains a depth buffer. The depth buffer is generated and allocated similar to a texture
and can be handled as such using only a few instructions.

Preliminaries:

1. Familiarize yourself with the syntax and usage of the frame buffer extensions for OpenGL.
Good tutorials can be found here:
http://archive.gamedev.net/reference/programming/features/fbo1/
http://archive.gamedev.net/reference/programming/features/fbo2/

2.1 Implementation

1. Make sure that the functionCShadow::instantiateShadow(std::string strMethod)is called
with string”shadow-map”from within functionCLightManager::setHasShadow(int lightId,
bool hasShadow).

2. Construct an FBO that contains a depth and a color buffer.

3. Render the scene with the camera at the light source’s position.

4. Enable texture mapping, bind the color buffer as a textureand render the scene again.

5. Put the code that constructs and deletes the FBO into the functionsCShadowMap::CShadowMap()
andCShadowMap:: CShadowMap(), respectively. Use the FBO and visualize the results
using functionCShadowMap::drawSceneWithShadows(). All functions can be found in
the file shadowmap.cpp.

2.2 Optimizations

1. Remove the color buffer from the FBO and only render to the depth buffer.

2. Use the functionglColorMask()to suppress the evaluation of the lighting model.

3. Visualize the depth buffer by reinterpreting the depth values as gray-scale color values.
Therefore, bind the depth buffer texture and render a quad with textures enabled. Use the
functionsglBegin(GL_QUADS), glVertex3f(), glNormal3f(), glTexCoord3f()andglEnd()
to accomplish this task.


