Image Processing and Computer Graphics
Prof. Dr.-Ing. M. Teschner

Exercise 2 - Shadow algorithm prerequisites

In the following lectures, different shadow algorithmsheg introduced, e. g. shadow volumes
and shadow maps. In this exercise sheet, you should impleso@me prerequisites that are
necessary for the implementation of the shadow algorithms.

1 Shadow volume generation

An object that is lit by a light source (occluder) can be edéd to a so calledhadow volume
which has the following meaning: Each object that is placesitlie the shadow volume lies in
the shadow that is cast by the occluder. The idea is showrginlFi

light source
O occluder

/shadow polygon

shadow volume

~

Figure 1. Shadow volume

In this exercise, we want to calculate the geometry of thelelvaszolumes as a preprocessing
step for the shadow volume algorithm.

A simple algorithm would proceed as follows:

1. Loop over all faces and determine whether a face is lit bylithht source or not.

2. For each lit face, project a ray through each of the facertex to a point at distance 100
and create a new vertex using this point as its position.

3. Extrude the edges of each lit face away from the light testroiet the faces of the shadow
volume. Therefore, construct two faces that employ theicestof the edge and their
respective projected vertices.

4. Construct two additional faces to close the shadow voluramely the top and bottom
faces. Note that the top face should be translated (i. e. BYGD@Qth unit) in the negative
direction of the face normal to avoid numerical problems thuémited floating-point
precision in the shadow algorithm later on.

Hints:

1.1

Whether a face is lit by a light source can be evaluated by tzing the dot product
of the face’s normal and the vector pointing from the faceidpaint toward the light
source.

Think about the orientation of the shadow volumes’ faceseiiThormals should point
outwards.

The vertices of the mesh’s faces are given infheedata structure such that the normal-
ized cross product of the vectors — v, andvs — v; give the face’s normal.

I mplementation

. Make sure that the functiddShadow::instantiate Shadow(std::string strMethisdjalled

with string "volume-shadow”from within function CLightManager::setHasShadow(int
lightld, bool hasShadow)

. Putthe code that constructs the shadow volumes into tiogidun CVolumeShadow::build(int

lightld, gmVector3& lightPos)

. Use the data types and structugfsmdow\VertexShadowEdgand ShadowFacégsee the

file volume_shadow.h) to construct the shadow volumes awé ghiem in the local vari-
ablefacelList

. The functionCVolumeShadow::drawSceneWithShadowis@s not realize the volume

shadow algorithm in this exercise, but instead visualihesshadow volumes generated
by your implementation and the original objects. WgEnable(GL_CULL_FACEand
glCullFace(GL_BACK]jo test whether the triangles of your shadow volumes aratate
correctly.

1.2 Optimizations

These tasks are optional, but the second is a good chancefemgkar with the STL container
map A good reference can be found helné:t p: / / www. cpl uspl us. com r ef erence/ .

1. Compute the projected vertices before looping over thesfao save some redundant

computations.

Only extrude thailhouette edget® construct the faces of the shadow volume. A silhou-
ette edge separates a lit face from an unlit one. Therefatene theCMeshclass by a
vector that contains all the mesh'’s edges. Loop over allstacdind the edges, e. g. in
the functionCMesh::loadObjFile(std::string& filenamg¥ee the file meshload.cpp). Use
the STL-map to store each edge only once. Use the edge asytaadgive the location
of the edge within the edge vector as the value. Use the mefimal{) andinsert() to
find already constructed edges and add new edges, respedtioée that the comparison
operator and== are already implemented for tiiglgestructure (see the file mesh.h).

2 Shadow maps generation

The shadow mapping algorithm first renders the scene frorighs position in order to de-
termine the occluders, which are exactly those objectsatteavisible from the light’s position.

In this exercise, we want to render the scene from the ligid&tion and provide the results
stored in the depth buffer in the form of a texture in the selcpass for depth comparisons.
Traditionally, this required the copying of the depth bufiata to a texture, which is quite time-
consuming.

Frame buffer objects (FBO) provide an efficient solution fmicalledrender-to-texture objects

FBOs allow to define one’s own frame buffer and the buffers wijtk.g. a frame buffer that
only contains a depth buffer. The depth buffer is generatebladlocated similar to a texture
and can be handled as such using only a few instructions.

Preliminaries:

1. Familiarize yourself with the syntax and usage of the &dunffer extensions for OpenGL.
Good tutorials can be found here:
htt p://archi ve. ganedev. net/ref erence/ progranm ng/f eat ures/fbol/
htt p://archi ve. ganedev. net/ref erence/ programm ng/f eat ures/ f bo2/

2.1 Implementation

1. Make sure that the functiddShadow::instantiateShadow(std::string strMethizdjalled
with string”shadow-map”from within functionCLightManager::setHasShadow(int lightld,
bool hasShadow)

Construct an FBO that contains a depth and a color buffer.
Render the scene with the camera at the light source’squsit

Enable texture mapping, bind the color buffer as a texancerender the scene again.

aor woN

. Putthe code that constructs and deletes the FBO into tisedusCShadowMap::CShadowMap()
andCShadowMap:: CShadowMap(espectively. Use the FBO and visualize the results
using functionCShadowMap::drawSceneWithShadow#(functions can be found in

the file shadowmap.cpp.

2.2 Optimizations

1. Remove the color buffer from the FBO and only render to thetdepffer.
2. Use the functioglColorMask()to suppress the evaluation of the lighting model.

3. Visualize the depth buffer by reinterpreting the deptluea as gray-scale color values.
Therefore, bind the depth buffer texture and render a quédtextures enabled. Use the
functionsglBegin(GL_QUADS)glVertex3f() gINormal3f() glTexCoord3f()landglEnd()
to accomplish this task.

