Image Processing and Computer Graphics
Prof. Dr. M. Teschner

Exercise 3 - Shadow volumes

1 Theshadow volumealgorithm

As part of exercise 2, we have constructed shadow volumsasdlosed triangular meshes based
on the current positions of the light sources. In this exercive want to employ those shadow
volumes to add the global-illumination effect of shadowgtoay occluders to our scene.

The z-fail algorithm we want to implement executes the fwiftg render passes and steps:

1. Render the scene to initialize the depth buffer and to #ldblor buffer with the ambient
intensities of the Phong-illumination model in the first pas

2. Enable the stencil buffer and disable rendering to théhdapd color buffers.

3. Render the back faces of the shadow volumes and increnmestahcil when the depth
test fails in the second pass.

4. Render the front faces of the shadow volumes and decremestdncil when the depth
test fails in the third pass.

5. Render the scene and blend the ambient values already stdhe color buffer with the
diffuse and specular intensities of the Phong-illuminatiwodel for all the pixels that are
not in shadow (the pixel’s stencils are non-zero).

Hints:

e Recall that the Phong-lllumination model computes the ligtensity as the sum of the
ambient, diffuse and specular intensitids= I, + I, + I,. For example, the ambient
intensity is the component-wise multiplication of the aatbannels of the light's ambient
intensity/, and the ambient reflection coefficient of a mesh’s mateégjall, = [, * k,,.
To switch off the diffuse illumination, one can simply $gof all lights to zero, assuming
that there are more meshes than there are light in the scene.

e Familiarize yourself with the available OpenGL API callgaeding the stencil buffer. For
example, information can be found hehe:t p: / / www. opengl . or g/ r esour ces/
code/ sanpl es/ si g99/ advanced99/ not es/ nodel17. ht m . SpecificallyglS
tencilOp() andglStencilFunc are needed to increase/decrease the stencils and teshfor no
zero stencils in the respective render passes.

Implementation:

¢ Implement the function€Light:: setAmbientintensity() and CLight: : setAlll ntensitiesButAmbient()
(see the file lightmanager.cpp). Use the funcgltinghtfv() and employ the member func-
tions of the clas€L ight to save intermediate results.

e Implement the z-fail algorithm as described above. Theesfonplement the function
CVolumeShadow: :m_drawShadow\olumes() and use it in the implementation of the func-
tion CVolumeShadow: : drawSceneWthShadows() (see the file volume_shadow.cpp). It
might be helpful to not disable rendering to the color buffed use the visualization of
the shadow volumes for debugging.

e You can alter the amount of objects and their material ptoggem the functionmain()
(see the file main.cpp). Furthermore, experiment with thewrhof light sources and
their material properties in the functi@Viewer::initialize() (see the file viewer.cpp).

Optimization:

The z-fail algorithm necessitates the shadow volumes t@appead at the bottom, which is not
necessary for the z-pass algorithm. One method to avoidlihygrg plane toslice open the
shadow volume is to set both the projected vertices of thesh&olume as well as the far clip-
ping plane of the view frustum to infinity. The first is accompkd by setting the-coordinate
of the projected vertex to zero. Note that because of thesSthdow\Vertex is defined to be a
four-dimensional vector (see the file volume_shadow.h)viktpthe far clipping plane to infin-
ity requires the projection matrix to be constructed malgual

Recall from the lecture slides that the view frustum is defibgdix planes with parameters
left, right, top, bottom, znear and z far. If we assume thatight = —left andtop =
—bottom, the matrix for the perspective projection is reduced to:

w0 0
ght
near
b | 0 0 0 W
- 0 0 —(zfar+znear) —2zfarxznear
zfar—znear zfar—znear
0 0 —1 0

Now, how does the matrix look like if far = co?

Notice that only the third row of’ contains the variablefar. Thus, we are searching for the
unknownsA and B of the following matrix:

ma g0 0
O near O 0

Pin - top 2

f 0 0 A B (2)
0 0 -1 0

1. Determined andB in equation 2 by solving lim P = P,,;.

zfar—oo

Alternatively, the homogeneous notation allows to omit¢bacept of limits completely
because a three-dimensional point at infinity becomes admoensional finite point in
the homogeneous notation (with= 0). To solve forA and B, recall that the perspective
projection matrix maps the perspective view volume to thoécal view volume which
spans the interval-1, 1] along all coordinate axes. Thus, a point= (0 0 — znear 1)
has to be mapped tp’ = (0 0 — 1) and a pointg = (0 0 z 0) has to be mapped to
q = (0 0 1) after perspective division. Form two equations and solveffe unknowns
AandB.

. Change your implementation of the generation of the shaddwnes such that the pro-
jected vertices are projected to infinity.

. Replace the call ofluPerspective() in the functionStaticViewer::reshape() (see the file
viewer.cpp) by a manual construction of the projection ma#ith the far plane at in-
finity and push it onto the projection matrix stack. Use thel Alctions glMatrix-
Mode(GL_PROJECTION), glLoadldentity() andglLoadMatrixd(). Do not forget to switch
back to the model view matrix stack.

