
Image Processing and Computer Graphics
Prof. Dr. M. Teschner

Exercise 3 - Shadow volumes

1 The shadow volume algorithm

As part of exercise 2, we have constructed shadow volumes from closed triangular meshes based
on the current positions of the light sources. In this exercise, we want to employ those shadow
volumes to add the global-illumination effect of shadow-casting occluders to our scene.

The z-fail algorithm we want to implement executes the following render passes and steps:

1. Render the scene to initialize the depth buffer and to fill the color buffer with the ambient
intensities of the Phong-illumination model in the first pass.

2. Enable the stencil buffer and disable rendering to the depth and color buffers.

3. Render the back faces of the shadow volumes and increment the stencil when the depth
test fails in the second pass.

4. Render the front faces of the shadow volumes and decrement the stencil when the depth
test fails in the third pass.

5. Render the scene and blend the ambient values already stored in the color buffer with the
diffuse and specular intensities of the Phong-illumination model for all the pixels that are
not in shadow (the pixel’s stencils are non-zero).

Hints:

• Recall that the Phong-Illumination model computes the lightintensity as the sum of the
ambient, diffuse and specular intensities:I = Ia + Id + Is. For example, the ambient
intensity is the component-wise multiplication of the color channels of the light’s ambient
intensityla and the ambient reflection coefficient of a mesh’s materialka: Ia = la ∗ ka.
To switch off the diffuse illumination, one can simply setld of all lights to zero, assuming
that there are more meshes than there are light in the scene.

• Familiarize yourself with the available OpenGL API calls regarding the stencil buffer. For
example, information can be found here:http://www.opengl.org/resources/
code/samples/sig99/advanced99/notes/node117.html. Specifically,glS-
tencilOp() andglStencilFunc are needed to increase/decrease the stencils and test for non-
zero stencils in the respective render passes.



Implementation:

• Implement the functionsCLight::setAmbientIntensity() and CLight::setAllIntensitiesButAmbient()
(see the file lightmanager.cpp). Use the functionglLightfv() and employ the member func-
tions of the classCLight to save intermediate results.

• Implement the z-fail algorithm as described above. Therefore, implement the function
CVolumeShadow::m_drawShadowVolumes() and use it in the implementation of the func-
tion CVolumeShadow::drawSceneWithShadows() (see the file volume_shadow.cpp). It
might be helpful to not disable rendering to the color bufferand use the visualization of
the shadow volumes for debugging.

• You can alter the amount of objects and their material properties in the functionmain()
(see the file main.cpp). Furthermore, experiment with the amount of light sources and
their material properties in the functionCViewer::initialize() (see the file viewer.cpp).

Optimization:

The z-fail algorithm necessitates the shadow volumes to be capped at the bottom, which is not
necessary for the z-pass algorithm. One method to avoid the clipping plane toslice open the
shadow volume is to set both the projected vertices of the shadow volume as well as the far clip-
ping plane of the view frustum to infinity. The first is accomplished by setting thew-coordinate
of the projected vertex to zero. Note that because of this, the ShadowVertex is defined to be a
four-dimensional vector (see the file volume_shadow.h). Moving the far clipping plane to infin-
ity requires the projection matrix to be constructed manually.

Recall from the lecture slides that the view frustum is definedby six planes with parameters
left, right, top, bottom, znear and zfar. If we assume thatright = −left and top =
−bottom, the matrix for the perspective projection is reduced to:

P =











near
right

0 0 0

0 near
top

0 0

0 0 −(zfar+znear)
zfar−znear

−2zfar∗znear
zfar−znear

0 0 −1 0











(1)

Now, how does the matrix look like ifzfar = ∞?

Notice that only the third row ofP contains the variablezfar. Thus, we are searching for the
unknownsA andB of the following matrix:

Pinf =









near
right

0 0 0

0 near
top

0 0

0 0 A B

0 0 −1 0









(2)

1. DetermineA andB in equation 2 by solving lim
zfar→∞

P = Pinf .



Alternatively, the homogeneous notation allows to omit theconcept of limits completely
because a three-dimensional point at infinity becomes a four-dimensional finite point in
the homogeneous notation (withw = 0). To solve forA andB, recall that the perspective
projection matrix maps the perspective view volume to the canonical view volume which
spans the interval[−1, 1] along all coordinate axes. Thus, a pointp = (0 0 − znear 1)
has to be mapped top′ = (0 0 − 1) and a pointq = (0 0 z 0) has to be mapped to
q
′ = (0 0 1) after perspective division. Form two equations and solve for the unknowns

A andB.

2. Change your implementation of the generation of the shadowvolumes such that the pro-
jected vertices are projected to infinity.

3. Replace the call ofgluPerspective() in the functionStaticViewer::reshape() (see the file
viewer.cpp) by a manual construction of the projection matrix with the far plane at in-
finity and push it onto the projection matrix stack. Use the API functions glMatrix-
Mode(GL_PROJECTION), glLoadIdentity() andglLoadMatrixd(). Do not forget to switch
back to the model view matrix stack.


