
Image Processing and Computer Graphics
Prof. Dr. M. Teschner

Exercise 4 - Shadow maps

1 The shadow map algorithm

As part of exercise 2, we have constructed shadow maps, i. e. depth buffers, by employing the
Frame Buffer Objects (FBO) as a render-to-texture technique.In this exercise we will build on
the results and implement the full shadow algorithm based onshadow maps.

Recall from the lecture that the main passes and steps of the algorithm are:

1. Render the scene from the light position into the depth texture of the FBO (light projection
and transform).

2. Render the scene from the view position into the general frame buffer (view projection and
transform). For each fragment that passes the general depth test, transform its position
using thelight projection and transform from the first pass:v′ = Lproj ∗ Ltransf ∗ v,
whereLproj andLtransf are the matrices for the light projection and the light transform,
respectively.

3. Compare the transformed position’sz-value with the one stored in the depth buffer. If it´s
value is greater than the one stored in the texture, the fragment lies in shadow.

Hints:

• The FBO can be unbound usingglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0)
after the first pass is completed. If the second parameter is zero, OpenGL switches back
to the standard frame buffer.

• OpenGL needs to be instructed to interpret the data stored inthe texture as depth val-
ues for the depth comparison. This is accomplished by the functions: glTexParame-
teri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE)
andglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL).

• The matricesLproj andLtransf have to be stored for use in the second rendering pass.
UseglPushMatrix(), glLoadIdentity(),gluPerspective(), gluLookAt() andglGetDoublev()
to construct them.

• The matrices are needed to compute texture coordinates in order to access the shadow
map. Therefore, construct a matrixT = Tbias ∗ Lproj ∗ Ltransf using glLoadIden-
tity(), glLoadMatrixd() andglMultMatrixd() and provide it for later use withglActiveTex-
ture(GL_TEXTURE7). The matrixTbias maps from[−1, 1] to [0, 1], i. e. from the canoni-
cal view volume to the texture space. Note that all coordinates should be mapped to[0, 1]
since the z-value of a fragment lies in this range, too.



• Employ shaders to perform the actions necessary in the second rendering pass (see next
section).

Optimization:

If the functionsCMesh::addTranslation() or CMesh::addRotation() are used to transform the
meshes, we will need to compute and provide an additional matrix that contains the inverse
of the trackball transformation matrix (the reason is givenin the next section). Again, employ
the functionglGetDoublev() to grab the model view matrix after the trackball transformation
was applied (see the marked spot in functionCViewer::draw() in file viewer.cpp). Compute
the inverse of the matrix and then its transpose (recall the discussion about column-major and
row-major matrices from the first exercise sheet) and provide it for later use withglActiveTex-
ture(GL_TEXTURE6).

Implementation:

1. Construct the FBO inCShadowMap::CShadowMap() and clean it up inCShadowMap:: CShad-
owMap() (see the file shadowmap.cpp).

2. Fill in the missing code sections of the shadow mapping algorithm in functionCShad-
owMap::drawSceneWithShadows() (see the file shadowmap.cpp).

2 Vertex- and fragment shaders

We want to use shaders in the second rendering pass of the algorithm to perform thelight
projection and transform, the shadow map comparison and the application of a shadow color
by using vertex- and fragment shaders. Recall that shaders allow to replace certain parts of the
fixed functionality of the rendering pipeline with ones own implementation. More specifically,
vertex- and fragment processing can be replaced.

Preliminaries:

1. Familiarize yourself with the syntax and usage of shaders. Good tutorials can be found
here:
http://www.lighthouse3d.com/opengl/glsl/.

2. An implementation of an abstract shader program class is already provided (see the files
shaderProgram.h and shaderProgram.cpp).

Implementation:

1. Implement a vertex and fragment shader that only computesentries to the depth buffer
texture in our FBO. Put the shader code into the file shader_depth.h. This file is read and
compiled in the file shaderProgramDepth.cpp and used by calling CShaderProgramDepth::use()
(seeCShadowMap::drawSceneWithShadows()).

2. Implement a vertex and fragment shader that performs a depth comparison between a
fragment’s z-value and the depth stored in the shadow map. Ifthe fragment’s z-value is
greater set the fragment’s color to be the shadow color. We can access the texture ma-
trix we stored inGL_TEXTURE7 using the functiongl_TextureMatrix[7] in the vertex
shader. The result of the multiplication of this matrix withthe vertex coordinates can be



forwarded to the fragment shader using avarying variable.
Put the shader code into the file shader_shadowmap.h. This file is read and compiled
in the file shaderProgramShadowMap.cpp and used by callingCShaderProgramShad-
owMap::use() (seeCShadowMap::drawSceneWithShadows()).

Optimization:

Based on the optimization in the previous section, we employ its results to consider the mesh
transformations when computing the vertex’s position in light space. It is important to know
that the built-in GLSL variablegl_Vertex only contains the vertex position given by the function
call glVertex3d(). Calls toglTranslated() or glRotated() are multiplied onto the model view
matrix V and can be accessed via the built-in GLSL variablegl_ModelViewMatrix. However,
this matrix also includes the trackball transformation which has to be overridden by its inverse.
This leads to the following extended transformation of the vertex’s position into light space:
v
′ = Lproj ∗ Ltransf ∗ TB

−1
∗ V ∗ v, whereTB−1 is the inverse trackball transformation.


