Image Processing and Computer Graphics
Prof. Dr. M. Teschner

Exercise 4 - Shadow maps

1 Theshadow map algorithm

As part of exercise 2, we have constructed shadow maps, epth thuffers, by employing the
Frame Buffer Objects (FBO) as a render-to-texture techniljuthis exercise we will build on
the results and implement the full shadow algorithm baseshadlow maps.

Recall from the lecture that the main passes and steps ofgbatam are:

1. Render the scene from the light position into the deptlutexdf the FBOI{ght projection
and transform).

2. Render the scene from the view position into the genenadrauffer ¢iew projection and
transform). For each fragment that passes the general depth testfdnanits position
using thelight projection and transform from the first passv’ = L,,; * Lianss * V,
whereL,,,; and L,.,s; are the matrices for the light projection and the light tfars,
respectively.

3. Compare the transformed position’salue with the one stored in the depth buffer. Ifit’s
value is greater than the one stored in the texture, the feagties in shadow.

Hints:

e The FBO can be unbound usigbBindFramebuffer EXT(GL_FRAMEBUFFER_EXT, 0)
after the first pass is completed. If the second parameterdss DpenGL switches back
to the standard frame buffer.

e OpenGL needs to be instructed to interpret the data stordéaeiexture as depth val-
ues for the depth comparison. This is accomplished by thetifums: gl TexParame-
teri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R TO TEXTURE)
andgl TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL).

e The matrices,,,; and L,,.,s; have to be stored for use in the second rendering pass.
UseglPushMatrix(), glLoadldentity(),gluPerspective(), gluLookAt() andglGetDoublev()
to construct them.

e The matrices are needed to compute texture coordinatesler to access the shadow
map. Therefore, construct a matriX = Thias * Lproj * Liransy USING glLoadlden-
tity(), glLoadMatrixd() andglMultMatrixd() and provide it for later use witl ActiveTex-
ture(GL_TEXTURE?). The matrixT;,,s maps from—1, 1] to [0, 1], i. e. from the canoni-
cal view volume to the texture space. Note that all cooréimahould be mapped fi 1]
since the z-value of a fragment lies in this range, too.



e Employ shaders to perform the actions necessary in the deemdering pass (see next
section).

Optimization:

If the functionsCMesh::addTranslation() or CMesh::addRotation() are used to transform the
meshes, we will need to compute and provide an additionatixnidat contains the inverse
of the trackball transformation matrix (the reason is givethe next section). Again, employ
the functionglGetDoublev() to grab the model view matrix after the trackball transfatiora
was applied (see the marked spot in funct@viewer::draw() in file viewer.cpp). Compute
the inverse of the matrix and then its transpose (recall theaudsion about column-major and
row-major matrices from the first exercise sheet) and pmoitifor later use withgl ActiveTex-
ture(GL_TEXTURES).

Implementation:

1. Construct the FBO i@ShadowMap: : CShadowMap() and clean it up it€ShadowMap: : CShad-
owMap() (see the file shadowmap.cpp).

2. Fill in the missing code sections of the shadow mappingrélgn in functionCShad-
owMap: : drawSceneWithShadows() (see the file shadowmap.cpp).

2 Vertex- and fragment shaders

We want to use shaders in the second rendering pass of thetlabgdo perform thelight
projection and transform, the shadow map comparison and the application of a shadmw co
by using vertex- and fragment shaders. Recall that shadevs @ replace certain parts of the
fixed functionality of the rendering pipeline with ones owmplementation. More specifically,
vertex- and fragment processing can be replaced.

Preliminaries:

1. Familiarize yourself with the syntax and usage of shad@mod tutorials can be found
here:
http://ww. |ighthouse3d. com opengl /gl sl/.

2. An implementation of an abstract shader program cladsaady provided (see the files
shaderProgram.h and shaderProgram.cpp).

Implementation:

1. Implement a vertex and fragment shader that only compmargges to the depth buffer
texture in our FBO. Put the shader code into the file shadethdeprhis file is read and
compiled in the file shaderProgramDepth.cpp and used bng&bBhader ProgramDepth: : use()
(seeCShadowMap: : drawSceneWthShadows()).

2. Implement a vertex and fragment shader that performs th dggmnparison between a
fragment’s z-value and the depth stored in the shadow mape fragment’s z-value is
greater set the fragment’s color to be the shadow color. Weacaess the texture ma-
trix we stored inGL_TEXTURE? using the functiorgl_TextureMatrix[7] in the vertex
shader. The result of the multiplication of this matrix witie vertex coordinates can be



forwarded to the fragment shader usingaaying variable.

Put the shader code into the file shader_shadowmap.h. Téiss fiead and compiled
in the file shaderProgramShadowMap.cpp and used by callfigder ProgramShad-
owMap::use() (seeCShadowMap: : drawSceneWithShadows()).

Optimization:

Based on the optimization in the previous section, we empkyesults to consider the mesh
transformations when computing the vertex’s position ghtispace. It is important to know
that the built-in GLSL variablgl_\ertex only contains the vertex position given by the function
call glVertex3d(). Calls toglTranslated() or glRotated() are multiplied onto the model view
matrix V' and can be accessed via the built-in GLSL variajpléVodel ViewMatrix. However,
this matrix also includes the trackball transformationetiinas to be overridden by its inverse.
This leads to the following extended transformation of tleetex’s position into light space:
V' = Lyroj * Lipansy * TB™' % V x v, whereT' B~ is the inverse trackball transformation.



