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Figure 2: 3D Printing
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REAL-LIFE APPLICATIONS



Figure 3: Structural Analysis
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REAL-LIFE APPLICATIONS



Figure 4: Mechanics of brain tissue
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7Figure 5: Animation of elastic materials
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Studies motion of deformable bodies

 General laws for all materials

 Individual material properties (constitutive equations)

 Elastic materials

 Liquids and gases

No molecular structure but continuum

 Density and velocity at each point in space

 Field theory

Our goal: Compute forces at all points in the material depending on the deformation.
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CONCEPTS OF CONTINUUM MECHANICS



Initial positions X → current positions x

𝜙 X = x

initial state X current state x

𝜙

X1

X2 x2

x1
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DEFORMATION MAP 𝜙



Jacobian of 𝜙

𝐅𝜙 =
𝜕𝜙

𝜕X
=

𝜕𝜙𝑥

𝜕X𝑥

𝜕𝜙𝑥

𝜕X𝑦

𝜕𝜙𝑥

𝜕X𝑧

𝜕𝜙𝑦

𝜕X𝑥

𝜕𝜙𝑦

𝜕X𝑦

𝜕𝜙𝑦

𝜕X𝑧

𝜕𝜙𝑧

𝜕X𝑥

𝜕𝜙𝑧

𝜕X𝑦

𝜕𝜙𝑧

𝜕X𝑧
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DEFORMATION GRADIENT 𝐅



Translation by vector Ԧ𝑡

𝜙 X = X + Ԧ𝑡 𝐅 = 𝐈

12

EXAMPLES

𝜙

initial state X current state x



Non-uniform scaling

𝜙 X =
2X𝑥
0.5X𝑦

𝐅 =
2 0
0 0.5
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EXAMPLES

𝜙

initial state X current state x



Rotating by a given angle 𝛼

𝜙 X =
cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

X𝑥
X𝑦

𝐅 =
cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼
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EXAMPLES

𝜙

initial state X current state x
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EXAMPLES

Shearing 𝑥-coordinate with respect to 𝑦-coordinate

𝜙 X =
1 1
0 1

X𝑥
X𝑦

𝐅 =
1 1
0 1

𝜙

initial state X current state x



Description of the deformation

Computed from deformation gradient 𝐅

Should exclude rigid body transformations

Green strain tensor 𝐄 =
1

2
𝐅⊤𝐅 − 𝐈

Infinitesimal strain tensor 𝝐 =
1

2
𝐅⊤ + 𝐅 − 𝐈

 Approximates 𝐄 for small deformations (including rotations)

 Linear & faster to compute
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STRAIN



Internal forces that particles of a continuous material exert on each other

Strain-stress relation is given by constitutive equation 
→ material defined

Different materials react differently to strain

Example elastic materials: Hooke’s law for isotropic materials
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STRESS 𝛔



Young modulus 𝐸 and Poisson’s ratio 𝑣

σ𝑥𝑥
σ𝑦𝑦
σ𝑧𝑧
σ𝑦𝑧
σ𝑥𝑧
σ𝑥𝑦

=
𝐸

1 + 𝑣 1 − 2𝑣

1 − 𝑣 𝑣 𝑣 0 0 0
𝑣 1 − 𝑣 𝑣 0 0 0
𝑣 𝑣 1 − 𝑣 0 0 0

0 0 0
1 − 2𝑣

2
0 0

0 0 0 0
1 − 2𝑣

2
0

0 0 0 0 0
1 − 2𝑣

2

𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
𝜖𝑦𝑧
𝜖𝑥𝑧
𝜖𝑥𝑦

Stainless Steel: 𝐸 = 1.8 ⋅ 1011 Pa, 𝑣 = 0.3

Rubber: 𝐸 = 1.0 ⋅ 107 Pa, 𝑣 = 0.4999
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HOOKE’S LAW FOR ISOTROPIC MATERIALS



Cauchy momentum equation

a =
Dv

D𝑡
=
1

𝜌
∇ ⋅ 𝝈 + aexternal
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ACCELERATIONS a



EXAMPLE: RUBBER DUCK
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EXAMPLE: RUBBER DUCK

1. Deformation map

𝜙 X =
cos 30° − sin 30°
sin 30° cos 30°

0.5 0
0 1

X𝑥
X𝑦

=
0.433 −0.500
0.250 0.866

X𝑥
X𝑦

2. Deformation Gradient

𝐅 =
𝜕𝜙

𝜕X
=

0.433 −0.500
0.250 0.866

3. Strain

𝐄 =
1

2
𝐅⊤𝐅 − 𝐈 =

0.250 0
0 1
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EXAMPLE: RUBBER DUCK
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3. Strain

𝐄 =
0.250 0
0 1

4. Stress

Rubber: 𝐸 = 1.0 ⋅ 107 Pa, 𝑣 = 0.4999

σ𝑥𝑥
σ𝑦𝑦
σ𝑥𝑦

=
𝐸

1+𝑣 1−2𝑣

1 − 𝑣 𝑣 0
𝑣 1 − 𝑣 0

0 0
1−2𝑣

2

E𝑥𝑥
E𝑦𝑦
E𝑥𝑦

=
2.08 ⋅ 1010

2.08 ⋅ 1010

0

Pa

𝛔 = 2.08 ⋅ 1010 0
0 2.08 ⋅ 1010

Pa



EXAMPLE: RUBBER DUCK

4. Stress

𝛔 = 2.08 ⋅ 1010 0
0 2.08 ⋅ 1010

5. Accelerations in the material 

a =
1

𝜌
∇ ⋅ 𝝈 + aexternal =

1

𝜌
∇ ⋅ 2.08 ⋅ 1010 0

0 2.08 ⋅ 1010
=

0
0

Accelerations on the surface of the material

→ non-zero divergence of the stress

→ non-zero accelerations
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Deformation map 𝜙

Deformation gradient 𝐅

Strain 𝐄, 𝛜

Stress 𝛔

Acceleration a

Gradient

Definition, e.g. Green strain tensor or infinitesimal strain tensor

Constitutive equation (material defined)

Cauchy momentum equation
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CONCEPTS - SUMMARY



OUTLINE

Real-life applications

Concepts of continuum 
mechanics

Elastic materials
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Finite elements as a discretization method

Material is subdivided into tetrahedrons
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ELASTIC MATERIALS

Figure 6: Finite element mesh



Goal: Compute forces at all vertices depending on deformation
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ELASTIC MATERIALS

x0

x1

x2

x3

X0

X1
X2

X3
𝜙



Simulation step:

1. Translate X and x such that X0 = x0 =
0
0
0

2. Compute deformation map 𝜙 X = x1, x2, x3 X1, X2, X3
−1
X

3. Compute deformation gradient 𝐅 = x1, x2, x3 X1, X2, X3
−1

4. Compute strain 𝐄 =
1

2
𝐅⊤𝐅 − 𝐈

5. Compute stress 𝛔 𝐄 (Hooke’s law)

6. Compute forces at surface n Ԧ𝑓 n = 𝐴 ⋅ 𝛔 ⋅ n

7. Equally distribute surface forces over x𝑖
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ELASTIC MATERIALS



EXAMPLE: TETRAHEDRON 
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X0
X1

X2

X3

x0 x1

x2

x3

𝜙

X0 =
1
1
0

X1 =
3
1
0

X2 =
1
3
0

X3 =
1
1
1

x0 =
1
1
0

x1 =
3
1
0

x2 =
1
2
0

x3 =
1
1
1



EXAMPLE: TETRAHEDRON 
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1. Translate to origin 

X0 =
0
0
0

X1 =
2
0
0

X2 =
0
2
0

X3 =
0
0
1

x0 =
0
0
0

x1 =
2
0
0

x2 =
0
1
0

x3 =
0
0
1

2. Compute deformation map 𝜙

𝜙 X = x1, x2, x3 X1, X2, X3
−1
X =

2 0 0
0 1 0
0 0 1

2 0 0
0 2 0
0 0 1

−1

X

=
1 0 0
0 0.5 0
0 0 1

X



EXAMPLE: TETRAHEDRON 
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3. Compute deformation gradient 𝐅

𝐅 =
𝜕𝜙

𝜕X
=

𝜕

𝜕X

1 0 0
0 0.5 0
0 0 1

X =
1 0 0
0 0.5 0
0 0 1

4. Compute strain 𝐄

𝐄 =
1

2
𝐅⊤𝐅 − 𝐈 =

0 0 0
0 −0.375 0
0 0 0

5. Compute stress 𝛔 using Hooke’s law with 𝐸 = 1.0 ⋅ 107 Pa, 𝑣 = 0.4999

𝛔 =
−6.249 ⋅ 109 0 0

0 −6.251 ⋅ 109 0
0 0 −6.249 ⋅ 109

Pa



5. Compute forces Ԧ𝑓 at all surfaces with Ԧ𝑓 n = 𝐴 ⋅ 𝛔 ⋅ n

Ԧ𝑓012 = 1m2 ⋅ 𝛔 ⋅
0
0
1

=
0
0

−6.249 ⋅ 109
N Ԧ𝑓013 = 1m2 ⋅ 𝛔 ⋅

0
1
0

=
0

−6.251 ⋅ 109

0
N

Ԧ𝑓023 = 0.5m2 ⋅ 𝛔 ⋅
1
0
0

=
−3.125 ⋅ 109

0
0

N Ԧ𝑓123 =
3

2
m2 ⋅ 𝛔 ⋅

−
1

3

−
2

3

−
2

3

=
3.125 ⋅ 109

6.251 ⋅ 109

6.249 ⋅ 109
N

x0 x1

x2

x3

EXAMPLE: TETRAHEDRON 
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5. Compute forces Ԧ𝑓 at all surfaces with Ԧ𝑓 n = 𝐴 ⋅ 𝛔 ⋅ n
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5. Compute forces Ԧ𝑓 at all surfaces with Ԧ𝑓 n = 𝐴 ⋅ 𝛔 ⋅ n
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EXAMPLE: TETRAHEDRON 
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6. Equally distribute surface forces over vertices

Ԧ𝑓 x0 =
1

3
Ԧ𝑓012 + Ԧ𝑓013 + Ԧ𝑓023 =

−1.04
−2.08
−2.08

⋅ 109 N

Ԧ𝑓 x1 =
1

3
Ԧ𝑓012 + Ԧ𝑓013 + Ԧ𝑓123 =

1.04
0
0

⋅ 109 N

Ԧ𝑓 x2 =
1

3
Ԧ𝑓012 + Ԧ𝑓023 + Ԧ𝑓123 =

0
2.08
0

⋅ 109 N

Ԧ𝑓 x3 =
1

3
Ԧ𝑓013 + Ԧ𝑓023 + Ԧ𝑓123 =

0
0

2.08
⋅ 109 N

x0
x1

x2

x3



EXAMPLE: TETRAHEDRON 
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EXAMPLE: TETRAHEDRON 
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EXAMPLE: TETRAHEDRON 
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6. Equally distribute surface forces over vertices
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Continuum Mechanics have many real-life applications.

Can be used to simulate a wide range of materials

 Similar procedure for all materials possible

For implementation we need discretization methods

 Finite Elements

 SPH

 MPM
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SUMMARY
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RESOURCES



Navier-Stokes equation for incompressible fluids

a = −
1

𝜌
∇𝑝 +

𝜂

𝜌
∇2v + aexternal

Cauchy momentum equation

a =
1

𝜌
∇ ⋅ 𝝈 + aexternal

Stress in fluids:

𝝈 = −𝑝𝐈 + 𝜂 ∇v + ∇v
⊤
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FLUIDS



Strain 𝐄 corresponds to density 𝜌

𝐄 =

𝜌 0 0
0 𝜌 0
0 0 𝜌

Pressure stress 𝛔 corresponds to negative pressure 𝑝

𝛔 =

−𝑝 0 0
0 −𝑝 0
0 0 −𝑝

Constitutive equation to relate strain and stress is a state equation:

𝑝 = 𝑘 ⋅ 𝜌

𝑝 = 𝑘1 ⋅
𝜌

𝜌0
− 1

𝑘2
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PRESSURE



Deformation can also depend on a velocity field that doesn’t match a rest velocity 
field.

Strain rate tensor 𝐄

𝐄 =
1

2
∇v + ∇v⊤

In Newtonian fluids strain and stress are linearly dependent with 2𝜂.

Viscous stress tensor 𝛔

𝛔 = 2𝜂 ⋅ 𝐄 = 𝜂 ∇v + ∇v⊤
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VISCOSITY


