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Introduction

Computing deformations depending on

Computing forces in the material depend-
external forces

ing on the deformation of the object

Figure 1: Two scenarios that can be solved using continuum mechanics

1 Introduction

Continuum mechanics is a subfield of mechanics that studies the motion of deformable
bodies. One can think of two scenarios where continuum mechanics are used, illustrated
in figure 1: On the one hand we can use continuum mechanics to simulate the deformation
of deformable materials if some external forces are applied to the object. On the other
hand, we might also be interested in the forces that act at all points in the material due
to some deformation of the deformable object.

In real-life there are many use cases for continuum mechanics. In 3D printing, one
can analyze the strength of the 3D structure of a model and thus find weak points in
the model that need further improvement before printing the object. The same principle
holds true for much bigger objects like architecture. Here, it is also important to simulate
deformations on bridges and towers when subjected to forces resulting from gravity and
wind, in order to guarantee a robust building. There are also medical applications, as an
example Ratajczak et al. simulated the effects of impacts against the head on the brain
using continuum mechanics [RPCT19]. They were able to compute deformations of the
brain tissue and thus predict where the tissue will be injured. This principle can also be
applied in order to simulate the strength of bones as shown by George et al. in [GAR1S].
Another interesting application area of continuum mechanics is the animation of all kind
of deformable materials. As an example, Peer et al. showed a method to simulate elastic
materials using continuum mechanics that also works well together with other materials
such as liquids [PGBT18].
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Figure 2: Some deformatlon is applied to the material which is expressed by the deformation
map (b Two exemplary initial configuration points X1 and X2 and their current
positions X; and X5 are shown.

2 Concepts

As already mentioned, in continuum mechanics we study the motion of all kind of de-
formable materials. This will include general laws and principles that are the same for
all materials and some material individual properties that define the individual behavior
of materials. One important thing to keep in mind is that in continuum mechanics we
don’t model the underlying molecular structure of a material but instead assume that
the material is a continuum. This means there is a density and velocity at each point
in space what makes continuum mechanics a field theory. The goal of this section is to
show how to compute forces in a deformable body, depending on a deformation of this
body.

2.1 Deformation Map & Deformation Gradient

We will start by defining the deformation in the material with a deformation map 5()2)
that maps all points in the material from an initial rest configuration X to a current
configuration of the material X. This is also illustrated in figure 2. From the deformation
map gi) we can extract the deformation gradient F which is sm1ply the Jacobian of ¢>,
a matrix that consists of partial derivatives of all directions of QS with respect to all
coordinate directions. In the case of three dimensions F then looks like

ox [5] 0z

F(¢(X)) = 6¢{gi<)y 6¢é§)y 8¢é>§)y . (2.1)
6X):  90(X):  98(X)-
oz oy 0z

To improve the intuition behind deformation map and deformation gradient, we will
look at four examples of transformations represented in ¢(X) and their corresponding
deformation gradients F. A visualization of all transformations can bee seen in figure 3.
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The initial configuration X of The object after translation The object after some non-
the object uniform scaling

The object after some rotation The object after shearing the z-
coordinate with respect to the
y-coordinate

Figure 3: A variety of transformations to a deformable material

In the first example, the transformation is a simple translation by some constant vector
t so our deformation map ¢ and deformation gradient F will look like

—

&

X) =X +1
. (2.2)

Note that since we translate by some constant vector ¢ the deformation gradient equals
the identity matrix what corresponds to no deformation forces as we will see later.
The situation is different if we scale the object. In our example, we squish together
the material with respect to the y-coordinate and stretched it with respect to the z-
coordinate. In this case qg and F can be written down as

#(X) = (0?5 X )i,)
2 0
F= (0 0.5)

so now the deformation gradient does not equal the identity matrix which is intuitively
correct since scaling represents a true deformation to our object. An interesting example
is rotation: When rotating our object by some angle «, this corresponds to a rigid body

(2.3)
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transformation which is not a deformation of the material. However, when writing down
the deformation map and gradient of a rotation

22y [cosa —sina X
o(X) = (sina cos o ) <Xy)
cosa —sina

F= (sina cos o )

we can see that even though rotations are rigid body transformations, the deformation
gradient F is not equal the identity matrix in general. We have to keep this in mind and
take care of this later on. As a last example we apply some shearing to the material, in
our case we sheared the objects z-coordinate with respect to the y-coordinate. This is a
true deformation of the object which is also captured in the deformation gradient:

= (1) (%)
11
F= (0 1) :

(2.5)

2.2 Strain

So far we have considered the deformation map 5()2) and its gradient F. We can now use
the deformation gradient to compute strain. Strain is some dimensionless description
of the deformation of the material with the interesting property that it should exclude
rigid body transformations. There exist many strain definitions, here we will focus on
two of them: The Green strain tensor E is computed with

E:%@W—Q. (2.6)

One can see that by using the Green strain tensor, if F is a rotation matrix, then F'F —I
becomes zero since FT = F~! for rotation matrices, so the Green strain tensor becomes
zero for rotations. The same holds true for translations by a constant vector since, as
we have seen in equation 2.2, the deformation gradient F of a translation is the identity
matrix. Another interesting strain tensor is the infinitesimal strain tensor € which is
defined as
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e=5 (FT+F)-L (2.7)

| =

It approximates the Green strain tensor for small deformations [SB12] and since it is
linearly dependent on F this strain tensor can be used to build a linear system for an
implicit time integration scheme as done in [PGBT18]. Because rotations are reflected
in the deformation gradient F, one has to extract the non-rotation deformation out of F
before applying the infinitesimal strain tensor.

2.3 Stress

Stress o is a physical quantity that describes the internal forces in a material that all
points in this material exert on each other. The relation between strain and stress,
so the relation between the deformation of the object and the forces that act in the
material, is given by a so called constitutive equation. Constitutive equations are material
individual and describe their behavior caused by deformations. One example for such an
constitutive equation is Hooke’s law for isotropic materials. 1t relates strain and stress
for linearly elastic isotropic materials by

o 1—w v v 0 0 0 [

Oyy v 1—w v 0 0 0 Eyy

Oz | _ E v v 1—w 0 0 0 €rs (2.8)
Oyz (14+v)(1—2v) 0 0 0o =2 0 0 €yz | '
O 0 0 0 0 =& o €rs

Oy 0 0 0 0 0 52/ \ey

whereby E denotes the Young modulus and v Poisson’s ratio. They are material pa-
rameters that can be looked up in tables. As an example, stainless steel has a Young
modulus equal to 1.8 - 10''Pa and a Poisson’s ratio of 0.3. Contrary to that, rubber has
a much smaller Young modulus of only 1.0 - 10"Pa and a Poisson’s ratio of 0.4999.
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The initial configuration X of the duck The current configuration X of the duck
after deforming it

Figure 4: Deformation of a rubber duck
2.4 Cauchy Momentum Equation

To compute the final accelerations in the material depending on stress, we make use of
the Cauchy momentum equation shown in equation 2.9 whereby p denotes the density.
It relates the acceleration of a point in the material to the divergence of the stress
tensor at this point and also considers external accelerations that are typically gravity
or friction.

R -
a = ;v 0 + external (29)

2.5 Example

In order to improve the insight into the acceleration computation with continuum me-
chanics we go through an example. As we can see in figure 4, the duck is first squished
together with respect to the x-axis by a factor of 2 and then rotated counterclockwise
by 30°. With those information, the deformation map is given by

-2 cos30° —sin30° 0.5 0\ (X,
¢(X) = (sin30° cos 30° ) < 0 1> (Xy>
_ 0.433 —0.500 X
~10.250 0.866 Xy

and the corresponding deformation gradient then is

(2.10)
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0.433 —0.500
F= (0.250 0.866 ) ' (2.11)

With the deformation gradient we compute strain using the Green strain tensor:

E:%(FTF—I)
(0375 0 (2.12)
=l o 1

Since the duck consists out of rubber we use Hooke’s law to compute stress from strain
with a Young modulus £ = 1.0 - 10"Pa and Poisson’s ratio of v = 0.4999

o = L v 1—w 0 E
v (1+v)(1—20) 1-20 v
Oy 0 0 =7/ \Exy (2.13)
~6.251 - 10° '
= | —6.249 - 10° | Pa,
0
which results in the stress tensor
—6.251 - 107 0
7= < 0 —6.249 - 109> Pa. (2.14)

We can now use the Cauchy momentum equation to compute the final accelerations in
the material. Since the accelerations are given by

I R
a= ;V 0 + Zexternal (2.15)

and the stress tensor is constant because it doesn’t depend on the position in the material,
the divergence of the stress tensor will be zero at all points in the material. Thus points
in the material won’t be accelerated due to deformation forces. The situation differs on
the surface of the duck since at those positions there are traction forces which push the
surface outwards, caused by the non-zero internal stress and zero stress on the outside.
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3 Elastic Materials

We have seen concepts of continuum mechanics which we now want to apply to a concrete
simulation method for elastic materials. Up until now, we considered the deformation
map g;, deformation gradient F, strain E and stress ¢ as continuous functions in the
material space. However, computers typically can’t deal with continuous representations
of those fields, so we have to think of a way to discretize the material. One of the
most popular discretization methods for simulating elastic materials are finite elements
approaches of which we will use the method of subdividing the whole volume of the
object with tetrahedrons. This way, we obtain a representation of each volume element
by four vertices and the four surfaces they span.

Again, the goal is to compute accelerations at all vertices of the tetrahedrons using
continuum mechanics that can be used for simulating elastic materials. In this case, we
only know the initial and current vertex positions, again denoted with X and X, and
have to compute the currently unknown deformation map. The situation is illustrated
in figure 5. In order to be able to compute the deformation map, we transpose the initial
and the current configuration of the tetrahedron such that the vertex-position )Eo and
Xo lie on the origin of the coordinate system. Then we can compute the deformation
map of the tetrahedron with

—

d wd - — -1 -
P(X) = [%1, %2, %3] [XI,XQ,X?)} X (3.1)

[Tes20]. From this deformation map we can then extract the deformation gradient F as
usual: .
F = [%1,%2,X;] {X17X2,X3} (3.2)

This allows us to compute strain using the Green strain tensor E and then stress ¢ using
Hooke’s law. Using the stress tensor we are able to compute forces at all surface elements
of the tetrahedrons with

fik=A-0-@ (3.3)

whereby A is the area and i1 the normal vector of the surface element. o - i corresponds
to the traction on the surface. As a last step, forces at the surface elements are equally
distributed over adjacent vertices since our goal is it to compute forces at vertices. An
example where we go through the simulation procedure one more time is presented in
the next section.
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Figure 5: Deformation of a tetrahedron by a currently unknown deformation map qg

3.1 Example

In this example we will compute the elastic forces at all vertices of a tetrahedron caused
by some deformation of the tetrahedron. We assume the material of the tetrahedron is
rubber. An overview of the configurations of the tetrahedron and the resulting forces
that will be calculated is given in figure 6. In a simulation we have only given the initial

and the current vertex positions, which in our example are:

O R = O K =

OO = O W

—_ = = —_ = =
~—~
w
IS
S~—

Note that the only vertex coordinate that is changed by the deformation map is the
y-coordinate of X,. We start the force calculation by computing the deformation map.
To do this, we translate both configurations in a way such that io and X( lie on the
origin of the coordinate system. This results in the coordinates

O OO O oo

o o
<
[N}
|

oo
ksl
I

O O O N O
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The initial configuration X of the tetrahe-
dron

The elastic forces that act on the surfaces
of the tetrahedron due to the deformation

The current configuration X of the tetra-
hedron after some deformation

The final forces acting at the vertices

Figure 6: Deformation and corresponding forces at the exemplary tetrahedron
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Now we can use equation 3.1 to compute the deformation map gg and deformation gra-
dient F:

20 0\ /2 0 0
—lo 1 0|0 2 ol X
00 1/\0 0 1
1 0 0\
—lo 05 0|X (3.6)
0 0 1
1 0 0
F=|0 05 0
0 0 1

As already done earlier, we use the deformation gradient to compute the Green strain
tensor E whose definition was presented in equation 2.6

. 0 0 0
E:i(FTF—I>: 0 —0.375 0 (3.7)
0 0 0

and plug the entries of the strain tensor in Hooke’s law shown in equation 2.8. Together
with the Young modulus and Poisson’s ratio of rubber (E = 10"Pa,v = 0.4999) this
gives us the stress tensor

—6.249 - 107 0 0
o= 0 —6.251 - 10° 0 Pa. (3.8)
0 0 —6.249 - 107

The stress tensor is used to compute the forces that act on each surface element using
equation 3.3, which results in the following four surface forces, assuming that the vertex
positions are given in meters:

11
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0
fore=1m%-0-|0]| = N

1 —6.249 - 10

0
fors=1m?.0-|1|=]-6251-10° | N

" (3.9)
B 1 —3.125 - 10° ‘
foes =0.5m?-0- 0] = 0 N

0 0

L3 —% ~3.125 - 10°
fi23 = §m2 o - -3 =|-6.251-10° | N

- —6.249 - 10°

An illustration of the surface forces is presented in figure 6, note how the surface elements
are pushed outwards as an effect of the compression of the tetrahedron. As a last step,
we equally distribute the surface forces on adjacent vertices to obtain the final forces at

the vertices:

f(Zo) = % (]%12 + foiz + ﬁm) =
f&) = % (ﬁ)u + foiz + JF123) =
f(R) = % (ﬁ)m + foos + ﬁ23) =

f(R) = % (ﬁ)m + foos + JF123) =

—1.04
—2.08
—2.08

1.04
0 |- -10°N

-10°N

(3.10)
-10°N

0 |- -10°N
2.08

One interesting property which can be seen here is since all forces of the vertices add
up to zero, they conserve the momentum of the tetrahedron. Those final forces at the
vertices can now be used in a simulation to perform a time integration step and thus
simulate the behavior of the elastic material sampled by the tetrahedrons.

12
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4 Summary

We have seen that continuum mechanics have many real-life applications. Among other
reasons, this is due to the fact that, while we have a similar procedure for all materials,
the flexibility of constitutive equations allows the representation of a wide range of indi-
vidual material behaviors. If we want to simulate materials using continuum mechanics
we have to think of a discretization method since computers can’t deal with continuous
functions. In our example we have seen a finite elements approach but there exist a large
variety of possible disretization schemes that one could use, such as the Material point
method or Smoothed Particle Hydrodynamics.

13



References

References

[GAR1S]

[PGBT18]

[RPC*19]

[SB12]

[Tes20]

Daniel George, Rachele Allena, and Yves Remond. A multiphysics stimulus
for continuum mechanics bone remodeling. Mathematics and Mechanics of
Complex Systems, 6(4):307-319, 2018.

Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. An
implicit SPH formulation for incompressible linearly elastic solids. In Com-
puter Graphics Forum, volume 37, pages 135-148. Wiley Online Library,
2018.

Monika Ratajczak, Mariusz Ptak, Leszek Chybowski, Katarzyna Gawdz-
inska, and Romuald Bedzinski. Material and structural modeling aspects
of brain tissue deformation under dynamic loads. Materials, 12(2):271, 2019.
Eftychios Sifakis and Jernej Barbic. FEM simulation of 3d deformable solids:
a practitioner’s guide to theory, discretization and model reduction. In Acm

stggraph 2012 courses, pages 1-50. 2012.

Matthias Teschner. Simulation in computer graphics exercises - notes. 2020.

14



	Introduction
	Concepts
	Deformation Map & Deformation Gradient
	Strain
	Stress
	Cauchy Momentum Equation
	Example

	Elastic Materials
	Example

	Summary
	Bibliography
	Appendices

