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Abstract

Nowadays, computer graphics applications often require highly detailed models to pro-
vide a convincing amount of realism. However, rendering these models needs a lot of
computational power and storing them a significant amount of storage space.

Since this may prevent real time applications from running smoothly, one may want to
decrease the complexity of models in situations where the high level of detail isn’t really
necessary. For example, using simpler models for objects that are far away from the
observer may speed up rendering significantly.

Unfortunately, the creation of simplified models, which still preserve the original shape
well, isn’t trivial. Therefore, surface simplification has received a lot of attention.

Michael Garland and Paul S. Heckbert propose a surface simplification algorithm [3] that
is claimed to simplify given models fast, while still preserving the shape of the models
well. It is able though to change the models topology by iteratively contracting pairs of
vertices. It uses a so called Quadric Error Metric to choose pairs for contraction that
keep the damage to the original model low.
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Surface Simplification

1 Surface Simplification

While very detailed polygonal models may offer a high level of realism in computer
graphics applications, they also require a lot of computational effort when being rendered.
Especially in real time applications it is reasonable to try to reduce this effort, even if
this comes with some optical quality loss.

A possible approach is using simpler models for objects with low importance in the
current situation. For instance, it’s likely that an object far away from the viewpoint
may be rendered in a much lower resolution than an object close to the viewpoint,
without harming the result a lot.

Therefore it is useful to store multiple versions of a model, each having a different level of
detail, and always using the one that seems appropriate for the current situation. These
versions can be created using surface simplification which is the process of altering the
mesh of a model in a way that reduces its complexity. Obviously, these simplified models
are supposed to preserve the shape of the original model well to avoid an unnecessary
quality loss. On the other hand, they have to be computable within a reasonable amount
of time. Otherwise, the creation would ruin the saved rendering effort. So some compro-
mise has to be made between the quality of the simplification and the effort of creating
it.

Figure 1 shows the so called Stanford Bunny, a model with thousands of faces and
therefore a high level of detail. Surface simplification is supposed to create less complex
models as shown in Figure 2. When watching the two versions of the model from far
away as in Figure 3, the optical difference isn’t that significant anymore.
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Surface Simplification

Figure 1: The Stanford Bunny,
a detailed model with
69,000 faces. [4]

Figure 2: A simplified Stanford Bunny with
only 1,000 faces. [4]

Figure 3: A detailed bunny and one simplified by 98%. From far away the difference
isn’t that obvious. [4]
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Pair Contraction

2 Pair Contraction

Garland and Heckbert propose a surface simplification technique called pair contraction
[3]. It iteratively contracts pairs of vertices of a given polygonal model reducing the
total number of vertices and therefore the model’s complexity. They consider it to
be a generalization of the approach of contracting edges, since pair contraction isn’t
limited to pairs of vertices that share a common edge. Instead, pair contraction may be
applied to any pair of vertices, which allows it to change the models topology. In many
cases, this may not be desirable, yet there are also scenarios where the ability to join
unconnected regions is valuable. For instance, flaws in the model like duplicate vertices at
the same position can be removed. Furthermore, it allows a higher level of simplification.
Nonetheless, caution is required, since it could also ruin a model quickly.

They describe the technique as follows: once a pair of vertices (v1, v2) is chosen, those
vertices are both moved to a new position v′ called the contraction target. All incident
edges of the second vertex are reassigned to the first vertex. After that, the second
vertex as well as any degenerate edges and faces of the model are removed.

Figure 4 shows a single pair contraction, including the movement of chosen vertices as
well as the deletion of the second vertex and a degenerate edge.

Obviously, an effective simplification process takes more than one pair contraction. Fig-
ure 5 shows several steps of pair contraction with a fine outcome. Note how close the
shape of the resulting model is to the original one.

Unfortunately, pair contraction doesn’t necessarily produce such a satisfying outcome if
left alone. Both, an arbitrary choice of a vertex pair and a bad choice for the contraction
target may alter the shape of the model unfavorably as shown in figure 6.

Therefore a method is required that chooses pairs of vertices and contraction targets
which preserve the shape of the model well. Garland and Heckbert propose the usage of
their so called Quadric Error Metric.
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Pair Contraction

Figure 4: The steps of a single pair contraction.
First two vertices are chosen, second they’re moved to a new position and third
the second vertex as well as the edge between those are removed.

Figure 5: Multiple steps of pair contraction yielding a simplification of 50%.
The green line indicates the original shape.
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Quadric Error Metric

Figure 6: Multiple steps of pair contraction yielding a simplification of 50%.
Again, the green line indicates the original shape. Due to a bad choice of
contraction targets the shape of the model changed significantly.

3 Quadric Error Metric

3.1 Plane Intersection

In order to choose a vertex pair suitable for contraction, some metric is needed that
measures the amount of damage dealt to the model by a potential contraction. Obviously,
a contraction with a low damage value (error) is desirable.

In search of an indicator for this error, one may want to take a closer look at the pair
contraction shown in figure 7. It’s an example where the outcome of the contraction is
really close to the shape in the beginning. The pair of contracted vertices is colored as
well as all their incident edges. After extending those edges, one may observe that they
have only small distances to the contraction target.

Surface simplification is usually applied to three dimensional models. Since this is only
a two dimensional example, it can be considered as a cut through a three dimensional
model. In this case, the edges represent entire faces of the model and the extended edges
represent the planes of these faces.

Moreover, note that a vertex is located at the intersection of the planes of its adjacent
faces [3]. Using this, it’s reasonable to approximate the damage dealt to the shape of
the model by a contraction by the distances from the contraction target to the planes
that intersect at one of the contracted vertices.
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Quadric Error Metric

Figure 7: A pair contraction with a fine result.
The vertices marked in red and green are moved to the orange position. Ex-
tending the edges incident on those vertices shows that the contraction target
(orange) is close to all of those extended edges.

While those distances are small at the pair contraction in figure 7 which yielded a fine
result, the distances at another example in figure 8 are larger and the result is much
worse.

3.2 Squared Distances

The Quadric Error Metric developed by Garland and Heckbert estimates the damage
caused by a pair contraction. It uses the size of the squared distances from the contrac-
tion target to the planes that intersect at the contracted vertices [3]. The contraction
target is supposed to be close to all of the planes. This motivates the use of squared
distances instead of normal ones, since it penalizes a large distance to one plane more
than moderate distances to all of the planes.

Figure 9 shows the distances considered by the Quadric Error Metric.

For the calculation of these squared distances, the position of the contraction target is
required which is given as a vector v′ = (x, y, z, 1)T of coordinates in three dimensional
space with the fourth argument being the homogeneous component.
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Quadric Error Metric

Figure 8: A pair contraction with an unsatisfying result.
The vertices marked in red and green are moved to the orange position. Ex-
tending the edges incident on those vertices shows that the contraction target
(orange) is relatively far away from two of those extended edges.

Figure 9: The Quadric Error Metric evaluates a contraction by the size of the distances
(orange arrows) from the contraction target (orange dot) to the planes inter-
secting at one of the contracted vertices (colored lines).
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Quadric Error Metric

Meanwhile, a plane p can be expressed by a formula

ax + by + cz + d = 0, (1)

where any point given by x, y and z that solves this equation is part of the plane. A
simple normalization of the equation can make sure that the following holds:

a2 + b2 + c2 = 1. (2)

The distance between the contraction target v′ and the plane p can be calculated by the
formula:

|ax + by + cz + d|√
a2 + b2 + c2

(3)

as Cheney et al. point out [1].

Therefore the squared distance between the contraction target v′ and the plane p is
computed as:

(ax + by + cz + d)2

a2 + b2 + c2 . (4)

Due to the normalization above (2) this yields the simpler formula

(ax + by + cz + d)2, (5)

which can be rewritten as a vector-matrix-vector-product as follows:

(ax + by + cz + d)2 =

(a, b, c, d) ·


x
y
z
1




2

(6)

= (x, y, z, 1) ·


a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2

 ·


x
y
z
1

 (7)

= v′T ·


a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2

 · v′ (8)

Since the Quadric Error Metric doesn’t only consider the distance from the contraction
target to one plane, but to several ones as shown in figure 9, the product above (8) would
have to be calculated for every plane.
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Contraction Target

Instead, the squared distances are computed all at a time by summing up the matrices
of all those planes. That says the error ∆ of a vertex v′ is defined as:

∆(v′) = v′T ·Q · v′ [3] (9)

with Q being the sum of the matrices of all considered planes p, i.e.

Q =
∑

p


a2

p apbp apcp apdp

apbp b2
p bpcp bpdp

apcp bpcp c2
p cpdp

apdp bpdp cpdp d2
p

 (10)

and each plane p given as:

apx + bpy + cpz + dp = 0. (11)

4 Contraction Target

The quality of a contraction depends a lot on a fine choice of the contraction target.
For instance, the result of the contraction in figure 8 could be improved by choosing
a contraction target inside the triangle limited by the extended edges. This motivates
computing the optimal target for a given contraction instead of choosing an arbitrary
one.

Garland considers the target that minimizes the error as optimal [2].

Since the error is given by the formula

∆(v′) = v′T ·Q · v′, (12)

the optimal target can be identified as a position v′ that minimizes this function.

Rewriting this yields:

min
(
∆(v′)

)
= min

(
v′T ·Q · v′

)
(13)

= min

(x, y, z, 1) ·


q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
q41 q42 q43 q44

 ·


x
y
z
1


 (14)
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Contraction Target

= min
(
q11x2 + 2q12xy + 2q13xz + 2q14x + q22y2 + 2q23yz + 2q24y + q33z2 + 2q34z + q44

)
(15)

At a minimum all the partial derivatives have to be zero. Therefore the contraction
target has to fulfill the following conditions:

∂∆
∂x

= q11x + q12y + q13z + q14 = 0 (16)

∂∆
∂y

= q21x + q22y + q23z + q24 = 0 (17)

∂∆
∂z

= q31x + q32y + q33z + q34 = 0 (18)

Those can be combined into one single equation in matrix-vector form:


q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
0 0 0 1

 ·


x
y
z
1

 =


0
0
0
1

 (19)

Solving for the contraction target finally yields:


x
y
z
1

 =


q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
0 0 0 1


−1

·


0
0
0
1

 (20)

In order to calculate the optimal contraction target, it’s sufficient to replace the last row
of the Q-matrix of this contraction by (0, 0, 0, 1) and invert the resulting matrix. The
optimal target will then be given as the matrix’ last column.

The Q-matrix shall consist of the squared distances to all the planes that intersect in
one of the two contracted vertices. Therefore it’s reasonable to assign a matrix to every
vertex of the model and in case of a contraction to simply sum up the matrices of the
two contracted vertices.

If the vertices share a face, unfortunately, its plane will be considered twice. Yet Garland
argues that this mistake is relatively small and acceptable since this method of implicitely
tracking the planes using the matrices is way more efficient than tracking them explicitely
[3].
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Algorithm

5 Algorithm

Garland and Heckbert propose an algorithm for surface simplification that performs
pair contractions iteratively. It uses the Quadric Error Metric to choose a suitable pair
of vertices for contraction and for computing the optimal contraction target [3]. The
following chapters explain their algorithm in detail.

5.1 Initial Matrices

First of all, an initial Q-matrix for every single vertex in the whole given model has to
be computed. This requires the planes of the faces adjacent to the current vertex. While
each plane p is given by an equation ax + by + cz + d = 0, the squared-distance-matrix
for this plane has the form 

a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2

 . (21)

Summing up these matrices for all planes of the faces adjacent to the current vertex v
yields its initial Q-matrix.

Q(v) =
∑
p∈v


a2

p apbp apcp apdp

apbp b2
p bpcp bpdp

apcp bpcp c2
p cpdp

apdp bpdp cpdp d2
p

 (22)

Calculating the error of an initial vertex using its Q-matrix will naturally result in an
error value of 0. This is reasonable since the vertex hasn’t been moved yet and therefore
didn’t alter the shape of the model.
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Algorithm

5.2 Pair Selection

In order to perform pair contractions, a set of pairs of vertices has to be found that are
considered candidates for contraction.

Technically, any pair of vertices of the model would be a candidate, but contracting
vertices far away from each other will usually result in large errors. Instead, the algorithm
only considers pairs of vertices that either:

• share a common edge or

• are closer to each other than a given threshold.

For all vertex pairs (v1, v2) that fulfill at least one of these conditions, a new Q-matrix
Q′ has to be calculated as the sum of the Q-matrices of the vertices of the pair.

Q′ = Q1 + Q2 (23)

In case the contraction of the pair (v1, v2) will actually be executed, this Q-matrix Q′

will be assigned to the contracted vertex v′.

5.3 Contraction Targets

At this point, all candidates for pair contraction as well as their new Q-matrices are
known. Using this, the contraction targets can be calculated as

v′ =


q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
0 0 0 1


−1

·


0
0
0
1

 . (24)

5.4 Errors

With the knowledge about all considered candidate vertex pairs, their new Q-matrices
and their contraction targets, the errors caused by each contraction can be computed.

∆(v′) = v′T ·Q · v′, (25)
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Conclusion

5.5 Pair Contractions

Now, the set of considered pair contractions as well as the errors those would cause are
known. Creating a heap of the pair contractions with respect to their errors allows to
efficiently access the contraction that currently yields the smallest error.

With this preparation, the algorithm now performs iterative pair contractions by always
choosing the one with the smallest error using the heap.

Since a pair contraction (v1, v2) → v′ moves two vertices, all the remaining candidate
pairs that include either v1 or v2 have to be updated using the contraction target v′
instead. Also, this changes the Q-matrix, the contraction target and the error of those
candidates which therefore have to be recalculated.

Because vertices usually have a small number of adjacent faces, this doesn’t take that
much effort though.

5.6 Stopping Condition

When performing pair contractions iteratively, the final result will be a set of vertices
without edges or faces and a too large distance between each possible pair of vertices to
contract them. Since this doesn’t seem to be useful, one may want to stop the contraction
process before the model is ruined entirely.

This motivates the use of a condition that breaks the contraction loop. For instance,
a desired percentage of simplification may be given, a maximum number of vertices or
faces, or a maximum acceptable error with respect to the shape of the original model.

6 Conclusion

Michael Garland and Paul S. Heckbert propose a surface simplification algorithm that
uses their Quadric Error Metric to choose vertices for iterative pair contraction [3].

Garland showed that the algorithm is both fast and preserves the original shape of the
model really well, even at a large rate of simplification [2].

A rather unusual approach is that the algorithm can change the topology of the model
which Garland and Heckbert consider to be a benefit [3]. The threshold parameter
defining what’s close enough to contract, has to be chosen with some care though, since
changing the topology heedlessly may easily ruin the entire model.
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