Simulation in Computer Graphics
Particle Motion T

Matthias Teschner

|
UNI
FRE:BURG

Outline

— Introduction

— Particle motion

— Finite differences

— System of first-order ODES
— Second-order ODE

— Performance

— Discussion

University of Freiburg - Computer Science Department - 2

Goal

— Dynamic simulation of
— Rigid bodies
— Deformable objects
— Fluids

University of Freiburg - Computer Science Department - 3

University of Freiburg - Computer Science Department - 4

Goal

! R
,‘,‘\ ™ Y
oo TTTYTT

-
) -
TLELE

e TVYLE

T

-
v
-

e -
.
'S
" 4 ‘
. ™8 T
N AA :) 7YY 4
VYV YWy 2 TITITITTTY 7
P it dauas oot) . 7Y
L4448 Yoy b
7 T

7
Y
e

T

University of Freiburg - Computer Science Department - 5

Representation

— Subdivision of objects into small parts, i.e. particles

— Particles have properties
— Mass m, volume V, density p
— Position @, velocity v, force F

— Particles are of arbitrary shape

University of Freiburg - Computer Science Department - 6

Fluid Particles

Fluid body Fluid particles Typical visualization

University of Freiburg - Computer Science Department - 7

Cloth Particles

Cloth

[Bender, Deul, 2013]

Cloth particles

University of Freiburg - Computer Science Department - 8

lllustration

Deformable 3D Particles

Deformable 3D object Approximate tetrahedral mesh

University of Freiburg - Computer Science Department - 9

Particle Forces

— Result from OO
— Distortions, e.g. OO0 88

volume or shape

Change Rest state Compression Shear
— (Gravity
— Friction, viscosity 88 w 88
— Contact
_ Gravity Viscosity Contact
=P [orce
=P \elocity

University of Freiburg - Computer Science Department - 10

Particle Motion

. o : : da
— Particles change position with velocity v v = 57

— Velocity governed by Newton's Second Law

— Force at a particle equals the time
rate of change of its momentum

F =S (mv) =0+ Lm

— Two governing equations for two unknown functions @, v
F = md—” V = da Coupled system of first order ODEs

dt dt
— Can also be written as
F = md2—m Second order ODE
o dt?

University of Freiburg - Computer Science Department - 11

Particle-based Simulation

— Object subdivision 00

into particles OO
(spatial discretization)

— Force modeling

— Particle motion
— Transport / advection 88

bject Particles

Velocity P05|t|on
Acceleration

change change

F _ dv _ d’z

m dt — dt?

University of Freiburg - Computer Science Department - 12

Outline

— Introduction

— Particle motion

— Finite differences

— System of first-order ODES
— Second-order ODE

— Performance

— Discussion

University of Freiburg - Computer Science Department - 13

Particle Quantities

— Mass m € R s
— Position z € R?

— Velocity v € R?

— Force F eR? 4=
— Acceleration a = £ € R?

University of Freiburg - Computer Science Department - 14

Time Discretization

— Quantities are considered at discrete time points
,Ut—l—2h

’Ut ,Ut—l—h
+ .CL‘H_h .CL'H_Qh h is the so-called
£ time step.
oi+h att2h
t
a

— Particle simulations are concerned with the computation
of unknown future particle quantities ™", v**"
from known current information x*, v*, a®

University of Freiburg - Computer Science Department - 15

Governing Equations

— Newton’s Second Law, motion equation
t _ do® _ di*z?
—dt 0 dt?

— Ordinary differential equations ODEs

— Describe the behavior of ' and v* in terms
of their derivatives with respect to time

— Numerical integration is employed to
approximatively solve the ODE , i.e.
to approximate the unknown functions «* and o°

a

University of Freiburg - Computer Science Department - 16

Governing Equations

— Initial value problem of second order

d?xt ¢ to _ ~init de’0 _ _ init
gz — & T = ax — Y

— Second-order ODEs can be rewritten as a
system of two coupled equations of first order

— Initial value problems of first order

d t . .
C’ﬁ — ’Ut .’L’to — 3Ulnlt
d t . .
d’l; — G,t ,Uto — ,vlnlt

University of Freiburg - Computer Science Department - 17

Initial Value Problem of First Order

— Functions x* and v’ represent the particle motion
— Initial values x' and v* are given
— First-order differential equations are given

da? I dov? I
49t — YV g T @
— How to estimate ztotm gnd vtoth?
; ARG ’ e
/./ oo O
| | > | | | S
to t() + h t to to + I’L t

University of Freiburg - Computer Science Department - 18

Particle Accelerations

— Depend on sets of positions and velocities

— E.g., damped spring a;(x1, z2, v1,v2)
1 kio

- Lo—ILq :
— Lo — I — L Elastic
mq Lo (| 2 1 H 12) |T2—x1] acceleration
Particle Spring Achﬂal Re?ﬂ Normalized
mass stiffness SPring >PINg Hirection
length length

1 To— T o —@ i
Lo ((’02_’01)| 2 1)| 2 1 Damping

m1 |lxo—x1||) ||Eo—21]|| acceleration
Damping Relative velocity Normalized
parameter projected onto spring direction

University of Freiburg - Computer Science Department - 19

Particle Accelerations

— Are typically expensive to compute
— E.g., sums over adjacent particles

— Might need additional effort
— E.g.,, contact handling forces require collision detection

University of Freiburg - Computer Science Department - 20

Outline

— Introduction

— Particle motion

— Finite differences

— System of first-order ODES
— Second-order ODE

— Performance

— Discussion

University of Freiburg - Computer Science Department - 21

Finite Differences

— Taylor-series approximation

t
;L'H'h — :L‘t | dcﬁ h - O(hQ) O(h?) - order of the truncation / discretization error

t t+h _ .t O(h) - error order of, e.g., a scheme

dt h | that employs such approximation

— Continuous ODEs are replaced with
discrete finite-difference equations FDEs

det .t t+h _ .t
=V = T —ot = gttt =gt 4 het
dov? t+h _ .t

t
T:a’ — () h'v :at s ,Ut—l—h:,vt_l_hat

The first approximate

ODE -DE solution of our problem

University of Freiburg - Computer Science Department - 22

Finite Differences

. o) t
— Line fitting (assuming 42 = const near z')
xt = bt +c
t

de” _ oot dat
=>dt—b:>c—a: el

pith = dd—f(tJrh)—kact— dd—“ft

— Resulting in
dx? ! Th _pt ,
G =57 +0(h)

University of Freiburg - Computer Science Department - 23

Outline

— Introduction
— Particle motion
— Finite differences

— System of first-order ODES
— Explicit schemes
— Predictor-corrector schemes
— Implicit schemes

University of Freiburg - Computer Science Department - 24

Explicit Euler

— Governing equations
deaﬁt _ ’Ut dd_'t)tt _ Cl,t
— Initialization xto = gt pto = pnit qgto p
— Explicit Euler update
gloth = gto 4 pdT0 4 O(R2) = gl + ho'o + O(h?)

vloth — pto 4 pdvL 4 O(h2) = v’ 4 ha'o + O(h?)

University of Freiburg - Computer Science Department - 25

Coupled Equations

— Position update depends on velocity
— Velocity update depends on position
gloth — gto 4 pyto
vioth — pto 1 palo(glo vho)

th—I—Qh _— wto—l—h hvto—l—h

,Uto—l—Qh _ ,Uto—l—h _I_ hat0+h($t0+h, ,Uto—l—h)

University of Freiburg - Computer Science Department - 26

Accuracy and Stability

— Discretization error is the difference between the
solution of the ODE and the solution of the FDE

— The FDE is consistent, if the discretization error
vanishes if the time step h approaches zero

— The FDE is stable, if previously introduced errors
do not grow within a simulation step

— The FDE is convergent, if the solution of the FDE
approaches the solution of the ODE

University of Freiburg - Computer Science Department - 27

Accuracy and Stability

— Although the discretization error is diminished

by smaller time steps in consistent schemes,
the discretization error is introduced in each
step of the FD scheme

— If previously introduced discretization errors

are not amplified by the FD scheme, then it
s stable

— Consistent and stable schemes are convergent

University of Freiburg - Computer Science Department - 28

Stability

— If stability is influenced by the time step,
the FD scheme is conditionally stable

— |If the FD scheme is stable or unstable for arbitrary
time steps, it is unconditionally stable or unstable

— ODE, FDE and the parameters influence
the stability of a system

— Schemes with improved stability work with larger
time steps = reduced overall computation time

University of Freiburg - Computer Science Department - 29

Time Step

— Larger time steps result in less simulation steps and
speed-up the overall computation time of a simulation

I s e B B B N N N N >

h t

L L

h t

— Different FD schemes allow for different time steps
— E.g. due to different error orders
— Computing complexity also differs

University of Freiburg - Computer Science Department - 30

Goal

— Stable scheme with maximized ratio between time
step and computing complexity per simulation step

University of Freiburg - Computer Science Department - 31

Second-Order Runge Kutta - Midpoint Method

Euler Midpoint

€T 4
(¥

: | I >

t t+1ih t+ht
— One derivative computation @ — Two derivative computations @ @
— Discretization error O(h?) — Requires intermediate

positions and velocities
— Discretization error O(h?)

University of Freiburg - Computer Science Department - 32

Midpoint Implementation - Spring

— Acceleration at time t: a}(x}, %, v}, vl)
— Intermediate position and velocity at time ¢ + 2:

i =xi + 2vf vi=vi+lal x=... vi=...
. . . U1
— Intermediate acceleration at time ¢ + 2 a1
using intermediate positions ana 1

velocities: af(x}, x5, v}, v3)
— Final position and velocity at time ¢ + h

t-+h t+h
' =zt + hot v =l + hal

University of Freiburg - Computer Science Department - 33

Midpoint Implementation

/v
er:1'5

current
State

¢
’ "///},1)* v
X
! T xr*
al a*

Compute all Compute all Compute all
accelerations predicted predicted
pos. and vel. accelerations

University of Freiburg - Computer Science Department - 34

,Ut—l—h

4754'%

Compute
all final
pOs. and vel.

Second-Order Runge Kutta - Heun

— al't,’Ut

— a'(x!,v") ©

— z* =zt + hovt v* =v'+ hal
— a*(x*,v*) @

_ ptth — pt] h'vt—|2—'v*

t *
vith = pt £ h2 —|2—a, G

University of Freiburg - Computer Science Department - 35

Second-Order Runge Kutta - Ralston

— a:'t,'vt

— a'(xt,v") ©

— g =xt + %h'vt v* = vt + %hat
— a*(x*,v*) @

— — z!Th =g + Tho' + 2ho*

t t+2ht+ht
vtth =t + ihat + %ha,* ©

University of Freiburg - Computer Science Department - 36

Fourth-Order Runge Kutta - Classic

S8

Four derivative
computations
Discretization error

O(h?)

! vl

a'(z',v") ©

a:*:act—l—%fvt fv*:vt—l—%at
a*(x*,v*) @

az**:wt—l—%’v* ,U**:,vt_'_%a*

* % % % * %
a** (z**,v*") ®
ZL‘*** — ZCt _I_ h,v** ’U*** — ’Ut _I_ ha,**

t * * %k * ok %
t+h ZL‘t 4 h'v +2v"+2v" "+

4 6
t * * 3k * sk sk
oith — ot 4 pa‘t2a +%a +a™" (5

University of Freiburg - Computer Science Department - 37

Fourth-Order Runge Kutta - 3/8 Rule

— gt ot 7 4
— a'(zt,v") ©

— " =x' 4+ shov' v =o' + sha'

— a’*(x*,v") @

— p** — pt 4 %h(—%vt 4 %’U*)

_ p*t = pt 1 %h(—%at i %CL*)

— " = gt + h(vt — v+ v*) pith — pt 1 hvt—i—?w*—I—%v**—I—v***

_ pFr =t h(at —a* + CL**) s hat—l—Sa*—l—Sa**-I—a*** 6
_ a***(w***,v***) @ v = v+ 8

University of Freiburg - Computer Science Department - 38

Accuracy

— Discretization error and
time step influence
the accuracy

Wikipedia: Runge-Kutta-Verfahren

University of Freiburg - Computer Science Department - 39

Exact
RK4 h O(h?)
RK2 h O(h3)

Euler h/2 O(h?)

Euler h O(h?)

Performance

— Computation dominated by derivatives, actually only
oy the accelerations a’, a*, a**, a***

— RK4 is four times as expensive as Euler
— RK2 is two times as expensive as Euler

— RK4 is more accurate than RK2 which is more accurate
than Euler. Error: O(h°) < O(h?) < O(h?)

— RK4 allows larger time steps than RK2 which allows
larger times steps than Euler

University of Freiburg - Computer Science Department - 40

Performance

— If, e.g., RK4 runs with a time step four times larger
than Euler, the overall computation time is the same
— Comparison: RK4 : Euler
— Time per simulation step: 4 : 1
— Simulation steps: 1: 4
— Overall computation time: 1 : 1

University of Freiburg - Computer Science Department — 41

Accelerations

— a',a*,a**, a** can be very expensive to compute

— E.g., it the accelerations consider contact forces,
collision detection has to be performed four times
for different sets of positions a!, &*, **, x***

University of Freiburg - Computer Science Department - 42

Simulation in Computer Graphics
Particle Motion 2

Matthias Teschner

|
UNI
FRE:BURG

Outline

— Introduction
— Particle motion
— Finite differences

— System of first-order ODES
— Explicit schemes
— Predictor-corrector schemes
— Implicit schemes

University of Freiburg - Computer Science Department - 44

Explicit Adams-Bashforth

— Current and previous accelerations (multistep)
— Two acceleration computations per step

— Previous accelerations have to be stored
v* =o' + 2(3al — a'™") + O(h?)
v* =o'+ £ (23a’ — 16a’"" + 5a’~?") + O(h?)
v* = v’ + L (55a’ — 59a’"" + 37a’ 72" — 9a?73") + O(h)
v* =o' + 2 (1901a’ — 2774a’ " + 2616a" " — 1274a’%" + 251a’~*") + O(K%)

z* =x! + 2(3vt —v'™") + O(h3)

University of Freiburg - Computer Science Department - 45

Implicit Adams-Moulton

— Next, current and previous accelerations (multistep)
vith = vt 4 E(a* + ab) + O(h3)
o't =o' + 5 (5a* +8a' —a'"") + O(h?)
vith =t + L (9a* + 19a’ — 5a’" + a' ") + O(h®)
vith = ot + 2 (251a* 4 646a’ — 264a' ™" + 106a' 2" — 19a'3") + O(KF)

720

University of Freiburg - Computer Science Department - 46

A Predictor-Corrector Example

— Initialization

t t t t—h

' vl a !~ =z — hot, v

— v — ha!, at="

— Pred iCtiOﬂ Accelerations at pre-

dicted positions using

* _ bt | ha.t . t—h * _ ot | h(a t __ _t—h %
r =T + 2(3'0 v vt =04 2(30’ a™") a predicted velocities

— Correction

University of Freiburg - Computer Science Department - 47

Discussion

— Two accelerations

— Improved accuracy, larger time steps

— Not necessarily true for discontinuous functions,
e.g., in case of contact handling

— Initialization of previous steps
— |terative correction steps possible

University of Freiburg - Computer Science Department - 48

Outline

— Introduction
— Particle motion
— Finite differences

— System of first-order ODES
— Explicit schemes
— Predictor-corrector schemes
— Implicit schemes

University of Freiburg - Computer Science Department - 49

Explicit vs. Implicit Schemes

— Explicit Euler — Implicit Euler
mt—l—h — QZ‘t + h’l)t mt—l—h — .’L't + h,ut—l—h
,Ut—|—h — ,vt + hat ,Ut—l—h — ’Ut + hat—l—h
— One unknown per equation — System of algebraic equations
— Direct computation — Simultaneous computation of
of unknowns unknowns
— Non-linear equations do — Solution of a linear system
not affect the approach _ Linearization of
— Non-analytical, procedural non-linear equations

forces can be handled

University of Freiburg - Computer Science Department - 50

Implicit Schemes

— Challenge
— Solving a linear system
— Implementation

— Benefit
— Largely improved stability
— Issue

— Reduced accuracy

— Discretization error plus linearization error
nlus approximate solution of a linear system

University of Freiburg - Computer Science Department - 51

Implicit Schemes - Example Overview

— Linearization of accelerations

,Ut—l—h — rvt | hat‘|‘h(agt‘|‘h) Here, accelerations depend only on positions.
t+h _ ..t t+h ¢ t+h Jis a 3x3 Jacobi matrix. h=vis a
v = v" + ha (.CL‘ -+ hv) small displacement. a(x) + J-h-v
IS an approximation of the accele-
’UH_h — ’Ut + h (at(a:t) + Jth’UH_h) ration at position x + h-v.

— Linear system with unknown velocities
(I — h2JY)v!th = ot + ha!

— Position update
plth — gt 4 potth

University of Freiburg - Computer Science Department - 52

Linearization

T
) Gradient

vh:(

— QgiAx = Qg + JpAx + O(HAmHQ)

Jp —

O fu

0

day,,

Bamy
0L o
Oay .,

Ox .

Oxry’ Oxo’ "

day,,

ox
aa;;
ox
8a£i
Oz,

Ofa

’» Oxp,

day,,
o0x .
8a$y
ox
Oay.,

o0x .

)

/

f: 1D field of scalar values

f: 3D field of scalar values

a: 3D field of 3D values

Jacobi matrix

University of Freiburg - Computer Science Department - 53

Jacobi Matrix - Application

t
t :
a, + CL]
m]
t t+h
xz a]H_h a’k - -~
et —al N, T 2 - o=
o "
t+h x
L; atth J
L »
t+h _ == t+h
T, O a, ™" ~ al
m}fjh — mtk at—|—h . at
i T
xt .\
L at at—l—h ~ at
k k k

University of Freiburg - Computer Science Department - 54

Linearization

— Approximation of the acceleration at position xt*"
using the acceleration at position ¢, the Jacobi
matrix J! of the acceleration at position &' and the
small displacement z!*" — ! = hotTh:

at—l—h(mt—l—h) — at+h(mt + h,vt—l—h) ~ at(act) + Jth,vt—l—h
— Equation vt = v® + ha!™"(2!*") with unknown

velocities and positions can be rewritten with
unknown velocities only: (I — h2J)v!*t" = v' + ha'

University of Freiburg - Computer Science Department - 55

Particle System

— Set of particles with, e.g., interconnecting springs

— Force at a particle depends
on particle and its neighbors

B Eg al — 1 Z kzy ;c5|' Li; ;g—w; e \ o
— Position x? , acc. al and mass m; P
of particle ¢ attime ¢ \

— Rest distance L;; and stiffness &;; . a

between particles 2 and 7

University of Freiburg - Computer Science Department - 56

Notation

/

Un,x
t

Un,y

’Ut

n,z

/

University of Freiburg - Computer Science Department - 57

Linear System - Implicit Euler

— Linear system for n particles
~ (I3nx3n — hQJt)vt+h = v’ + ha'
— Jacobian

. Jt c RBnXSn

— Spatial derivatives of all accelerations
with respect to all positions

University of Freiburg - Computer Science Department - 58

Jacobian - Example

' t
t 1 kigt ot 1 NEiT® 1 ki t -
- Eg' @i = mi L (‘ajﬂ z;| L”)|$§—m$| ~ m Ly \ Y5 T i
141 t i
depends on two positions x; and
80’;7, T 80’:1', T aaz i
0%, ¢ 0x; y 0x;, »
Jt . 80,2 . 8&1‘,@; 8&@,@; 3a7;,y
1,1 Qml 0T o Ox; 4 Gl I
ai, z 80/'5,2 asi;, z
0194 Ox4 0x; -
t ‘
_ 9 1 k4 t i | Gog ey
Ozt my Ly (.’L‘J €L; L@J \mg—mﬁ)

1 ki L;; . 1 t ot t ot
= 1 (T + s (1 - e (@l - 2)) (@) - !

J,f,j = —%Jfﬂ- Mueller et al., Real-time Physics. SIGGRAPH 2008.

University of Freiburg - Computer Science Department - 59

Jacobian

— J' e R is built from 3x3 matrices Jj; € R*>**

— If position =% influences
acceleration at, then
t
Jij 70
— Otherwise, J; ; =0

EEEE

=
|

\

University of Freiburg - Computer Science Department - 60

Solver

— (Isnxan — *J") v"*" = o' + ha'

N——— — N, e’
A S
— |terative. Start with a guess, e.g. v" = v?
— lterative updates v° — vl — ... s vl Lo ePRCR
— Result vtth = ¢!

University of Freiburg - Computer Science Department - 61

Solver - Conjugate Gradient

[=0
d =r'=s— Av'
[rop!

o = dl-(AdD) <+— Scaling factor for the solution update.
’UH_1 = ’Ul -+ Ozldl Update of the solution with a scaled direction.
T‘H_l — T‘l — alAdl Residual. Exit loop, when sufficiently small.

14+1 . 1+1
dH'l — rH'l L L l""l dl Direction for the solution update.
r-r
[=1[+1 —J Iteration count.

University of Freiburg - Computer Science Department - 62

Solver - Conjugate Gradient

— Works (converges) for symmetric,
nositive-definite matrices

— Exact solution of an n x n system in n steps
— Frequently used for deformable objects
— Typically used with a fixed iteration count, e.g. 3-5

University of Freiburg - Computer Science Department - 63

Solver - Jacobi

— vt =o'+ wD (s — Av!)

— D diagonal elements of A

— w determines convergence and convergence rate
— 0<w <2, in practical settings typically w = 0.5

— Per-component update

University of Freiburg - Computer Science Department - 64

Solver - Implementation

— A = I3, 43, — h*Jt is not explicitly built or stored
— s =" + ha' is not explicitly built or stored

— Instead
— Per-particle information is stored at particles, e.g. s;

— Per-element information is stored at elements,
e.g. J!, for an elastic spring between i and 7,
Ji;=Jf,=—radland Jf = e Jf; can be reconstructed

— Matrix-free implementation of solver steps

University of Freiburg - Computer Science Department - 65

Solver - Implementation

— Av'is computed and stored per particle

Av! = Iv! — h?
Stored per
element, —
e.g. spring.

[

7

\

t
Ji

)

/

()

l
v,

!/

University of Freiburg - Computer Science Department - 66

W

S
=
=

\")

Stored per
particle.

Solver - Implementation

— Av'is computed by iterating over elements
— E.g., spring connects particles 5 and %

For each particle:
(Av'); = v!

For each spring:

(Avl);4+ = —h2J! vl +h2 2L Jt oy

(A’Ul)k-—{— = —h?

N——

t t
/ J; Ik
Avl = Tv! — B2
mp in,j i
H/—/ ’
_Jt
jJt vk+h2 ij;j, ;
A,_/
_Jﬁ,j

University of Freiburg - Computer Science Department - 67

1(,ay)

"/

Solver - Discussion

— Jacobi vs. Conjugate Gradient CG:
— CG converges taster

— Jacobi is good-natured, e.g. in case of clamping
intermediate solutions to implement constraints

— Implementation, e.g., in a particle-spring model|
— Matrix-free

— A
— A

| solver information is stored at particles and springs
| solver steps are realized by iterating over particles

and springs

University of Freiburg - Computer Science Department - 68

Implicit Schemes - Summary

— Implicit Euler
,Ut—|—h — ’Ut + hat+h(a3t+h)
— Linearization
vt =o' + h (@' (xh) + Jtho'Th)
— Solve a linear system for velocities
(I — 2 THv'T" = vt + hat
— Update positions according to implicit Euler
pith — pt + hotth

University of Freiburg - Computer Science Department - 69

Semi-implicit Euler (Euler-Cromer)

— Explicit Euler for the velocity update
vt = vt + hat

— Implicit Euler for the position update
rlth — gt 4+ potth

— No linear system

University of Freiburg - Computer Science Department - 70

Simulation in Computer Graphics
Particle Motion 3

Matthias Teschner

|
UNI
FRE:BURG

Outline

— Introduction

— Particle motion

— Finite differences

— System of first-order ODES
— Second-order ODE

— Performance

— Discussion

University of Freiburg - Computer Science Department - 72

Initial Value Problem of Second Order

— Function z* represents the particle motion
— Second-order differential equation is given

2 _t
G =a
— Initial values x* and v* are given

— How to estimate ztoth?

£ tvtO e,_——'

//./750

a
: —

|
to to + h t

University of Freiburg - Computer Science Department - 73

Motivation

— Schemes for coupled first-order ODEs
Update £ and v simultaneously

— Schemes for second-order ODEs update x
but not necessarily v

University of Freiburg - Computer Science Department - 74

Verlet

— Taylor approximations of z*" and x'~"

t+h _ ot t . h?_t _ h°d’z’ 4
T =z + hv' + Sa® + 55 + O(h%)

t—h _ .t t , h2 t__ h’d’z’ 4
" =g’ — hv' + Ha’ — 55 + O(h%)

— Adding both approximations
x!th =22t — 2!~ 4+ h2al + O(h?)

h

University of Freiburg - Computer Science Department - 75

Verlet - Discussion

— One acceleration computation per step
— Same computation cost as explicit Euler

— Discretization error of order 4
— More accurate than explicit Euler

— Larger time step and improved performance
compared to explicit Euler

University of Freiburg - Computer Science Department - 76

Verlet - Discussion

— Velocity representation not necessarily requirec

— But:

— Velocity typically used for collision handling and damping

~ Eg vith = mt+2_‘”t - O(h)

University of Freiburg - Computer Science Department - 77

Leap-Frog

h
wt+h - :Bt _I_ h,ut—|—§

3h h
vit2 =itz 4+ hatth

— Implementation, e.g.

L ptth _pt i_h pt_pt—h
e . viT2 = .
h h
= (vit2 —vt 2)h = gtth — gt — gt + "

University of Freiburg - Computer Science Department - 78

Velocity Verlet

— Same accuracy for position and velocity

— One acceleration computation per step

University of Freiburg - Computer Science Department - 79

Beeman

,UH—h — ot A (t+h 4 2at 112at—h) s O(h4)
— One acceleration computation per step
— Improved accuracy compared to Velocity Verlet

— Possibly larger time step

University of Freiburg - Computer Science Department - 80

Gear

— Taylor approximation
plith — pt 4 de' h | d°x'h® | d’x' h° | d'2' p* | d°x'h®

dt 1! dt2 2! dt3 3! dt? 4! dt® 5!
— Notation
t __ dx® n¥
T = Gk &l
t+h _ .t t t t t t
Tg =Ty +T{+Ty+T3+7Ty+T5+ ...

University of Freiburg - Computer Science Department - 81

Gear

_ t+h x' h? | d°z' h® | d'z' h* | d°zf h5
15 _m+dt 1'+dt2 T T @ T T @ ar T oas s T
t+h
re" —r6—|—r'i—|—r§—|—r§—|—rfl—|—rg—|—...
da:H'h dcc d3xt B2 d?ax? h3 d°xt h?
— h = hqr +h t2 1'+hdt3 2!+hdt4 3!+hdt5 4!+"'

fr’f“h—r’{+2r§+3r§+4ri—|—5r§+...

_ R2 A2zt _ p? 4%t h? 3zt h h? d*xt h? h? d°a? h,3
T Az — 2 oaez Ve as U T 2 @t ar 2 as ar T
t+h

ro' "t =1+ 3rf +6r, + 100 + ...

University of Freiburg - Computer Science Department - 82

Gear - Prediction

mt+h:r6+h = ri+r+rs+r,+rl+r
poith = plth = gt 4 2pl 4 39l + 4rf + Bl
%ZaHh = r?h = 'rg + 3'r§ + 67“5 + 101’*%
r§+h = ré + 4frfl + 101“?,
'rffh = rfl + 5rg

University of Freiburg - Computer Science Department - 83

Gear - Correction

— Error / inconsistency between the predicted acceleration

2 it at time t + hand the acceleration a’f+h(r3+h, Lytth)

at predicted positions rit" and velocities i+
etth — rngh h; at+"
— Correction:
pith = plth _cpetth
with coefficients
Co= 55,01 =35,c2=1,03= 15,64 = 3,05 = 55

University of Freiburg - Computer Science Department - 84

Gear - Implementation

— Initialization: rfo =afo plo = pplo plo = Lo gt
'réo — 'rﬁf’ — réo —

— Prediction: rith =l + .. 1t
it

— Error: eth = pbth _ 1o gtth

— Correction: Pt =it — el th

University of Freiburg - Computer Science Department - 85

Outline

— Introduction

— Particle motion

— Finite differences

— System of first-order ODES
— Second-order ODE

— Performance

— Discussion

University of Freiburg - Computer Science Department - 86

Comparison

— Deformable cube on a plane (4k particles,
17k tetrahedra, 22k edges), spring forces,
volume preservation, gravity, contact

Scheme Error order Time step Computation Ratio
[ms] time [ms]
Explicit Euler 1 0.5 9.5 0.05
RK 2 2 3.8 18.9 0.20
Implicit Euler 1 49.0 172.0 0.28
RK 4 4 17.0 50.0 0.34
Verlet 3 11.5 9.5 1.21

University of Freiburg - Computer Science Department - 87

Time Step

— Larger time steps are generally
advantageous for the performance

— However, the time step size is limited: h < M

— A particle should not move farther than its size in
one simulation step, e.g. its diameter d: hlv| <d

University of Freiburg - Computer Science Department - 88

Time Step

— Critical states that can be avoided by a time step limit
— Inverted elements
— Unresolvable contacts

320 920 888
000
OO0 000 OO0 a¥ala

Rest state Inverted elements State at ¢ OOO
No contact

State at t+h;
Contact

University of Freiburg - Computer Science Department - 89

Outline

— Introduction

— Particle motion

— Finite differences

— System of first-order ODES
— Second-order ODE

— Performance

— Discussion

University of Freiburg - Computer Science Department - 90

Explicit Schemes

— Error order determines accuracy

— Improved accuracy may correspond to an improved
stability for larger time steps

— Improved accuracy may correspond to higher costs
— Time steps are comparatively small
— Stability is generally an issue

University of Freiburg - Computer Science Department - 91

Implicit Schemes

— Generally stable and robust

— Handle larger time steps

— Less accurate (scheme, linearization, solver)
— Typically artificial damping / viscosity

— Decreasing accuracy for larger time steps

— Same as for explicit schemes, but explicit schemes get
unstable, while implicit schemes stay stable

University of Freiburg - Computer Science Department - 92

