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Goal

 Dynamic simulation of

 Rigid bodies

 Deformable objects

 Fluids
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Goal



University of Freiburg – Computer Science Department – 5

Goal
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Representation

 Subdivision of objects into small parts, i.e. particles

 Particles have properties

 Mass     , volume    , density

 Position    , velocity    , force

 Particles are of arbitrary shape 
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Fluid Particles

Fluid body Fluid particles Typical visualization
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Cloth Particles

Cloth Cloth particles Illustration

[Bender, Deul, 2013]
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Deformable 3D Particles

Deformable 3D object Approximate tetrahedral mesh
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Particle Forces

 Result from 

 Distortions, e.g. 
volume or shape 
change

 Gravity

 Friction, viscosity

 Contact

 …

Rest state Compression Shear

Gravity Viscosity Contact

Force
Velocity
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Particle Motion

 Particles change position     with velocity 

 Velocity governed by Newton’s Second Law

 Force at a particle equals the time 
rate of change of its momentum

 Two governing equations for two unknown functions    , 

 Can also be written as 

Coupled system of first order ODEs

Second order ODE
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Particle-based Simulation

 Object subdivision 
into particles
(spatial discretization)

 Force modeling

 Particle motion

 Transport / advection

Object Particles

Acceleration
Velocity
change

Position
change
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Particle Quantities

 Mass

 Position

 Velocity

 Force

 Acceleration
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Time Discretization

 Quantities are considered at discrete time points

 Particle simulations are concerned with the computation 
of unknown future particle quantities         ,
from known current information     ,     ,

h is the so-called
time step.
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Governing Equations

 Newton’s Second Law, motion equation

 Ordinary differential equations ODEs

 Describe the behavior of       and       in terms 
of their derivatives with respect to time

 Numerical integration is employed to
approximatively solve the ODE , i.e. 
to approximate the unknown functions       and  
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Governing Equations

 Initial value problem of second order

 Second-order ODEs can be rewritten as a
system of two coupled equations of first order

 Initial value problems of first order
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Initial Value Problem of First Order

 Functions      and      represent the particle motion

 Initial values       and       are given 

 First-order differential equations are given

 How to estimate           and          ? 
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Particle Accelerations

 Depend on sets of positions and velocities

 E.g., damped spring

Elastic 
acceleration

Spring
stiffness

Actual
spring
length

Rest
spring
length

Normalized
direction

Damping 
acceleration

Damping
parameter

Relative velocity 
projected onto spring

Normalized
direction

Particle
mass
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Particle Accelerations

 Are typically expensive to compute

 E.g., sums over adjacent particles

 Might need additional effort

 E.g., contact handling forces require collision detection
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Finite Differences

 Taylor-series approximation

 Continuous ODEs are replaced with 
discrete finite-difference equations FDEs

O(h2) – order of the truncation / discretization error

O(h) – error order of, e.g., a scheme
that employs such approximation

ODE FDE
The first approximate 
solution of our problem
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Finite Differences 

 Line fitting (assuming                       near     )

 Resulting in
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Explicit Euler

 Governing equations

 Initialization                  ,                  ,      , 

 Explicit Euler update
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Coupled Equations

 Position update depends on velocity

 Velocity update depends on position



University of Freiburg – Computer Science Department – 27

Accuracy and Stability

 Discretization error is the difference between the 
solution of the ODE and the solution of the FDE

 The FDE is consistent, if the discretization error 
vanishes if the time step h approaches zero 

 The FDE is stable, if previously introduced errors 
do not grow within a simulation step

 The FDE is convergent, if the solution of the FDE 
approaches the solution of the ODE 
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Accuracy and Stability

 Although the discretization error is diminished 
by smaller time steps in consistent schemes, 
the discretization error is introduced in each 
step of the FD scheme

 If previously introduced discretization errors 
are not amplified by the FD scheme, then it 
is stable

 Consistent and stable schemes are convergent 



University of Freiburg – Computer Science Department – 29

Stability

 If stability is influenced by the time step, 
the FD scheme is conditionally stable

 If the FD scheme is stable or unstable for arbitrary 
time steps, it is unconditionally stable or unstable

 ODE, FDE and the parameters influence
the stability of a system

 Schemes with improved stability work with larger 
time steps  reduced overall computation time
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Time Step

 Larger time steps result in less simulation steps and 
speed-up the overall computation time of a simulation

 Different FD schemes allow for different time steps

 E.g. due to different error orders 

 Computing complexity also differs
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Goal

 Stable scheme with maximized ratio between time 
step and computing complexity per simulation step
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Second-Order Runge Kutta - Midpoint Method

‒ One derivative computation
‒ Discretization error

Euler Midpoint

‒ Two derivative computations
‒ Requires intermediate 

positions and velocities 
‒ Discretization error
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Midpoint Implementation - Spring

 Acceleration at time   : 

 Intermediate position and velocity at time          : 

 Intermediate acceleration at time           
using intermediate positions and 
velocities: 

 Final position and velocity at time 
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Midpoint Implementation

Current
state

Compute
all final
pos. and vel.

Compute all
accelerations

Compute all 
predicted 
accelerations

Compute all 
predicted 
pos. and vel.
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Second-Order Runge Kutta - Heun










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Second-Order Runge Kutta - Ralston










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Fourth-Order Runge Kutta - Classic





















‒ Four derivative 
computations

‒ Discretization error
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Fourth-Order Runge Kutta – 3/8 Rule




















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Accuracy

Wikipedia: Runge-Kutta-Verfahren

Euler h O(h2) 

Euler h/2 O(h2) 

Exact
RK4 h O(h5)
RK2 h O(h3)

 Discretization error and 
time step influence 
the accuracy
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Performance

 Computation dominated by derivatives, actually only
by the accelerations

 RK4 is four times as expensive as Euler

 RK2 is two times as expensive as Euler

 RK4 is more accurate than RK2 which is more accurate 
than Euler. Error: 

 RK4 allows larger time steps than RK2 which allows 
larger times steps than Euler
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Performance

 If, e.g., RK4 runs with a time step four times larger 
than Euler, the overall computation time is the same

 Comparison: RK4 : Euler

 Time per simulation step: 4 : 1

 Simulation steps: 1 : 4

 Overall computation time: 1 : 1 
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Accelerations

 can be very expensive to compute

 E.g., if the accelerations consider contact forces,
collision detection has to be performed four times
for different sets of positions 
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 Current and previous accelerations (multistep)

 Two acceleration computations per step

 Previous accelerations have to be stored

Explicit Adams-Bashforth
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 Next, current and previous accelerations (multistep)

Implicit Adams-Moulton
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A Predictor-Corrector Example

 Initialization

 Prediction

 Correction

Accelerations at pre-
dicted positions using 
predicted velocities
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Discussion

 Two accelerations

 Improved accuracy, larger time steps

 Not necessarily true for discontinuous functions,
e.g., in case of contact handling

 Initialization of previous steps

 Iterative correction steps possible



University of Freiburg – Computer Science Department – 49

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Explicit schemes

 Predictor-corrector schemes

 Implicit schemes

 …



University of Freiburg – Computer Science Department – 50

Explicit vs. Implicit Schemes

 Explicit Euler

 One unknown per equation

 Direct computation 
of unknowns

 Non-linear equations do 
not affect the approach

 Non-analytical, procedural 
forces can be handled

 Implicit Euler

 System of algebraic equations

 Simultaneous computation of 
unknowns

 Solution of a linear system

 Linearization of 
non-linear equations
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Implicit Schemes

 Challenge

 Solving a linear system

 Implementation

 Benefit

 Largely improved stability

 Issue

 Reduced accuracy

 Discretization error plus linearization error 
plus approximate solution of a linear system 
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Implicit Schemes – Example Overview

 Linearization of accelerations

 Linear system with unknown velocities

 Position update

Here, accelerations depend only on positions.

J is a 3x3 Jacobi matrix. h•v is a 
small displacement. a(x) + J•h•v
is an approximation of the accele-
ration at position x + h•v. 
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Linearization







f: 1D field of scalar values

f: 3D field of scalar values

a: 3D field of 3D values

Gradient

Jacobi matrix
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Jacobi Matrix - Application
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Linearization

 Approximation of the acceleration at position
using the acceleration at position     , the Jacobi 
matrix        of the acceleration at position      and the
small displacement                                : 

 Equation                                           with unknown
velocities and positions can be rewritten with
unknown velocities only: 
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 Set of particles with, e.g., interconnecting springs

 Force at a particle depends 
on particle and its neighbors 

 E.g.

 Position       , acc.        and mass
of particle     at time    

 Rest distance        and stiffness
between particles     and 

Particle System



University of Freiburg – Computer Science Department – 57

Notation
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Linear System – Implicit Euler

 Linear system for      particles



 Jacobian



 Spatial derivatives of all accelerations 
with respect to all positions   
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Jacobian - Example

 E.g.,                                                  
depends on two positions     and

Mueller et al. , Real-time Physics.  SIGGRAPH 2008. 
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Jacobian

 is built from 3x3 matrices

 If position      influences
acceleration     , then 

 Otherwise, 
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Solver



 Iterative. Start with a guess, e.g. 

 Iterative updates

 Result

Here, superscript
indicates the iteration. 
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Solver – Conjugate Gradient

Scaling factor for the solution update. 

Update of the solution with a scaled direction. 

Residual. Exit loop, when sufficiently small.

Direction for the solution update.

Iteration count.
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Solver – Conjugate Gradient

 Works (converges ) for symmetric, 
positive-definite matrices

 Exact solution of an           system in     steps

 Frequently used for deformable objects

 Typically used with a fixed iteration count, e.g. 3-5
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Solver - Jacobi



 diagonal elements of 

 determines convergence and convergence rate

 , in practical settings typically

 Per-component update 
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Solver - Implementation

 is not explicitly built or stored

 is not explicitly built or stored 

 Instead

 Per-particle information is stored at particles, e.g. 

 Per-element information is stored at elements, 
e.g.          for an elastic spring between    and    ,

and                     can be reconstructed

 Matrix-free implementation of solver steps
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Solver - Implementation

 is computed and stored per particle 

Stored per
particle.Stored per

element,
e.g. spring.



University of Freiburg – Computer Science Department – 67

Solver - Implementation

 is computed by iterating over elements

 E.g., spring connects particles     and 

For each spring:

For each particle:
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Solver - Discussion

 Jacobi vs. Conjugate Gradient CG:

 CG converges faster

 Jacobi is good-natured, e.g. in case of clamping 
intermediate solutions to implement constraints

 Implementation, e.g., in a particle-spring model

 Matrix-free

 All solver information is stored at particles and springs

 All solver steps are realized by iterating over particles 
and springs
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Implicit Schemes – Summary

 Implicit Euler 

 Linearization

 Solve a linear system for velocities

 Update positions according to implicit Euler
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Semi-implicit Euler (Euler-Cromer)

 Explicit Euler for the velocity update

 Implicit Euler for the position update

 No linear system
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Initial Value Problem of Second Order

 Function      represents the particle motion

 Second-order differential equation is given

 Initial values       and       are given 

 How to estimate           ?
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Motivation

 Schemes for coupled first-order ODEs 
update     and     simultaneously

 Schemes for second-order ODEs update     ,
but not necessarily
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Verlet

 Taylor approximations of          and

 Adding both approximations
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Verlet - Discussion

 One acceleration computation per step

 Same computation cost as explicit Euler

 Discretization error of order 4

 More accurate than explicit Euler

 Larger time step and improved performance
compared to explicit Euler 
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Verlet - Discussion

 Velocity representation not necessarily required

 But: 

 Velocity typically used for collision handling and damping

 E.g. 
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Leap-Frog

 Implementation, e.g.

Verlet
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Velocity Verlet

 Same accuracy for position and velocity

 One acceleration computation per step
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Beeman

 One acceleration computation per step

 Improved accuracy compared to Velocity Verlet

 Possibly larger time step
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Gear

 Taylor approximation

 Notation 
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Gear






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Gear - Prediction
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Gear - Correction

 Error / inconsistency between the predicted acceleration 
at time         and the acceleration          

at predicted positions         and velocities           :

 Correction:

with coefficients
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Gear - Implementation

 Initialization:

 Prediction:

 Error:

 Correction:
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Comparison

 Deformable cube on a plane (4k particles, 
17k tetrahedra, 22k edges), spring forces,
volume preservation, gravity, contact

Scheme Error order Time step 
[ms]

Computation 
time [ms]

Ratio

Explicit Euler 1 0.5 9.5 0.05

RK 2 2 3.8 18.9 0.20

Implicit Euler 1 49.0 172.0 0.28

RK 4 4 17.0 50.0 0.34

Verlet 3 11.5 9.5 1.21
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Time Step

 Larger time steps are generally 
advantageous for the performance

 However, the time step size is limited:

 A particle should not move farther than its size in 
one simulation step, e.g. its diameter   :  
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Time Step

 Critical states that can be avoided by a time step limit

 Inverted elements

 Unresolvable contacts 

Rest state Inverted elements

State at t+h:
Contact

State at t:
No contact
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Explicit Schemes

 Error order determines accuracy

 Improved accuracy may correspond to an improved 
stability for larger time steps

 Improved accuracy may correspond to higher costs

 Time steps are comparatively small

 Stability is generally an issue
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Implicit Schemes

 Generally stable and robust

 Handle larger time steps

 Less accurate (scheme, linearization, solver)

 Typically artificial damping / viscosity

 Decreasing accuracy for larger time steps

 Same as for explicit schemes, but explicit schemes get 
unstable, while implicit schemes stay stable


