
Matthias Teschner

Simulation in Computer Graphics
Particle Motion 1

University of Freiburg – Computer Science Department – 2

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Second-order ODE

 Performance

 Discussion

University of Freiburg – Computer Science Department – 3

Goal

 Dynamic simulation of

 Rigid bodies

 Deformable objects

 Fluids

University of Freiburg – Computer Science Department – 4

Goal

University of Freiburg – Computer Science Department – 5

Goal

University of Freiburg – Computer Science Department – 6

Representation

 Subdivision of objects into small parts, i.e. particles

 Particles have properties

 Mass , volume , density

 Position , velocity , force

 Particles are of arbitrary shape

University of Freiburg – Computer Science Department – 7

Fluid Particles

Fluid body Fluid particles Typical visualization

University of Freiburg – Computer Science Department – 8

Cloth Particles

Cloth Cloth particles Illustration

[Bender, Deul, 2013]

University of Freiburg – Computer Science Department – 9

Deformable 3D Particles

Deformable 3D object Approximate tetrahedral mesh

University of Freiburg – Computer Science Department – 10

Particle Forces

 Result from

 Distortions, e.g.
volume or shape
change

 Gravity

 Friction, viscosity

 Contact

 …

Rest state Compression Shear

Gravity Viscosity Contact

Force
Velocity

University of Freiburg – Computer Science Department – 11

Particle Motion

 Particles change position with velocity

 Velocity governed by Newton’s Second Law

 Force at a particle equals the time
rate of change of its momentum

 Two governing equations for two unknown functions ,

 Can also be written as

Coupled system of first order ODEs

Second order ODE

University of Freiburg – Computer Science Department – 12

Particle-based Simulation

 Object subdivision
into particles
(spatial discretization)

 Force modeling

 Particle motion

 Transport / advection

Object Particles

Acceleration
Velocity
change

Position
change

University of Freiburg – Computer Science Department – 13

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Second-order ODE

 Performance

 Discussion

University of Freiburg – Computer Science Department – 14

Particle Quantities

 Mass

 Position

 Velocity

 Force

 Acceleration

University of Freiburg – Computer Science Department – 15

Time Discretization

 Quantities are considered at discrete time points

 Particle simulations are concerned with the computation
of unknown future particle quantities ,
from known current information , ,

h is the so-called
time step.

University of Freiburg – Computer Science Department – 16

Governing Equations

 Newton’s Second Law, motion equation

 Ordinary differential equations ODEs

 Describe the behavior of and in terms
of their derivatives with respect to time

 Numerical integration is employed to
approximatively solve the ODE , i.e.
to approximate the unknown functions and

University of Freiburg – Computer Science Department – 17

Governing Equations

 Initial value problem of second order

 Second-order ODEs can be rewritten as a
system of two coupled equations of first order

 Initial value problems of first order

University of Freiburg – Computer Science Department – 18

Initial Value Problem of First Order

 Functions and represent the particle motion

 Initial values and are given

 First-order differential equations are given

 How to estimate and ?

University of Freiburg – Computer Science Department – 19

Particle Accelerations

 Depend on sets of positions and velocities

 E.g., damped spring

Elastic
acceleration

Spring
stiffness

Actual
spring
length

Rest
spring
length

Normalized
direction

Damping
acceleration

Damping
parameter

Relative velocity
projected onto spring

Normalized
direction

Particle
mass

University of Freiburg – Computer Science Department – 20

Particle Accelerations

 Are typically expensive to compute

 E.g., sums over adjacent particles

 Might need additional effort

 E.g., contact handling forces require collision detection

University of Freiburg – Computer Science Department – 21

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Second-order ODE

 Performance

 Discussion

University of Freiburg – Computer Science Department – 22

Finite Differences

 Taylor-series approximation

 Continuous ODEs are replaced with
discrete finite-difference equations FDEs

O(h2) – order of the truncation / discretization error

O(h) – error order of, e.g., a scheme
that employs such approximation

ODE FDE
The first approximate
solution of our problem

University of Freiburg – Computer Science Department – 23

Finite Differences

 Line fitting (assuming near)

 Resulting in

University of Freiburg – Computer Science Department – 24

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Explicit schemes

 Predictor-corrector schemes

 Implicit schemes

 …

University of Freiburg – Computer Science Department – 25

Explicit Euler

 Governing equations

 Initialization , , ,

 Explicit Euler update

University of Freiburg – Computer Science Department – 26

Coupled Equations

 Position update depends on velocity

 Velocity update depends on position

University of Freiburg – Computer Science Department – 27

Accuracy and Stability

 Discretization error is the difference between the
solution of the ODE and the solution of the FDE

 The FDE is consistent, if the discretization error
vanishes if the time step h approaches zero

 The FDE is stable, if previously introduced errors
do not grow within a simulation step

 The FDE is convergent, if the solution of the FDE
approaches the solution of the ODE

University of Freiburg – Computer Science Department – 28

Accuracy and Stability

 Although the discretization error is diminished
by smaller time steps in consistent schemes,
the discretization error is introduced in each
step of the FD scheme

 If previously introduced discretization errors
are not amplified by the FD scheme, then it
is stable

 Consistent and stable schemes are convergent

University of Freiburg – Computer Science Department – 29

Stability

 If stability is influenced by the time step,
the FD scheme is conditionally stable

 If the FD scheme is stable or unstable for arbitrary
time steps, it is unconditionally stable or unstable

 ODE, FDE and the parameters influence
the stability of a system

 Schemes with improved stability work with larger
time steps  reduced overall computation time

University of Freiburg – Computer Science Department – 30

Time Step

 Larger time steps result in less simulation steps and
speed-up the overall computation time of a simulation

 Different FD schemes allow for different time steps

 E.g. due to different error orders

 Computing complexity also differs

University of Freiburg – Computer Science Department – 31

Goal

 Stable scheme with maximized ratio between time
step and computing complexity per simulation step

University of Freiburg – Computer Science Department – 32

Second-Order Runge Kutta - Midpoint Method

‒ One derivative computation
‒ Discretization error

Euler Midpoint

‒ Two derivative computations
‒ Requires intermediate

positions and velocities
‒ Discretization error

University of Freiburg – Computer Science Department – 33

Midpoint Implementation - Spring

 Acceleration at time :

 Intermediate position and velocity at time :

 Intermediate acceleration at time
using intermediate positions and
velocities:

 Final position and velocity at time

University of Freiburg – Computer Science Department – 34

Midpoint Implementation

Current
state

Compute
all final
pos. and vel.

Compute all
accelerations

Compute all
predicted
accelerations

Compute all
predicted
pos. and vel.

University of Freiburg – Computer Science Department – 35

Second-Order Runge Kutta - Heun











University of Freiburg – Computer Science Department – 36

Second-Order Runge Kutta - Ralston











University of Freiburg – Computer Science Department – 37

Fourth-Order Runge Kutta - Classic





















‒ Four derivative
computations

‒ Discretization error

University of Freiburg – Computer Science Department – 38

Fourth-Order Runge Kutta – 3/8 Rule





















University of Freiburg – Computer Science Department – 39

Accuracy

Wikipedia: Runge-Kutta-Verfahren

Euler h O(h2)

Euler h/2 O(h2)

Exact
RK4 h O(h5)
RK2 h O(h3)

 Discretization error and
time step influence
the accuracy

University of Freiburg – Computer Science Department – 40

Performance

 Computation dominated by derivatives, actually only
by the accelerations

 RK4 is four times as expensive as Euler

 RK2 is two times as expensive as Euler

 RK4 is more accurate than RK2 which is more accurate
than Euler. Error:

 RK4 allows larger time steps than RK2 which allows
larger times steps than Euler

University of Freiburg – Computer Science Department – 41

Performance

 If, e.g., RK4 runs with a time step four times larger
than Euler, the overall computation time is the same

 Comparison: RK4 : Euler

 Time per simulation step: 4 : 1

 Simulation steps: 1 : 4

 Overall computation time: 1 : 1

University of Freiburg – Computer Science Department – 42

Accelerations

 can be very expensive to compute

 E.g., if the accelerations consider contact forces,
collision detection has to be performed four times
for different sets of positions

Matthias Teschner

Simulation in Computer Graphics
Particle Motion 2

University of Freiburg – Computer Science Department – 44

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Explicit schemes

 Predictor-corrector schemes

 Implicit schemes

 …

University of Freiburg – Computer Science Department – 45

 Current and previous accelerations (multistep)

 Two acceleration computations per step

 Previous accelerations have to be stored

Explicit Adams-Bashforth

University of Freiburg – Computer Science Department – 46

 Next, current and previous accelerations (multistep)

Implicit Adams-Moulton

University of Freiburg – Computer Science Department – 47

A Predictor-Corrector Example

 Initialization

 Prediction

 Correction

Accelerations at pre-
dicted positions using
predicted velocities

University of Freiburg – Computer Science Department – 48

Discussion

 Two accelerations

 Improved accuracy, larger time steps

 Not necessarily true for discontinuous functions,
e.g., in case of contact handling

 Initialization of previous steps

 Iterative correction steps possible

University of Freiburg – Computer Science Department – 49

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Explicit schemes

 Predictor-corrector schemes

 Implicit schemes

 …

University of Freiburg – Computer Science Department – 50

Explicit vs. Implicit Schemes

 Explicit Euler

 One unknown per equation

 Direct computation
of unknowns

 Non-linear equations do
not affect the approach

 Non-analytical, procedural
forces can be handled

 Implicit Euler

 System of algebraic equations

 Simultaneous computation of
unknowns

 Solution of a linear system

 Linearization of
non-linear equations

University of Freiburg – Computer Science Department – 51

Implicit Schemes

 Challenge

 Solving a linear system

 Implementation

 Benefit

 Largely improved stability

 Issue

 Reduced accuracy

 Discretization error plus linearization error
plus approximate solution of a linear system

University of Freiburg – Computer Science Department – 52

Implicit Schemes – Example Overview

 Linearization of accelerations

 Linear system with unknown velocities

 Position update

Here, accelerations depend only on positions.

J is a 3x3 Jacobi matrix. h•v is a
small displacement. a(x) + J•h•v
is an approximation of the accele-
ration at position x + h•v.

University of Freiburg – Computer Science Department – 53

Linearization







f: 1D field of scalar values

f: 3D field of scalar values

a: 3D field of 3D values

Gradient

Jacobi matrix

University of Freiburg – Computer Science Department – 54

Jacobi Matrix - Application

University of Freiburg – Computer Science Department – 55

Linearization

 Approximation of the acceleration at position
using the acceleration at position , the Jacobi
matrix of the acceleration at position and the
small displacement :

 Equation with unknown
velocities and positions can be rewritten with
unknown velocities only:

University of Freiburg – Computer Science Department – 56

 Set of particles with, e.g., interconnecting springs

 Force at a particle depends
on particle and its neighbors

 E.g.

 Position , acc. and mass
of particle at time

 Rest distance and stiffness
between particles and

Particle System

University of Freiburg – Computer Science Department – 57

Notation

University of Freiburg – Computer Science Department – 58

Linear System – Implicit Euler

 Linear system for particles



 Jacobian



 Spatial derivatives of all accelerations
with respect to all positions

University of Freiburg – Computer Science Department – 59

Jacobian - Example

 E.g.,
depends on two positions and

Mueller et al. , Real-time Physics. SIGGRAPH 2008.

University of Freiburg – Computer Science Department – 60

Jacobian

 is built from 3x3 matrices

 If position influences
acceleration , then

 Otherwise,

University of Freiburg – Computer Science Department – 61

Solver



 Iterative. Start with a guess, e.g.

 Iterative updates

 Result

Here, superscript
indicates the iteration.

University of Freiburg – Computer Science Department – 62

Solver – Conjugate Gradient

Scaling factor for the solution update.

Update of the solution with a scaled direction.

Residual. Exit loop, when sufficiently small.

Direction for the solution update.

Iteration count.

University of Freiburg – Computer Science Department – 63

Solver – Conjugate Gradient

 Works (converges) for symmetric,
positive-definite matrices

 Exact solution of an system in steps

 Frequently used for deformable objects

 Typically used with a fixed iteration count, e.g. 3-5

University of Freiburg – Computer Science Department – 64

Solver - Jacobi



 diagonal elements of

 determines convergence and convergence rate

 , in practical settings typically

 Per-component update

University of Freiburg – Computer Science Department – 65

Solver - Implementation

 is not explicitly built or stored

 is not explicitly built or stored

 Instead

 Per-particle information is stored at particles, e.g.

 Per-element information is stored at elements,
e.g. for an elastic spring between and ,

and can be reconstructed

 Matrix-free implementation of solver steps

University of Freiburg – Computer Science Department – 66

Solver - Implementation

 is computed and stored per particle

Stored per
particle.Stored per

element,
e.g. spring.

University of Freiburg – Computer Science Department – 67

Solver - Implementation

 is computed by iterating over elements

 E.g., spring connects particles and

For each spring:

For each particle:

University of Freiburg – Computer Science Department – 68

Solver - Discussion

 Jacobi vs. Conjugate Gradient CG:

 CG converges faster

 Jacobi is good-natured, e.g. in case of clamping
intermediate solutions to implement constraints

 Implementation, e.g., in a particle-spring model

 Matrix-free

 All solver information is stored at particles and springs

 All solver steps are realized by iterating over particles
and springs

University of Freiburg – Computer Science Department – 69

Implicit Schemes – Summary

 Implicit Euler

 Linearization

 Solve a linear system for velocities

 Update positions according to implicit Euler

University of Freiburg – Computer Science Department – 70

Semi-implicit Euler (Euler-Cromer)

 Explicit Euler for the velocity update

 Implicit Euler for the position update

 No linear system

Matthias Teschner

Simulation in Computer Graphics
Particle Motion 3

University of Freiburg – Computer Science Department – 72

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Second-order ODE

 Performance

 Discussion

University of Freiburg – Computer Science Department – 73

Initial Value Problem of Second Order

 Function represents the particle motion

 Second-order differential equation is given

 Initial values and are given

 How to estimate ?

University of Freiburg – Computer Science Department – 74

Motivation

 Schemes for coupled first-order ODEs
update and simultaneously

 Schemes for second-order ODEs update ,
but not necessarily

University of Freiburg – Computer Science Department – 75

Verlet

 Taylor approximations of and

 Adding both approximations

University of Freiburg – Computer Science Department – 76

Verlet - Discussion

 One acceleration computation per step

 Same computation cost as explicit Euler

 Discretization error of order 4

 More accurate than explicit Euler

 Larger time step and improved performance
compared to explicit Euler

University of Freiburg – Computer Science Department – 77

Verlet - Discussion

 Velocity representation not necessarily required

 But:

 Velocity typically used for collision handling and damping

 E.g.

University of Freiburg – Computer Science Department – 78

Leap-Frog

 Implementation, e.g.

Verlet

University of Freiburg – Computer Science Department – 79

Velocity Verlet

 Same accuracy for position and velocity

 One acceleration computation per step

University of Freiburg – Computer Science Department – 80

Beeman

 One acceleration computation per step

 Improved accuracy compared to Velocity Verlet

 Possibly larger time step

University of Freiburg – Computer Science Department – 81

Gear

 Taylor approximation

 Notation

University of Freiburg – Computer Science Department – 82

Gear







University of Freiburg – Computer Science Department – 83

Gear - Prediction

University of Freiburg – Computer Science Department – 84

Gear - Correction

 Error / inconsistency between the predicted acceleration
at time and the acceleration

at predicted positions and velocities :

 Correction:

with coefficients

University of Freiburg – Computer Science Department – 85

Gear - Implementation

 Initialization:

 Prediction:

 Error:

 Correction:

University of Freiburg – Computer Science Department – 86

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Second-order ODE

 Performance

 Discussion

University of Freiburg – Computer Science Department – 87

Comparison

 Deformable cube on a plane (4k particles,
17k tetrahedra, 22k edges), spring forces,
volume preservation, gravity, contact

Scheme Error order Time step
[ms]

Computation
time [ms]

Ratio

Explicit Euler 1 0.5 9.5 0.05

RK 2 2 3.8 18.9 0.20

Implicit Euler 1 49.0 172.0 0.28

RK 4 4 17.0 50.0 0.34

Verlet 3 11.5 9.5 1.21

University of Freiburg – Computer Science Department – 88

Time Step

 Larger time steps are generally
advantageous for the performance

 However, the time step size is limited:

 A particle should not move farther than its size in
one simulation step, e.g. its diameter :

University of Freiburg – Computer Science Department – 89

Time Step

 Critical states that can be avoided by a time step limit

 Inverted elements

 Unresolvable contacts

Rest state Inverted elements

State at t+h:
Contact

State at t:
No contact

University of Freiburg – Computer Science Department – 90

Outline

 Introduction

 Particle motion

 Finite differences

 System of first-order ODEs

 Second-order ODE

 Performance

 Discussion

University of Freiburg – Computer Science Department – 91

Explicit Schemes

 Error order determines accuracy

 Improved accuracy may correspond to an improved
stability for larger time steps

 Improved accuracy may correspond to higher costs

 Time steps are comparatively small

 Stability is generally an issue

University of Freiburg – Computer Science Department – 92

Implicit Schemes

 Generally stable and robust

 Handle larger time steps

 Less accurate (scheme, linearization, solver)

 Typically artificial damping / viscosity

 Decreasing accuracy for larger time steps

 Same as for explicit schemes, but explicit schemes get
unstable, while implicit schemes stay stable

