Simulation in Computer Graphics
Particle Fluids 1

Matthias Teschner

|
UNI
FRE:BURG

Particle Fluids in Animation

Cooperation with
Pixar Animation Studios

10 million fluid +

4 million rigid particles,

50 s simulated,

50 h computation time

on a 16-core PC,

! www.youtube.com/cgfreiburg

University of Freiburg - Computer Science Department - 2

Particle Fluids in Commercials

Copyright
NHB
Studios,
Berlin,
Hamburg,
—.=: Dusseldorf

University of Freiburg - Computer Science Department - 3

Particle Fluids in Engineering

University of Freiburg - Computer Science Department - 4

PreonlLab
FIFTY2 Technology

FORD F-150

Water wading

Validation of Particle Concepts

,r‘

ey N\p ey
%W?ﬁ W\
R\,
b4
WAl A
il

S
I'4l‘

Preonlab
FIFTY2 Technology

BURG

UN
FRE

University of Freiburg - Computer Science Department - 5

CFD in Engineering

University of Freiburg - Computer Science Department - 6

Johan ldoffsson
Chalmers University

Volvo Cars

PreonlLab
FIFTY2 Technology

Outline

— Concept of an SPH fluid simulator
— Momentum equation

— SPH basics

— Neighborhood search

— Boundary handling

— Incompressibility

University of Freiburg - Computer Science Department - 7

Concept

; 4
3
}% Lk
| e,
§11 o e 2
b3
=
7 s
......
v]

University of Freiburg - Computer Science Department - 8

UN

IRG

w/

-]
J

FREIBL

Fluid Representation

— Fluid body is subdivided into small moving
parcels, i.e. particles, with fluid properties

mﬁvﬂp7m7v

Fluid body Set of fluid
parcels

University of Freiburg - Computer Science Department - 9

FREIBURG

Particles / Fluid Parcels

— Represent small fluid portions
— Are represented by a sample position x; f’vi
— Move with their velocity v; i
— Have a fixed mass m;
— Volume and density are related by V; = =X
— Preservation of density / volume over time
s one of the challenges of a fluid simulator

— Shape is not consideread

miapiavi

University of Freiburg - Computer Science Department - 10

Typical Setup

— Define overall fluid volume
V' and fluid density po

— Define number n of o
particles V; = ¥
— Compute particle mass
as m; = po - Vi -t
— Particles of uniform size -
— Sample x; represents a : %
particle in the simulation

University of Freiburg - Computer Science Department — 11

Particle Shape

— Typically initialized as a cube
— Implicitly handled as Voronoi cell by the simulation

Preonlab, FIFTY2 Technology GmbH Adrian Secord: Weighted Voronoi
Stippling, NPAR 2002.

University of Freiburg - Computer Science Department — 12

Fluid Simulation

— Computation of positions and
velocities of fluid parcels over time

— Velocity change from current time ¢
to subsequent time t + At
v(t+ At) =v(t) + At - a(t) w(t)

— Position change
x(t+ At) = x(t) + At - v(t + At)

University of Freiburg - Computer Science Department — 13

v(t + At)

x(t + At)

a(t + At)

Example

(1) v(t+ At) = v(t) + At - a(t)
" w(t) _— x(t+ At) = x(t) + At - v(t + At)

Fluid Fluid Known Unknown
parcels current future
state state

EIBURG

|nj ||;
LY

UN

University of Freiburg - Computer Science Department - 14

Accelerations

— Gravity g
— Viscosity vV*v
— Resistance to deformation

— Accelerate parcel towards the average
velocity of adjacent fluid parcels

— Pressure acceleration —;Vp
— Prevent fluid parcels from density / volume changes

University of Freiburg - Computer Science Department - 15

Simulation Step - Example

— Gravity and viscosity would change the parcel volume

(1)
v(t)

0
0 l g o I/v2’U(t) =0
Gravity Viscosity

— Pressure acceleration avoids the volume/density change

]

Pressure
acceleration

1 = —
—5 VD =—g

University of Freiburg - Computer Science Department - 16

Simulation Step - Example

— CuUrrent state

x(t) =0
v(t) =0
— Overall acceleration a(t) =g +vVZu(t) — ;Vp
—g+0—-—g=20
v(t+ At) =v(t)+ At-a(t) =0
— Subsequent state 2(t + Af) = o(8) + At - v(t + Af) = 0

University of Freiburg - Computer Science Department - 17

Neighboring Parcels

— Computations require
neighboring parcels j

— Density or volume
pi = 23 m;Wi;

— Pressure acceleration
—inz- = — Zj mj (i—% + i—%) VWZJ

— Smoothed Particle Hyarodynamics SPH
— Gingold and Monaghan, Lucy

University of Freiburg - Computer Science Department - 18

Simulation Step - Implementation

— Determine adjacent particles / neighbors
x,;(t) of particle x;(t) (x;(t) is neighbor of x;(¢)!)

— Compute accelerations a;(t) = _; ...
as sums of neighbors .

— Advect the partiC|eS, ° o .
e.g. Euler-Cromer "
— Determine neighbors ! z; (1) !
of particle =;(t + At) O

University of Freiburg - Computer Science Department - 19

Governing Equations

— Particles /sample positions x; and the respective
attributes are advected with the local fluid velocity v;

dCCf,; .)
a — Yi

— Time rate of change of the velocity v; of an
advected sample is governed by the
Lagrange form of the Navier-Stokes eqguation

Fother

d'Ufi, _]_ 2)

University of Freiburg - Computer Science Department - 20

Accelerations

— ——-Vp; : acceleration due to pressure differences
— Preserves the fluid volume / density
— Acts in normal direction at the surface of the fluid element

— Small and preferably constant density deviations
are important for high-quality simulation

University of Freiburg - Computer Science Department — 21

Accelerations

vV2v; - acceleration due to friction forces
between particles with different velocities

— Friction forces act in tangential and normal
direction at fluid elements

— Kinematic viscosity » ~10~°m?-s~": [arger friction
s less realistic, but can improve the stability
— Dynamic viscosity n=pu=v - po

Fother

L e.g., gravity

m;

University of Freiburg - Computer Science Department — 22

Accelerations

Ip
0%
Ip 1
Ox —p
8£J
ox .,
Ov,
O o
_ vy
_V°V 83333
ov.,
0%
9% vy
8;é +
9% v
— v 8x5 +
9%v,
Bgé T

OV OV,
Bl ox .,
Ovy Ouy
Dl ox .,
v, ov,
iy ox
0% v, 0% v,
ox? + Ox?2 \
8zvy 82vy
Ox? + ox?2
0%v, + agsz/
Ox? Ox?2

University of Freiburg - Computer Science Department - 23

Lagrangian Fluid Simulation

— Fluid simulators compute the velocity field over time

— Lagrangian approaches compute the velocities for
samples a; that are advected with their velocity v;

7 7 P > — 7 o> X

VAV AP AR

/! 7 s o [7 VA

[7 7 # [/ ot
’U@'(.I‘Z',yf,;,zi,t) = (u,,;,vz-,wi) ’Ui(l‘@' + At - Uz, Yj + At - Yo Zs At - wz-,t + At)
x;(t) = (i, Yi, 2i) x;(t+ At) = (25 + At - ug, Y + At - vy, 2 + At - w;)

University of Freiburg - Computer Science Department - 24

Moving Parcels vs. Static Cells

@)
dv __ 2 1 ov __ 2 1 Dv __ 1
@ =9 +vViv— Vp ot =9 +vViv— 2 Vp bt =g tvViv—-Vp
Dv _ Ov :
Lagrangian: Acceleration Eulerian; Acceleration bt — ot +(v-V)v or
of a moving parcel. at a static cell. % — fi_"t-’ fl_ff — v

University of Freiburg - Computer Science Department - 25

E

FREIBURG

Smoothed Particle Hydrodynamics

— Proposed by Gingold / Monaghan and Lucy (1977)

— SPH interpolates quantities at arbitrary positions and
approximates spatial derivatives with a finite number
of samples, i.e. adjacent particles

University of Freiburg - Computer Science Department - 26

SPH for Fluids

— SPH in a Lagrangian fluid simulation
— Huid is represented with particles

— Particle positions and velocities are governed
o) d(ﬁ% =wv; and G d”" = —1 metuv%z Y

other
— pi, —iny;, VVQUi and Fi

m;

are computed with SPH

University of Freiburg - Computer Science Department - 27

SPH Interpolation

— Quantity A; at an arbitrary position =, is approximately
computed with a set of known quantities A; at
sample positions «;: 4; = 37, V;A;Wi; = 35, LA Wi
— &; IS not necessarily a sample position
— It x;is a sample position, it contributes to the sum
— Wy, is a kernel function that weights the contributions

of sample positions x; according to their distance to z;
- Wy =W IIw?;;ijI = W(q)

— h is typically the particle size

— Wi(q) >0 for,eg 0<qg<2

University of Freiburg - Computer Science Department - 28

Kernel Function

— Close to a Gaussian, but with compact support
— Support typically between 2h and 5k

— E.g. cubic spline (1D: a=¢; 2D: o= 172z 3D: o= =3)

" {(261)34(161)3 0<g<1 N
Wi(q) = « ——

(2-¢q)° 1<qg<? q= "
0 q > 2

— Number of considered neighbors depends on
— Dimensionality, kernel support, particle spacing
— E.g.,, 3D, cubic spline, support 2k, particle spacing h
results in 30-40 neighboring particles
— Number of neighbors influences performance / accuracy

University of Freiburg - Computer Science Department - 29

Kernel and Kernel Derivative in 1D

W .

VW .l

(2 - —::xjng::)3 —4(1— Hfﬂj;ﬂ?z‘H)3
o leizailye

—3(2 — lzazzlly2 4 q9(1 —

VW (z;—z;) = #ﬁ%” —3(2 - ||$j;95i\|)2
0

: _ .ZCj 1
University of Freiburg - Computer Science Department - 30

1< ||$j;$i|| <9

[l — ||
JT > 2

H»’Gj;fill)z 0< H%;xill <1

1 S H%;%H < 2
|z —=:]|
JT > 2

SPH for Fluids

— SPH in a Lagrangian fluid simulation
— Huid is represented with particles

— Particle positions and velocities are governed
o) d(ﬁ% =wv; and G d”" = —1 metuv%z Y

other
— pi, —iny;, VVQUi and Fi

m;

are computed with SPH

University of Freiburg - Computer Science Department — 31

Spatial Derivatives with SPH

— Original approximations
V2A; =Y, L AVAW,
— Currently preferred approximations
VA — 0; Z (4) VWJ preserves linear and angular momentum,
(A 1 J 2 1

when used for pressure forces

A, . : .
VQA — 9 Z 17 Lij VWW more robust as. It a.v0|ds

J p; x;;-xi;+0.01h2 the second derivative of W

V- A, = _E Zj m;A;; VWi, gives zero for constant A

Aij:Ai_Aj Aij:Ai_Aj Lij = Lj — Ly

University of Freiburg - Computer Science Department — 32

Density

— Explicit form
- pi=2; %ijz‘j = ;m;W,
— Comparatively exact
— Erroneous for incomplete neighborhood
— Differential update
— Using the continuity equation
— Time rate of change of the density is related
to the divergence of the velocity field < =-»V v
dp = 2. m;vi; VWi
— Dr|ft

University of Freiburg - Computer Science Department — 33

Pressure

— Quantifies fluid compression |
_ _ Pressure values in SPH
— Eg, Sstate equann p; = max (k(& — 1), O) implementations should

, , A0 always be non-negative.
— Rest density of the fluid po
— User-defined stiffness &

— Pressure acceleration
— CL,LP:—L.Vpi:—Ej"ITLj (p_% i—é) VWZJ

P
— Accelerates particles from high to low pressure,
.e. from high to low compression to minimize

i Atinn 2
density deviation 7= — 1

University of Freiburg - Computer Science Department - 34

Simple SPH Fluid Solver

— Find neighbors of all particles
— Compute density
— Compute pressure

— Compute non-pressure accelerations,
e.g. VISCOsSIty, gravity

— Compute pressure acceleration
— Update velocity and position

University of Freiburg - Computer Science Department - 35

Contact handling, i.e.
boundary handling is
often realized as
pressure acceleration.

Simple SPH Fluid Solver

for all particle © do
find neighbors 7

for all particle : do

0; = Zj m; Wi Compute density
pi = k(£: —1) Compute pressure
for all particle : do
a?onp = V3w, + g Compute non-pressure accelerations
af - —inq: Compute pressure acceleration

a;(t)=a;°"" +al
for all particle © do

University of Freiburg - Computer Science Department - 36

SPH Discretizations

— Density computation pi = 2y m;Wi;
— Pressure acceleration —5-Vp; = =32, m; (fj— + ﬁ—) VWi
— Viscosity acceleration vV2v; =20y M YuBi__ Yy,

j Pj Lij -Lij —|—001h2

University of Freiburg - Computer Science Department - 37

Boundary Handling

— Boundaries can be represented with static fluid samples

— Computations incorporate boundary samples, e.g.
pi =D msWip+ >, mpWip

Fluid samples ~ Boundary samples

=y (5 +) VW~ S (3) T

02
Fluid samples Boundary samples

— Fluid sample at boundary
— Density and pressure increases
— Pressure acceleration resolves contact

University of Freiburg - Computer Science Department - 38

Boundary Handling

Kernel

support pi < Po Pi > Po
Fluid C— :
particle ‘ pi =0 pi >0
000 . _ o
P _ p
Solid 'IQ =0 'IQ 7é‘D
particles

— Boundary handling: How to compute p:, ps, py, Fy 7

University of Freiburg - Computer Science Department - 39

FREIBURG

Setting

— Kernel has to be defined, e.g. cubic with support of 2h
— Particle mass m; has to be specified
— E.g., m; = h3py fOr a particle spacing of A
— Spacing governs particle mass
— Ratio of support vs. spacing governs the number of neighbors

— Numerical integration scheme

— Semi-implicit Euler (symplectic Euler or
Euler-Cromer) is commonly used

University of Freiburg - Computer Science Department - 40

Setting

— TIme step

— Size is governed by the
Courant-Friedrich-Levy (CFL) condition

- E.g., At < Ay With A= 0.1 and particle spacing

— Motivation: For X <1, a particle moves
ess than its size / diameter per time step

University of Freiburg - Computer Science Department — 41

Outline

— Concept of an SPH fluid simulator
— Momentum equation

— SPH basics

— Neighborhood search

— Boundary handling

— Incompressibility

University of Freiburg - Computer Science Department — 42

Force Types

— Momentum equation |
T Gravity
_ F_other 7
dd";% — —inz' SR l/v2’vi + zmi ‘
— Body forces
- Surface forces Ve e f volme
— Normal stress related to
volume deviation .
— Normal and shear stress V. Shear | Velocity
related to friction due to ‘ | stress | difference

velocity differences

University of Freiburg - Computer Science Department - 43

Pressure Force in x-direction

— Pressure force

acts orthogonal
to the surface of .
the fluid element p dy 0z

— Resulting pressure e

idz

force
p—(p+Rdz)) dydz=-L dedyde=-2V
((Ox)) O O

University of Freiburg - Computer Science Department - 44

-(p +0op/oxdx)dydz

Overall Pressure Force

— Pressure force at particle i

(50

FP=—| 325 | Vi=-Vni Vi=—-22Vp,

(ox;, Pi
\ 22
8$i,z

— Pressure acceleration

p
p_Fz'
ai—mi

— —iVPq;

University of Freiburg - Computer Science Department - 45

Cauchy Momentum Equation

Ipother

— Lagrange form §¢ = oV -0 +

— o is the stress tensor (a 3x3 matrix in 3D) describing
the pressure distribution at the surtace of a fluid
element o = —pIs + 71

— V.o isthe resulting force per volume

— T is the viscous stress tensor

— V-7 =vV?v isthe resulting
Viscosity force per volume

_ Ippther
= dd? — —éVP@' e I/V2’U7; -

m;

ou du ov ou
o T oz oz T oy
T =V

University of Freiburg - Computer Science Department - 46

dw | Ou
b
w v
oy T a2
ow ow

oz T 8,

Simulation in Computer Graphics
Particle Fluids 2

Matthias Teschner

|
UNI
FRE:BURG

Outline

— Concept of an SPH fluid simulator
— Momentum equation

— SPH basics

— Neighborhood search

— Boundary handling

— Incompressibility

University of Freiburg - Computer Science Department - 48

Simple SPH Fluid Solver

for all particle © do
find neighbors 7

for all particle : do

0; = Zj m; Wi Compute density
pi = k(£: —1) Compute pressure
for all particle : do
a?onp = V3w, + g Compute non-pressure accelerations
af - —inq: Compute pressure acceleration

a;(t)=a;°"" +al
for all particle © do

University of Freiburg - Computer Science Department - 49

SPH Discretizations

— Density computation pi = 2y m;Wi;
— Pressure acceleration —-Vp; = =32, m; (fj— + ﬁ—) VIVi;

mj ’U@j-mij

— Viscosity acceleration vViv =203, L — e VIV,

University of Freiburg - Computer Science Department - 50

SPH Concept

— Reconstruction of a function and its derivatives,
e.g. p,Vp, Vv , from discrete samples

— Convolution of discrete samples with a filter / kernel

pAD; - - -

d

]

//

Reconstructed
function

Function samples
(particle data)

T

Convolution
kernel (reversed
SPH kernel)

Convolution kernel for
the first derivative (reversed
derivative of the SPH kernel)

University of Freiburg - Computer Science Department — 51

SPH Concept

— Quantity A at position x can be written as
A(x) = (Ax0)(x) = |, A(x')o(x — x')dx’
— Dirac delta §(x) = §(x)d(y)d(2) and §(x) = { 80 i ; 8
— fj;o O(x)dx =1
— Dirac delta is approximated with a kernel
function with limited local support, e.g. 2h Particesize 1

Alx) = (A« W)(x) = |, A(x)W (x — a’',2h)da’ Reversed kernel

University of Freiburg - Computer Science Department — 52

First Derivative

— VA(x) =V(AxW)(x) = (VAxW)(x) = (A« VIWV)(x)
— Follows from

~ F(V(AxW)(@) = i2ns(a(s) -w(s)) - Foue vanstorn see
=]—"((VA «W)(x)) = i27s - a(s) - w(s) = |
— F((AxVW)(x)) = a(s) - 127s - w(s)

— VA(x) =V(AxW)(x) = (Ax VIW)(x)

Reversed
kernel
derivative

University of Freiburg - Computer Science Department - 53

Second Derivative

— VZA(z) = V2(AxW)(x) = (VZAxW)(x) = (VAxVIW)(x) = (AxV*W)(x)
— Follows from

Reversed
second kernel
derivative

University of Freiburg - Computer Science Department - 54

Kernel Function - Properties

— Integral should be
normalized (unity condition) [, W (x' — x,2h)dz’ =1

— Support should be compact W(z’' — «,2h) =0 for ||z’ — x| > 2h

— Should be symmetric W(x' —x,2h) = W(zx — x',2h)
— Should be non-negative W(x' —x,2h) >0
. S"]OU d COﬂverge tO This is the actual parameterization of W.

X" and x are reversed in SPH convolutions.

the Dirac delta for h = 0
— Should be differentiable: VW, V2W should exist

University of Freiburg - Computer Science Department - 55

Particle Approximation

— A(z) = |, A(x")W(x — ', 2h)dz'= [, ‘E((TCB,’))W(a: —x',2h)p(x’)dx’

— Consider a limited number of samples / particles z;
representing a mass m(z;) = p(z;)V(z;)
A(xi) =), Az)W (x; — xj,2h)V (x;)
Alz) = 3, T2 A(a;)W (i — x5, 2h)
— Typical notation
Ai =3, ZLAW;,

University of Freiburg - Computer Science Department - 56

Particle Approximation of Derivatives

— First derivative
VA(x;) = > m(mj)A(mj)VW(azi —x;,2h)

J p(x;)

VA; =3 A YWy

— Second derivative
V2A(x;) = S, ZED A(x VW (x; — x;, 2h)

J p(x;)

V2Az‘ = Zj %AJV2WZJ

University of Freiburg - Computer Science Department - 57

Kernel Function - Example

— Cubic spline
[(2—¢)®—-4(1—-¢)® 0<g<1
W(g) =a{ (2—q)° 1<q<? g = lzi==il
0 q> 2

with & = g; (1D), @ = 525z (2D), @ = = (3D)
— Close to a Gaussian
— Compact support between 2k and 5h

— Number of considered samples depends on
— Dimensionality, kernel support, particle spacing
— Number of neighbors should not be too small

University of Freiburg - Computer Science Department - 58

Kernel Function - lllustration

_ ===l)3
h

_ ||ﬂ3j—€'3z'||)3 —4(1 — |z —4|| 0 < ||€Bj;33i|| <1

1< lzed o

) —l

—x;) depends on the distance between samples

University of Freiburg - Computer Science Department - 59

Kernel Function - Implementation

— Reversed kernel function as used
iN SPH sums for the convolution

(2 — llmi;wjll)3 —4(1 - ||€B¢;€Bj||)3 0< ||€Bz;93j|| <1
W(wz — ;]gj) — o (2 _ ||‘B%;m3”)3 1 < ||:1:3;:B3|| < 9
0 ||:1:3;a:3|| > 9

— Implementation

d := distance(xi, x73)/h;

tl := max(1-d,0);

t2 := max(2-d,0);

w := alpha *(t2*«t2xt2 — 4xtlxtlxtl);

University of Freiburg - Computer Science Department - 60

First Kernel Derivative

N
— VW(z; —x;) = (oW oW oW) 8W(q) Vg

R K .
Oxj o’ Oxj 4’ 0% »

— Cubic spline
q = Hwﬂh""’*” Vq = “C:Z”__;Z“h Derivative of g with respect to x;
, (32— q)*+12(1—¢q)? 0<qg<1
—‘g{gq):aJ —3(2 — q)? 1<g<?2
L 0 q> 2
(32— q)?*+121—¢q)? 0<qg<1
VW (x; —x;) = a”ma?_maz%“h ¢ —3(2—q)? 1 <qg<?2
0 q> 2

\

University of Freiburg - Computer Science Department - 61

Kernel Derivative - [llustration

VW .|

University of Freiburg - Computer Science Department - 62

Convolution with First Kernel Derivative

Kernel derivative SPH computes a convolution Reversed kernel derivative

‘ of A and VW to approxi- \
VIV mate V A. Therefore, the re- ATV

versed kernel derivative V A;
VW (x; — x;) is used:
> Al) VW (; — aj) &)

p(x;)

SPH notation:

Convolution:

VW (o —a:) = e (f*9)(t) = JZ, F(7)g(t — 7)dr

VW is anti-symmetric. -
University of Freiburg - Computer Science Department - 63

Kernel Derivative - Implementation

— Reversed kernel derivative as used in SPH sums for
the convolution

4

—3(2 — ::‘B%;w:f::)Z +12(1 — ||icz;wj||)2 0< ::%;wa:: <1
Li—&Lj T;,—x; T, —;
VW(mi—acj) = a”mi_mj”h { _3(2 — TJ)Q 1< TJ < 2
0 ||wz;wj|| > 9

— Implementation

d := distance(xi,xj)/h;

tl := max(1l-d,0);

t2 := max(2-d,0);

wl := alpha * (xi-x7)/(dxh) * (=3*t2xt2 + 12xtl*tl);

University of Freiburg - Computer Science Department - 64

Second Kernel Derivative

— VW, =V - (VW) = "W gigv 4 ow?
7Y

aaz‘?,w aa::?jz
°W OW
= 2090 (Vq)?2 + (V- (Vg))
— Cubic spline
_ =il 2 __ _ZTji VR |- 771 |
=% (Va)* = lzjillh ~ Tazillh — Te;:[2h2 — A2
V- (Vq) = ” “ d is the dimensionality

2—q)? 1<g<?2 6(2—q) 1<g<?2

2 2
24121 —¢q2 0<g<1 6(2—q)—24(1—¢q) 0<g<1
g [320 120-0 i [270200
0 g>2 “ 0 q>2

— Symmetric V2W,; = V2W,; Used in SPH convolutions

University of Freiburg - Computer Science Department - 65

Design of a Kernel Function - 1D

— Definition of a shape, followed by normalization

_) . (2-9)0°—-41-¢q)° 0<g<1
oW (=2l) — oW (2) = aW(q) = W(g) =a{ (2—¢)? 1<q<2
0 q=>2
2 f 1 r)dx = 2 fO QW (q)hdg =1 Integration by substitution
o= 1

2f02 W(q Yhdg
— 1D: integration over a line segment 2 [W (q)hdg =
2 [1[(2—q)® —4(1 — ¢)*| hdg + 2 [} 2—q)3hdq:2%h—|—2zh

_ 1
& = Bh

University of Freiburg - Computer Science Department - 66

Design of a Kernel Function - 2D, 3D

— 2D: Integration over the area of a circle

I [2RW (2)e dadg = [0 [W (q)hgh dgdg =
2m fol q(2 — q)° — 49(1 — ¢)®| h*dg+2m fl (2—q)°h?*dq = 2w 15 h* + 2w S h?

5

Q= Tirh2

— 3D: Integration over the volume of a Sphere
fo% f_%ﬂ fo% W (z)az2sinf dzdfde = fo f fo q)(qh)?hsing dgdfd¢ =

A fo [(2 —q)° —4q(1 —q)] h3dq+4m fl (2—q)3h3dq = 4m 35 o h3—|—47r%h3

1
4 h3

O =

University of Freiburg - Computer Science Department - 67

Derivatives - Original SPH Forms

— Original forms

J pj
V2Ai — Zj %AJV2WZJ
— However, resulting forces do not preserve momentum
and are not necessarily zero for constant values 4; = 4,

in case of erroneous sampling

University of Freiburg - Computer Science Department - 68

First Derivative - Anti-symmetric Form

— Momentum-preserving form —--Vp; = — 3=, m; (fj— + fj—) VWi
(A - pVA-AYY _ VA, _ AV 7'
pi p? pi P
A= (7 (3) + 452)

— SPH approximation
VA; = pi (5, I AVWy; + A Y, 4 TW;,)

J pj Pj
_ A Aj
= p; Zj m; (g Sh P_jg) VWf,;j

— Applied to pressure gradient, linear and angular
momentum is preserved for arbitrary samplings

FP = —mimj (i—% + ﬁ—%) VWZJ = mjmi (};—% F ﬁ—%) VWJ@ = —FP VWZ] = —VW]"

¢ J

University of Freiburg - Computer Science Department - 69

First Derivative - Symmetric Form

— Term that vanishes for constant function values
V (pid;) = in (A;) + AV (pi)

VA = - (V(pidi) — AiVp:)

— SPH appro><|mat|on
VA; = - (Zj i AV Wi — Ay 3o 2 ngsz)
— 1 Z m; (A — A;)VWZJ — % Zj mjAjf,;VVV?;j
— Apphed to velocity divergence, zero divergence
for a constant velocity field is obtained for arbitrary

samplings

University of Freiburg - Computer Science Department - 70

Second Derivative with First Kernel Derivative

— Second derivative is error prone
and sensitive to particle disorder

— Too few samples to appropriately
approximate the second kernel derivative

— Therefore, the Laplacian is typically approximated with
a finite ditference approximation of the first derivative

2 A. m; Aij i . . . o
V AZ = de p; Ty @q;10.01R2 VWZJ d is the dimensionality

AijZAi—Aj wijzwi—mj

University of Freiburg - Computer Science Department — 71

Derivatives - Summary

— Original approximations
VA; =32 A VW V2A; =35 TLANVEW,

J

— Currently preferred approximations
— Robustness in case of particle disorder, i.e. >; VWi; #0

— . .| Pi Pj . Preserves linear and
Vi = pi)_;m; (: pg) VWi

P angular momentum

m Vij Lij - At
vV2v, =d Zj p; azij-azi;JrO.JOlh? VWi Avoids the second kernel derivative

V. -v; = —% Zj m;v;; VW5, Zero for uniform velocity field
fvij:'vi—’vj azz-j:azz-—a:j

University of Freiburg - Computer Science Department — 72

Some Kernel Properties

— In case of ideal sampling

— Pi = 23 m;Wi; = m,; Zj Wij mi = my
—’mzZ W’LJ_Pz:m; = Z'Wijzv%zﬁ,:
— VW, = —VW;; VWi =are... (VW = 0)

- >, VW;; =0

— i@ —x;)) @ VIV;; = —% T

— Can be used for test purposes

University of Freiburg - Computer Science Department — 73

Kernel lllustration - 1D

((2-¢)°-4(1—¢q)° 0<qg<1 —
W) =g, q 2—0q)° 1<q<2 4= "7
0 q> 2

University of Freiburg - Computer Science Department - 74

Kernel lllustration - 2D

[(2-¢)°—-4(1-¢)° 0<g<1
W(q) = 147rh2< (2 —¢q)° 1 <qg<?2
0 q> 2

W(0) = 10252 ((2—0)° —4(1 - 0)%) = 125
W(l) = 147Th2(- 1)3 — 147—?h2
W(V2) = 1475rh2 (2-v2)3 = 1142%52

> Wii = W(0) +4W (1) + AW (V2) ~ 1001

g = Il
o o ®
p A=
® —— O o
fy
o o ®

University of Freiburg - Computer Science Department - 75

Kernel lllustration - Density Computation

— Is not a reconstruction of the function p,
but detects erroneous sampling

A . . mi . A . m,l" L
pi = 2;miWij = 5 = po pi =2, miWij > 52 = po

p p
|44 Ah W hlt<h

= v
/1\ JAAN

A 1 NI, »

£L; L
Correct sampling Dense irregular sampling

> X

University of Freiburg - Computer Science Department - 76

Kernel Derivative lllustration - 1D

VWij = VW (0i—5;) = g ey ¢ —3(2 — Lzineily? = lzezill 9
o loszeil’s 5
ptis W — 2i) = 0
D P0+3h/ VW(QU@ — (ZEZ — Qh)) — VW(Q;‘@ — (CE@ + 2h) =0
VWi po+2h/ M VW (w; — (w; — h)) = VW (2; — (z; + h)) = & - + - (=3)
po+h / — Zj ijW(ZCi — $j)h = th (po + h) %(po + 3h)
/ f\ — (p°+3h)2;(p°+h’) =1 central difference

.TJ,,;-Fh 1'@—*-25 X

\J

University of Freiburg - Computer Science Department - 77

Kernel Derivative lllustration - 2D Test

(

—3(2 — ||ﬂ3z;mj||)2 n 12(1 - ||$i;fcj||)2 0< |lzi—a; <1
VW () = ap2iZi {32 — Loy 1< lecel o9 o= i
’ X CREANS:
o o ®
VIV ((0,0) — (h,0)) = —=VW((0,0) — (=h,0)) = o220 (_3) = (32 () (=h,h) (0, R) : (h, h)
VIV((0,0) = (0, 1)) = —VW((0,0) — (0, ~h)) = QOO 3y _ (¢ 3a) = [.
(_ha 0) (Oa 0) (h: 0)
VW ((0,0)—(h, h)) = =VW((0,0)—(—h,—h)) = a(o’%\}’g’mﬁ = (1508, —1=ap)

VW ((0,0)—(h, —h)) = =VW((0,0)—(=h, h)) = oA CM g — (—-Loag Loag) % 1 o%n ' n

B=(-3)(2-v2)

University of Freiburg - Computer Science Department - 78

Kernel Derivative lllustration - 2D Test

VI ((0,0) — (0,0)) = (0,0) O = Tgmpz

VW ((0,0) — (h,0)) = —VW((0,0) — (—h,0)) = o 2= 3y — (3a g B=(-3)(2-v2)’
VIV ((0,0) — (0,h)) = =VIW((0,0) — (0, —h)) = o 25 (=3) = (0, 32)

VW ((0,0)—(h, h)) = =YW ((0,0)—(=h, —h)) = & ‘;ng 6 = (508, — 0h)

VW ((0,0)—(h, —h)) = =VW((0,0)(=h, b)) = aCE52= 6 = (— 51508, 11506)

(a:z—:cj)m(VWw)y = (wz—wj)y(VWm)x = 0+0+0+0+0+%0€ﬁ+%0@6—%O&B—%O&ﬁ =0
(GCZ—QCJ):E(VW@J);U = (wz—acj)y(VWw)y = 0—30({—30{—|-O+0+%O{/B‘F%O&B‘F%O@B‘Fﬁafﬁ = —6():%-4%035

= —0.682-5 — 0.331 5 = — 152

= EJ(ZB%—ZBJ)@)VW@J:—AL%I

University of Freiburg - Computer Science Department - 79

Kernel Derivative Illustration - 3D Sampling

— Kernel derivative detects irregular samplings
(vector from low to high sample concentration)

4

—3(2 — ::a’%;w:f::)Z +12(1 — ||i'3z;wj||)2 0< ::wz;%:: <1 1
e @ T, —x; T, — X .
VW(zi—z;) = a5 | —32 - —=52)° 1< =570 <2 o= g3
0 ||wz;wj|| > 9

VW ((0,0,0) — (h,0,0)) = —3a2%0=+00) _ 3a(y ¢ ()

h

o—> —0

0,0,0 h,0,0
VW ((h,0,0) — (0,0,0)) = -3« (hOO)hQ(OOO) 3a.(1,0,0) (0,0,0) (h,0,0)

{BZI_ZJVWZJ
0 0
0000

University of Freiburg - Computer Science Department - 80

Simulation in Computer Graphics
Particle Fluids 3

Matthias Teschner

|
UNI
FRE:BURG

Outline

— Concept of an SPH fluid simulator
— Momentum equation

— SPH basics

— Neighborhood search

— Boundary handling

— Incompressibility

University of Freiburg - Computer Science Department - 82

Simple SPH Fluid Solver

for all particle © do
find neighbors 7

for all particle : do

0; = Zj m; Wi Compute density
pi = k(£: —1) Compute pressure
for all particle : do
a?onp = V3w, + g Compute non-pressure accelerations
af - —inq: Compute pressure acceleration

a;(t)=a;°"" +al
for all particle © do

University of Freiburg - Computer Science Department - 83

SPH Simulation Step With a State Equation (SESPH)

— For each particle do
— Compute density
— Compute pressure

— For each particle do
— Compute accelerations
— Update velocities and positions

— Density and acceleration computations
process all neighbors of a particle

University of Freiburg - Computer Science Department - 84

Neighbor Search

— For the computation of SPH sums in 3D, each particle
needs to know at least 30-40 neighbors in each step

— Example setting
— 30 million fluid particles
— Up to 1 billion neighbors
— 10000 simulation steps
— Up to 10'3 neighbors processed per simulation

— Efficient construction and processing of
dynamically changing neighbor sets is essential

University of Freiburg - Computer Science Department - 85

Performance - [lhmsen et al. 2011]

Up to 30 million fluid particles,
11 s computation time for
neighbor search on a 16-core PC

University of Freiburg - Computer Science Department - 86

FREIBURG

Performance - [Band et al. 2019]

Neighbor | Simulation

Million
samples search step
[S] [S]
0.2 0.005 0.04 0.1 12
200 5 15 28 12
1300 33 355 172 24
7400 67 530 873 112

University of Freiburg - Computer Science Department — 87

FREIBURG

Characteristics

— SPH computes sums
— Dynamically changing sets of neighboring particles
— Temporal coherence

— Spatial data structures accelerate the neighbor search
— Fast query

— Fast generation (at least once for each simulation step)
— Sparsely, non-uniformly filled simulation domain

University of Freiburg - Computer Science Department - 88

Characteristics

— Space subdivision

— Each particle is placed in a
convex space cell, e.g. a cube

— Similarities to collision detection
and intersection tests in raytracing

— However, cells adjacent to the cell
of a particle have to be accessed

University of Freiburg - Computer Science Department - 89

Characteristics

— Hierarchical data structures are less efficient
— Construction in O (n log n), access in O (log n)

— Uniform grid is

generally preferred el 9
— Construction in O (n), ® o L, ¢ ©
accessin O (1) o
o o ® o
O : o] o ©

University of Freiburg - Computer Science Department - 90

Characteristics

— Neighbor storage is generally expensive

— Might be avoided for, e.g., a low number of neighbor
gueries per step or in case of very efficient computation

— Data structures have to process
— Fluid particles of multiple phases, e.g. air
— Rigid particles (static or moving)
— Deformable particles

University of Freiburg - Computer Science Department — 91

Outline

— Concept of an SPH fluid simulator
— Momentum equation

— SPH basics

— Neighborhood search
— Uniform grid
— Index sort
— Spatial hashing
— Discussion

University of Freiburg - Computer Science Department — 92

Concept

— Particle is stored in a cell
— In d-D, potential neighbors

in 39 cells are queried to ® o| o & ©® | cdgelengh
estimate actual neighbors o o o 4 o oot
— Cell size equals the kernel o N
support of a particle el % Eifgiﬁéﬁ'rs
— Smaller cells increase the ® o] o P
numbper of tested cells © o © 4 o

— Larger cells increase the
number of tested particles

University of Freiburg - Computer Science Department — 93

Concept - Variant

— Verlet lists

— Neighbor candidates are computed within a distance larger
than the kernel support every n step

— Actual neighbors are computed from o ® o o

neighbor candidates in each step .t ot e o
— Neighbor candidates o TN, .

are valid for n steps ® o .Eﬁéﬁi"t y .
— Motivated by temporal coherence: o J O esce %o

Particle does not move farther ® o ©® 4 o

than its size in one step.

University of Freiburg - Computer Science Department - 94

Concept - Variant

— Verlet lists
— Proposedin 1967/
— Still popular in Lagrangian simulations

— Acceleration data structure
— Is only updated every n step

— |s memory-intensive, requires storage
of a comparatively large number of
neighbor candidates

University of Freiburg - Computer Science Department - 95

Outline

— Concept of an SPH fluid simulator
— Momentum equation

— SPH basics

— Neighborhood search
— Uniform grid
— Index sort
— Spatial hashing
— Discussion

University of Freiburg - Computer Science Department - 96

Construction

— Compute cell index e=k+1-K+m-K - L for all particles

Wlth, e.g. (/{, l, m) — Lx_g:]?ina y_gi?mv Z_QZ;:LM

— Kand L denote the number of cells in x and y direction
— Particles are sorted with respect to their cell index

— Each grid cell (k, 1, m)

with index c stores c [ol1l2]3]4]5]6]7

a reference to the / | \\\

first particle in the L [1]1]2]2]a]a4]5

sorted list Sorted with respect

to cell index

University of Freiburg - Computer Science Department - 97

Cell indices of
a linearized
uniform grid

Cell indices
of particles

Construction

e O 1 Associate particle i with cell j: L [-- C []].counter].particle =i
o2 o B index 3 4 6 7 8 partlcle
® 4
— index 3 3 6 7 8 part|c|e
Compute cell indices for particles 0123456 7
and increment counter in C ndex 33 ¢ 7 g partlcle
C O 1 2 3 4
counter 31 2 2
C 0O 1 2 3 4 L 01234567
Accumulate counters in C index 0 3 4 6 8 partidle 65317240

C O 1 2 3 4

accum 3 4 6 8 8

FREIBURG

University of Freiburg - Computer Science Department - 98

Construction

index 0 3 4 6 8 particce 6 53 1 7 2 4 0

— Particles are sorted with respect to grid cell
— Index points to first particle in a cell

— Difference of two subsequent indices
indicates the particle number of a grid cell

University of Freiburg - Computer Science Department - 99

Construction

— Two iterations over particles

One iteration over grid cells

Entire simulation domain has to be represented
Parallelizable

Memory allocations are avoided

Constant memory consumption

University of Freiburg - Computer Science Department — 100

Query

— For a particle

— Indices to grid cell and to adjacent cells are computed
(Once for all particles in the same grid cell)

— All particles in grid cell and adjacent cells are tested
— Parallelizable

— Improved cache-hit rate

— Particles in the same cell are close in memory

— Particles of neighboring cells are not necessarily
close in memory

University of Freiburg - Computer Science Department — 1071

Space-filling Curves

:

— Alternative computation
for grid cell indices

— E.g., particles are sorted with
respect to a z-curve index
— Improved cache-hit rate

— Particles in adjacent cells
are close in memory

— Efficient computation of z-curve
Z-curve indices

gzz//vz

1t

-
Lts

i

£

jé/éz 3

!

UL

o
o

University of Freiburg - Computer Science Department - 102

Sorting

— Particle attributes and z-curve indices
can be processed separately

— Handles (particle identifier, z-curve index)
are sorted in each time step
— Reduced memory transter

— Spatial locality is only marginally
influenced due to temporal coherence

— Attribute sets are sorted every nt step
— Restores spatial locality

University of Freiburg - Computer Science Department - 103

Sorting

— Radix sort or insertion sort can be employed
— O (n) for almost sorted arrays

— Due to temporal coherence, a small percentage of all
particles change their cell, i.e. z-curve index, in each step

University of Freiburg - Computer Science Department - 104

Z-Index Sort - Reordering

Particle color indicates Spatial compactness
memory location using a z-curve

University of Freiburg - Computer Science Department — 105

Outline

— Concept of an SPH fluid simulator
— Momentum equation

— SPH basics

— Neighborhood search
— Uniform grid
— Index sort
— Spatial hashing
— Discussion

University of Freiburg - Computer Science Department — 106

Spatial Hashing

— Hash function maps a grid cell to a hash cell
— 3D domain is mapped to a finite 1D list
— Infinite domains can be handled

— Implementation
— Compute a cell index ¢ or a cell identifier (k,1,m)for a particle
— Compute a hash function i = h(c) Or i = h(k,l,m)
— Store the particle in a 1D array (hash table) at index i

University of Freiburg - Computer Science Department — 107

Spatial Hashing

1 ¢ = h(c) Hash function
o 3 = h(0)
1 = h(1)
4= h(2)
7= h(3)
o 2 o’ 3
¢ o 0 123 4
B particle 1 3 7 0
. 5 2 4
o © .
3D Grid 1D Hash map

FREIBURG

University of Freiburg - Computer Science Department — 108

Spatial Hashing

— Large hash tables reduce number of hash collisions

— Different spatial cells with the same hash value cause
hash collisions which slow down the query

— Reduced memory allocations
— Memory for m entries is allocated for each hash cell

— Reduced cache-hit rate
— Hash table is sparsely filled
— Alternating filled and empty entries

University of Freiburg - Computer Science Department — 109

Compact Hashing

— Hash cells store handles to a compact list of used cells

— Elements in the used-cell list are
generated, if a particle is placed
in a new cell 2

— Elements are deleteq, | 1 5] 4l

if a cell gets empty

— k entries are pre-allocated for each
element in the list of used cells

— List of used cells is queried | |k | k| «

in the neighbor search

University of Freiburg - Computer Science Department - 110

Compact Hashing - Construction

— Larger hash table compared to spatial
hashing to reduce hash collisions

— Temporal coherence can be employed
— List of used cells is not rebuilt, but updated
— Particles with changed cell index are estimated

— Particle is removed from the old cell and
added to the new cell

University of Freiburg - Computer Science Department — 111

Compact Hashing - Query

— Processing of used cells

— Bad spatial locality

— Used cells close in memory are not close in space
— Hash-collision flag

— If there is no hash collision in a cell, hash indices of
adjacent cells have to be computed only once for all
particles in this cell

University of Freiburg - Computer Science Department - 112

Compact Hashing - Query

— Particles are sorted with respect
to a z-curve every nt step

— After sorting, the list of used cells is rebuilt

— If particles are serially inserted into the list of
used cells, the list is consistent with the z-curve

— Improved cache hit rate during
the traversal of the list of used cells

University of Freiburg - Computer Science Department - 113

Outline

— Concept of an SPH fluid simulator
— Momentum equation

— SPH basics

— Neighborhood search
— Uniform grid
— Index sort
— Spatial hashing
— Discussion

University of Freiburg - Computer Science Department - 114

Comparison

Basic grid 26 38 64
Index sort 36 29 65
Z-index sort 16 27 43
Spatial hashing 42 86 128
Compact hashing 8 32 40

— Measurements in ms for 130 k particles

— Ongoing research
— Focus on sorting, parallelization and vectorization
— Octrees, k-D trees, BVHs can also be realized with sorting

University of Freiburg - Computer Science Department — 115

Summary

— Index sort

— Fast construction based on sorting

— Fast query

— Particles are processed in the order of cell indices
— /Z-index sort

— Sorting with respect to a space filling
curve improves cache-hit rate

University of Freiburg - Computer Science Department - 116

Summary

— Spatial hashing

— Less efficient query due to hash collisions and due
to the traversal of the sparsely filled hash table

— Compact hashing
— Fast construction (or update due to temporal coherence)

— Fast query due to the compact list of used cells,
due to the hash-collision flag and due to the z-curve

University of Freiburg - Computer Science Department — 117

Simulation in Computer Graphics
Particle Fluids 4

Matthias Teschner

|
UNI
FRE:BURG

Outline

— Concept of an SPH fluid simulator
— Momentum equation

— SPH basics

— Neighborhood search

— Boundary handling

— Incompressibility

University of Freiburg - Computer Science Department - 119

Simple SPH Fluid Solver

for all particle © do
find neighbors 7

for all particle : do

0; = Zj m; Wi Compute density
pi = k(£: —1) Compute pressure
for all particle : do
a?onp = V3w, + g Compute non-pressure accelerations
af - —inq: Compute pressure acceleration

a;(t)=a;°"" +al
for all particle © do

University of Freiburg - Computer Science Department - 120

Concept

— Boundaries are sampled with particles that contribute to
density, pressure and pressure acceleration of the fluid

Kernel

support pi < Po Pi > Po
Fluid L — :
particl ‘ Pi pi >0
080 |- i
p _ p
Solid Fy = F#0
particles

— Boundary handling: How to compute p:, pi, piy,, Fy?

University of Freiburg - Computer Science Department — 121

Several Layers with Uniform Boundary Samples

— Boundary particles are handled as static fluid samples

L , y . 3 Boundary neighbors
Pi = Zz‘f uey: W“f + Zib My, W”b contribute to the density

My = Mg, = My, All samples have the
Fluid same size, i.e. same
C— - . , . mass and rest density
Solid Pi = T Z??f W“f T m; Zib W“b
= k(LL _ 1]
P (Po)

— Pressure acceleration
All samples have the

: 2 ; Y2 : .
al =-m; >, (& | VWi, —my o, | B 2 | VW, samesize, ie. same
Fo\ Pi Pig b\ P; Piy

mass and rest density

Contributions from fluid neighbors Contributions from boundary neighbors

University of Freiburg - Computer Science Department — 122

Pressure at Boundary Samples

— Pressure acceleration at boundaries
requires pressure at boundary samples

— Various solutions, e.g. mirroring, extrapolation, PPE
— Mirroring
— Formulation with unknown boundary pressure Di,

_ CL = —my sz (2 "|_)vwfmf 'LZ% (2 _|_) Vme
Pi f
— Mirroring of pressure and density from fluid to boundary ps, = ps

— a;=-m;y, (ﬁ—% + ?) VWi, —mi) (E + ﬁ—?) VWi,

f

University of Freiburg - Computer Science Department - 123

Boundary Contribution to Pressure Acceleration

P __ Di Pi _ 2m;

p; P

2mq; .
_pz? Z’ib Vme
3_ 2iy VWi =225, VWi,

“‘ Pi < Po ‘ ‘ Pi > PO
0009 » -0 000 » -0

_p’i2p—? Zib VWiib =0 _pi2p_ﬂ;2” Zib VWiz’b 7é 0

University of Freiburg - Computer Science Department - 124

One Layer of Uniform Boundary Samples

— Contributions of missing samples have to be added

X IS an approximation
Pi = My quf Wz’z‘f + m; Zib Wz’ib + X of the contribution from

missing samples

Fluid . Offset typically implement-
. Pi = T Z’if Wm’f T Z:@'b Wii, ted as scaling coefficient
Solid
1
Missing 3 1 _ Vit Wiy Kernel
samples Z:if W”f TN Z’ib Wi, Vi = M 225, Wiiy, property

— Pressure acceleration
a; = —m; Zif (& pif) VWii, — ps 2Y2 > i, VWi,

pi PL, p

>, VWi ->2, VW, Kernel gradient propert
3 D _ _ Ziy f iy b 8 property
Zif VWiip + 72225, VWi, =0 = 72 = >, VWi, 22, VWi, Pseudo inverse —cm

University of Freiburg - Computer Science Department — 125

Correction of Missing Contributions

pi = mo(Woo + Wo1 + Wo2) pi = yY1mo(Woo + Wor)
a; = —p; 45 (VWor + VWoo) al = —p; 22V Wy

— The motivation of v1 and 72 is to compensate
contributions of missing samples to p, p, a?

University of Freiburg - Computer Science Department — 126

One Layer of Non-Uniform Boundary Samples

— Non-uniform contributions from boundary samples

Non-uniform sizes,
i.e. masses of
boundary samples

Fluic Contribution, i.e. mass
Solid of a boundary sample is
o approximated from its
Missing boundary neighbors

samples

— Pressure acceleration
CL}; = —m; Zif (f;—% + z;f) vaf —pi% Zib mibVWiib

vf

University of Freiburg - Computer Science Department — 127

One Layer of Non-Uniform Boundary Samples

— 71
M4, = PO <=
i = PO Wiy,

For arbitrary sampling

V;-(z:h?’— 1 V():hS_ "/vlv

2y, Wi, ‘b 2y, Wi
3
=71 =h Zz‘bb Wibibb
For perfect sampling For perfect sampling

University of Freiburg - Computer Science Department — 128

FREIBURG

Typical Boundary Representation

Boundary samples

. .
S:'t:uaz.hg‘"d’m- “CLLLE
-..%‘%’ .

.
\
2) ' -
..,c. $ (~
I‘]. ,t' ’-:«.

4

Color-coded volume
of boundary samples

University of Freiburg - Computer Science Department - 129

Rigid-Fluid Coupling

Dam break

20M fluid particles

University of Freiburg - Computer Science Department - 130

Rigid-Fluid Coupling

University of Freiburg - Computer Science Department — 131

FREIBURG

Summary

— Boundary is sampled with static fluid particles

— One layer of non-uniform samples
— Arbitrary triangulated meshes can be used as boundary
— Non-uniform boundary samples can be handled

— Missing contributions to fluid density and pressure
acceleration have to be corrected

— Pressure is mirrored from tluid to boundary

University of Freiburg - Computer Science Department - 132

Outline

— Concept of an SPH fluid simulator
— Momentum equation

— SPH basics

— Neighborhood search

— Boundary handling

— Incompressibility

University of Freiburg - Computer Science Department - 133

Incompressibility

— Is essential for a realistic fluid behavior
— Less than 0.1% volume / density deviation in typical scenarios

— Inappropriate compression leads, e.g.,
to volume oscillations or volume loss

— Significant influence on the performance
— Simple approaches require small time steps
— Complex approaches work with large time steps

University of Freiburg - Computer Science Department - 134

Approaches

— Minimization of density / volume errors
— Measure difference of actual and desired density

— Compute pressure and pressure accelerations
that reduce density / volume deviations

— Minimization of velocity divergence
— Measure the divergence of the velocity field

— Compute pressure and pressure accelerations
that reduce the divergence of the velocity field

University of Freiburg - Computer Science Department — 135

Approaches

— Velocity change per time step due to pressure
acceleration and non-pressure acceleration
1 — —1vp(t) + a™omP (1)

— Predicted velocity after non-pressure acceleration
v* = v(t) + Ata™"P(t)

— Computation of pressure such that pressure
acceleration either minimizes the divergence of v»* or
the density error after advecting the samples with »*

— Final velocity »(t + At) = v* — At Vp(t) with minimized diver-
gence or minimized density error at advected samples -

University of Freiburg - Computer Science Department — 136

Density Invariance vs. Velocity Divergence

— Continuity equation: Time rate of change of the
density is related to the divergence of the velocity

Dp; __
T = —piV v

V. v, = V-v, >0 V-v, <0

University of Freiburg - Computer Science Department — 137

Density Invariance vs. Velocity Divergence

— Density invariance
— Measure and minimize density deviations

— Velocity divergence
— Measure and minimize the divergence of the velocity field

— /ero velocity divergence corresponds to zero density
change over time —p;V - v; = 22: =0, i.e. the initial density
does not change over time

— Notion of density is not required

University of Freiburg - Computer Science Department — 138

Challenges

— Minimizing density deviations can
result in volume oscillations

— Density error s — T

going up and down
— Erroneous fluid dynamics

— Only very small density
deviations are tolerable,
e.g. 0.1%

&)
https://www.youtube.com/watch?v=hAPOOXBp5WU =

University of Freiburg - Computer Science Department — 139

Challenges

— Minimizing the velocity — == ==
divergence canresult | -
iNn volume loss = oy

— Divergence errors -
result in density drift

— No notion of actual
density

Low Viscosity
High Viscosity
Shear Thinning

~

/hu, Lee, Quigley, Fedkiw, SIGGRAPH 2015

University of Freiburg - Computer Science Department - 140

| ";”x‘. 1. f 'b(}!

State Equations (EQS, SESPH)

— Pressure based on density deviations

— Pressure accelerations resolve compression
induced by non-pressure accelerations
— Density fluctuations / errors result in pressure

— Pressure gradients result in pressure accelerations
from high to low pressure to resolve density errors

— Simple computation
— Small time steps

University of Freiburg - Computer Science Department — 141

State Equations (EQS, SESPH)

— Pressure

'S computed from density error

- BEg pi=k(£: —1) or pi=k(pi — po)
— Referred to as compressible SPH

— Pfi:k((%

)

— Referred to as weakly compressible SPH

— Stiffness constant ¥ does not govern the pressure,
but the compressibility of the fluid

— Larger stiffness — less compressibility — smaller

time step

University of Freiburg - Computer Science Department - 142

Pressure values in SPH
implementations should
always be non-negative.

Simple SPH Fluid Solver

— for all particle 1 do
find neighbors 7

for all particle : do
Pi = Zj m; W@

0 = k(g—; — 1) Compute pressure with a state equation

for all particle ¢ do
a?onp = VV2’UZ' + g
a,,lf — —éVpi
a;(t)=a;""" +a’

for all particle © do

University of Freiburg - Computer Science Department - 143

Pressure - lllustration

- Afluid under gravity at rest | po=poglh~) @ I_p%vpl
— (ravity cancels pressure acceleration =g @
5 1 pi | Pj p2 = p2g9(h1 + h) ‘l ’
g=—a; = EVp,,; = Zj m; (ﬁ SR p—%) vw@j
J Fluid
k(p:—po k(pj—po
=¥ m; ((pp%p) | (pp?p)) VIV, .

— Differences between p; and p;
are independent from &

— Smaller k results in larger density error
pi — po to get the correct pressure

University of Freiburg - Computer Science Department - 144

SESPH with Splitting

_Sp

it pressure and non-pressure accelerations
Non-pressure acceleration a;™

Predicted velocity v = v;(t) + Ata; "
Predicted position x; = xi(t) + Atv]
Predicted density p; (7)

Pressure p from predicted density p;

Pressure acceleration ay

-inal velocity and position wi(t + At) = v} + Ata} = v — At_=Vp;
£; (t + At) = €&; (t) -+ Atvi (t —+ At)

University of Freiburg - Computer Science Department — 145

SESPH with Splitting

— Motivation
— Consider competing accelerations

— Take effects of non-pressure accelerations
iINnto account when computing the pressure
acceleration

University of Freiburg - Computer Science Department — 146

SESPH with Splitting

— for all particle + do
find neighbors 7

for all particle v do
a?onp = VVQ’U@' +g
v =v;(t) + Ata; "’

for all particle ©: do

pi = Zj m;Wi; + At Zj m;(v; — 'U;-F)VW,;j Density at predicted positions
Pi = k(% —1) Pressure at predicted positions
for all particle 7 do
1
a; = —--Vp;

for all particle ©: do
v;(t + At) = v} + Ata?

L (t T At) :ﬁi@gégitg/koé?g%&?g_h(%rlrt])puter Science Department - 147

Differential Density Update

— Density at advected positions is approximated
without advecting the samples

— Continuity equation and time discretization

Dps t
D = PV & 20 = —p,V v}

— Space discretization with SPH

i =2 miWij
b = :—pi(pl ;mj(v; — v;)VWZJ)

— Predicted density due to the divergence of v}

Approximate density at predicted

p; = Zj m@-Wf,-,j + At Zj m (’UZ‘ - 'U;'()VW%'J' positions: &} = x;(t) + Atv}

University of Freiburg - Computer Science Department — 148

[terative SESPH with Splitting

— Pressure accelerations are iteratively refined

Predicted velocity

— Pressure acceleration

— Refine predicted velocity
Final velocity and position

Non-pressure acceleration

terate until convergence
— Density from predicted position
— Pressure from predicted density

nonp
7

vf = wv;(t) + Ata]"?

1

* *

p; (i, v])
Di

v (t + At) = vf
£; (t + At) = €&; (t) -+ Atvi (t —+ At)

University of Freiburg - Computer Science Department — 149

[terative SESPH with Splitting

— Motivation

— Iterative update is parameterized
Oy a desired density error

— Provides a fluid state with a
guaranteed density error

University of Freiburg - Computer Science Department — 150

[terative SESPH with Splitting

— for all particle © do
find neighbors j

for all particle i do

a,”"’ =vViv;+g ; v =wvt)+ Ata; "’
repeat

for all particle i do

p; =D ;miWii + At Y . mj(vf — vl)VW;;
C— L(PL_
pZ _ k(po 1)
for all particle ¢ do
v = v — Atp%sz-

until p7 — pg <7 user-defined density error
for all particle i do

vi(t+ At) =vF ; x;(t+ At) = x;(t) + Atv;(t + At)

University of Freiburg - Computer Science Department — 151

[terative SESPH - Variants

— Different quantities are accumulated
— Velocity changes (local Poisson SPH)

— Pressure (predictive-corrective SPH PCISPH)
— Advantageous, if pressure is required for other computations

— Distances (position-based fluids PBF)
— Az = — - 30 (B 4+ BV
— Different EOS and Stiffness constants are used
— pi = k(pi — po) With k = 525 in local Poisson SPH
— pi = k(pi — po) WItN k = T AR (S, VWO S, @Wo = (VWO VW) INn PCISPH
— pi = k(25 —1) with k=11n PBF

University of Freiburg - Computer Science Department - 152

Predictive-Corrective Incompressible SPH - PCISPH

— Goal: Computation of pressure accelerations a;
that result in rest density po at all particles

— Formulation: Density at the next
step should equal the rest density

Desired Current Density change due Density change due to unknown
density density to predicted velocity pressure acceleration Serratzed
p(t+At) = pg = Zm Wi + AthJ DVWi; +At > mj(Atal—Ata?)VIW;; continuity
j equation

-

i

University of Freiburg - Computer Science Department - 153

PCISPH - Assumptions

— Simplifications to get one equation with one unknown:
— Equal pressure at all neighboring samples

af ==Y m;(% + B)VWi; ~ —m; 2 37 VWi

2

2 7 y
po—p; =AY m; (m; 2 5 VWij +m; pg > Vij) VWi Unknown pressures p;and p,
' k

— For sample j, only consider the contribution from /

2p;
po — p; = Atgzmj (—m; 1; ZVWZJ + m; i VW;@) VWi, Unknown pressure p;
. -

o r Po

2 2 2 2
po—p; = At*m? p@ (> VWi — VWZ-j) VWi; = —APm2E (Z VWi Y VWi + Y (VWi - VWij))
J J J J

University of Freiburg - Computer Science Department - 154

PCISPH - Solution

— Solve for unknown pressure:

2p;
Lo — p: = —Atzm? pp; (VW%J . Z VWEJ -+ Z(VW” : VWW))
0\ j j j

D; = i (p; — po) (pi =Ek(p; —po))
QAthE(Zj VW%, . Zj VWM + EJ(VW” : vw@g)) ‘ ‘

Intuition: This pressure causes pressure accelerations that cause velocity changes
that correspond to a divergence that results in rest density at the sample.

p(t uE At) = pp = p;k -+ Athj(AtaE — Ata,f)VW@

J

University of Freiburg - Computer Science Department — 155

PCISPH - Discussion

— Pressure is computed with a state equation i = k(p; — po)
— kIS not user-defined

— Instead, an optimized value % is derived and used

— Pressure is iteratively refined

University of Freiburg - Computer Science Department — 156

PCISPH - Performance

— Typically three to five iterations for
density errors between 0.1% and 1%
— Speed-up factor over non-iterative SESPH up to 50
— More computations per time step compared to SESPH
— Significantly larger time step than in SESPH
— Speed-up dependent on scenario
— Non-linear relation between time step and iterations

— Largest possible time step does not necessarily
lead to an optimal overall performance

University of Freiburg - Computer Science Department — 157

Comparison

— PCISPH [Solenthaler 2009]

— |terative pressure
computation

— Large time step

— WCSPH [Becker and Teschner 2007]
— Efficient to compute
— Small time step

— Computation time for the
PCISPH scenario is 20 times shorter than WCSPH

PCISPH

University of Freiburg - Computer Science Department — 158

Projection Schemes - Introduction

— Pressure causes pressure accelerations that
cause velocity changes that cause displacements
such that particles have rest density

— Projection schemes solve a linear system
to compute the respective pressure field
— PCISPH uses simplifications to compute

pressure per particle from one equation.
Solving a linear system is avoided.

University of Freiburg - Computer Science Department — 159

Projection Schemes - Derivation

dv(t) 1 nonp Velocity change per time step due to pressure
Vp(t) i@ (t) acceleration and non-pressure acceleration

v* = v(t) + Ata™°"P (1) Predicted velocity after non-pressure acceleration

v(t + At) = v* — At%Vp(t) Velocity after all accelerations

v(t + At) —v* = —At%Vp(t) Velocity change due to pressure acceleration

V.- (v —v(t+At) =V - (At%Vp(t)) Divergence of the velocity change

due to pressure acceleration

University of Freiburg - Computer Science Department — 161

Projection Schemes - Derivation

V(0" —v(t+At) =V- (At%Vp(t))

Vv — V.ot +At) =V (At%Vp(t))

Divergence of the final velocity field should
be zero, i.e. no density change per time

Constraint: V- v(t + At) =0

Divergence of the velocity change due to
V-v*=-V.(AtaP) pressure acceleration should cancel the
divergence of the predicted velocity

Pressure Poisson equation
with unknown pressure

oV -v* = AtV3p(t)

University of Freiburg - Computer Science Department - 162

Density Invariance vs. Velocity Divergence

— Pressure Poisson equation PPE that minimizes
the velocity divergence: Atv?p(t) = pV - v*
— PPE that minimizes the density error: Atv2p(t) = 22

— Derivation: p,usan
Dt ™

Continuity
equation at time t + At

o(t + AV - v(t + At) = 0

Constraint: p(t + At) = po

20260 1 oV - (07 — AtLVp(t)) =0
=0

00— —A OV"U*
po—(p(1) Attp) AtVQp(t)

. _ _ o Predicted density after
p* = p(t) — AtpoV - v sample advection with v* ===

University of Freiburg - Computer Science Department - 163

PPE Forms - Interpretation

— Velocity divergence: —At, V?p= -V . v*

— Pressure p causes a pressure acceleration —-Vp that causes
a velocity change —At-Vp whose divergence V - (~At-Vp)
cancels the divergence V -v* of the predicted velocity, i.e.
V-v"+V. (—At%Vp) =0

— Density invariance: —Atv?p = — o2

— The divergence V- (- At1Vp) multiplied with density p is a
density change per t|me that cancels the predicted density
error per time 222" e, 222+ pV - (~AtLV?p) =0

University of Freiburg - Computer Science Department - 164

PPE Solver

— Linear system with unknown pressure values Ap = s
— One equation per particle (Ap); =s; (At < V2p; >= Lo=Spi>)
' <A>is a discretized
— |terative solvers R
— Conjugate Gradient

— Relaxed Jacobi

— Fast computation per iteration
— Few non-zero entries in each equation
— Matrix-free implementations
— Very few information per particle

University of Freiburg - Computer Science Department — 165

PPE Solver

— Very large time steps

— Convergence dependent on the formulation

— SPH discretization of v2p

— Source term (velocity divergence or density invariance)
— ACcuracy Issues

— Volume drift for velocity divergence

— QOscillations for density invariance

University of Freiburg - Computer Science Department — 166

PPE Discretization

— Implicit incompressible SPH (IISPH) [Ihmsen et al. 2014]
— PPE with density invariance as source term: At2V2?p = pg — p*

— Computation of #;:
pf = pi+ At Y, mvE VW With vf = v; + Ataj™™

— Computation of A2v2p;:
At*V?p; = —Atp;V - (Ata}) = At? Y m; (af — af) - VW,
with

ap = —inz' = _Zj iz (ﬁ—% + ﬁ—%) VW@J

1

University of Freiburg - Computer Science Department — 167

PPE System

— PPE At*V?p; = po — pj
density change due to negative of the
pressure accelerations predicted density error
— Discretized PPE
— System: Ap = s

— Per particle: A#;mj (P —a®) VWi, = po—pi al =

N / Si
-

(Ap);

-~
|

™

S

(N
N
BB

|
"Qw 53
N—————

<
=

— Interpretation:

At m,; (Ata? — Ata®) VW, = pg — pi . .
2 i (Ata] 3) i = PO P prassure accelerations causes a velocity

Aty my (v) —}) VWi = po — pf change vP whose divergence causes a
At-p; -V -vP = py— pt density change.

University of Freiburg - Computer Science Department — 168

PPE Solver

— Relaxed Jacobi: pi™" = max (p} +ws=t420 o)
— For IISPH, typically w =0.5

— Diagonal element as
— Accumulate all coefficients of p; in A2} m; (af — ab) VW

J

— a4y =AY m, (— >, Tg—?jvwij) VW + AR Y m; (?—ngji) VWi

University of Freiburg - Computer Science Department — 169

PPE Solver - Implementation

— |ﬂitia|izati0ﬂi pi:ijjWij Aj; = ...
v =wv; + Ata"?
$; = po — pi — Aty mv; VW,

p? = max (wa—M,O)
— Solver update in iteration /.
— First loop: (a?)lz—ZJmJ(; J)VWW

— Second loop: (Ap); = A2 Y m; ((af M) VWi
piH = max (pz- + ws”_ffp)i : O) If a; not equal to zero
(peron)t = (Ap'); — si Continue until error is small

University of Freiburg - Computer Science Department - 170

IISPH with Boundary Handling

— PPE: Atzvzpf = po — p; = po — ps + AtpoV - rv;; Index f indicates a fluid sample.
Index b indicates a boundary sample.

— Discretized PPE: Ap = s frindicates a fluid neighbor of f.

f,, indicates a boundary neighbor of f.

(Ap)f = At? fo my, (al} — a?f) VWfff + At? Zfb mfbal}VWffb
1257
ay=—>; my (% + Tf) VWip =722, mbe%VWffb

pff

sy = po—ps—At fo my, (’U}i — ’U;f»f) VWfff—At Zfb mf, (’U;Z — ’Ufb(t + At)) VWey,

University of Freiburg - Computer Science Department — 171

IISPH with Boundary Handling

— Diagonal element

2 s my
apr =At mef (Z —p? VWi, — 2y Z pgb VWffb) VWgy,
I f fo

my
+ A2 Y my, (p?vwfff) VWryy,

Ir pff fv

+ A8 Y my, (> CLLgWyy, — 29 >

m
péb vwffb) VWi,

University of Freiburg - Computer Science Department - 172

[ISPH with Boundary - Implementation

— Initialization:

pr =25, MWy + 2, mpWyyp, app=...
vi =vs + Ata "
sp=po—p;— At myp s VW — At)0, mpvi, VWyy,

U — Sf
py = max (waff : O)

— Solver update in iteration /.

— First loop:

— Second loop:

p Py p'
(a?) — —fo mpy, (oy f) VWi, —’ysz mbeéVWffb

f

(Ap'); = ALYy my, ((aB)! = (@},)!) YWy, + AR S, my, (a}) YWy,

pic“ = max (plf + G(Lipp)s O) If arnot equal to zero
(ermr)l (Apl)f — S8f Continue until error is small

University of Freiburg - Computer Science Department - 173

PPE Solver - Comparison with PCISPH

— Breaking dam
— 100k particles with diameter 0.05m
— 0.01% average density error

PCISPH IISPH PCISPH / IISPH

total comp. time [s] total comp. time [s] ratio
At [s] avg. iter. pressure overall avg. iter. pressure overall iterations pressure overall
0.0005 4.3 540 1195 2.2 148 978 2.0 3.6 1.2
0.00067 7.2 647 1145 2.9 149 753 2.5 4.3 1.5
0.001 14.9 856 1187 4.9 164 576 3.0 5.2 2.1
0.0025 66.5 1495 1540 18.4 242 410 3.6 6.2 3.8
0.004 - - - 33.5 273 379 - - -
0.005 - - - 45.8 297 383

— Largest possible time step does not necessarily
result in the best performance

University of Freiburg - Computer Science Department - 174

Simulation in Computer Graphics
Particle Fluids - Misc

Matthias Teschner

|
UNI
FRE:BURG

Parallel Scaling

12 ,
Compact hashing ———
10 + Amdahl 0.95 ——
spatial hashing —
o 8
=
T 6
D]
73
4
2
0] 1 I 1 l I J
1 2 4 8 12 16 20 24

threads

University of Freiburg - Computer Science Department - 176

