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Motivation

?i_';’:g+yvzv—%Vp %:g+yv2v—%Vp %—:zg%—l/vzv—%Vp
—(v-V)v
Lagrangian: Acceleration Eulerian: Acceleration v — % 4 (v-V)v or
of a moving parcel. at a static cell. Dy _ dv da _ .

Dt — dt dt —
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Grid-based Fluids

— Benetfits
— Fixed neighbor sets
— Constant sampling quality
— Accuracy

— Challenges
— Free surfaces
— Complex boundaries
— Moving boundaries

— ... [Lorenzo Rossini]
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Grid-based Fluids

[Enright et al.,
SIGGRAPH 2002]
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Outline

— Particles vs. grids

— Advection of the velocity field
— Simple grid fluid solvers

— Discussion
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Fluid Solvers

— Fluid solvers compute
velocity fields that o
represent the fluid flow /

— The velocity field is
sampled at discrete time
points ¢t and discrete v; (1)
pOSItIONS «; 23(1)

1

~ NN
~ NN

Velocity field at time ¢
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Particles vs. Grid Samples

— Particles

Are small fractions of the fluid body
Represent some volume

Have a mass according
to volume and density

Position moves with the flow

Velocity represents the
velocity of the fluid parcel
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Particles vs. Grid Samples

— Grid cells

Contain small fractions of the fluid body
Represent some volume

Contain some mass according
to volume and density

Position Is static

Velocity represents the
flow velocity through the
cell container
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Particles vs. Grid Samples

— Both concepts compute the same velocity fielq,
but typically at different sample positions

— @Grid solvers do not
move the samples
with the flow

— Particle solvers
move the samples
with the flow
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Particles vs. Grid Samples

— Particles

— Velocity updates wv;(t + At) = v;(t) + At gt 3 particle i

are computed using the Navier- Stokes equation

W — 5 Vpi(t) + vVRuilt) + g = ai(t)

— d"’#@ S the time rate of change of a particle, i.e. sample

that is advected with the flow: z;(t + At) = x;(¢) + Atv;(t)

— Advection of the samples accounts
for the advection of the flow
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Particles vs. Grid Samples

— Grid samples

— Velocity updates w;(t + At) = v;(t) + A28 at 3 grid cell
are computed using the Navier- Stokes equation
T = ait) — (vilt) - V)wi(t)

— 8"’aft S the time rate of change of a static sample

With = (t + At) = x;(t)
— —(vi(t) - V)vi(t) accounts for the advection of the flow
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Particles vs. Grid Samples

— Particles

/s
dv;(t) _ vi(t+At)—v;(t)

dt At

/n(t) /" ot A}) i (t + At) = x;(t) + Atw;(t)
V4

— Grid samples

& &
a‘vi (t) (oF3 (t+At)—1)7;(t)

v; (1) vi(t+AY) T T At

x;(t+ At) = x;(t)
e
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Particles vs. Grids - 1D lllustration

Particle approach v, (t + At) = v;(t) + Ata;(t)
Grid approach vi(t + At) = v;(t) + At(a;(t) — (vi(t) - V) (1))

(
(V)
A //
/ L = vi(t) + Atai(t)
(1)

/ e &
/ (¢ + At) )+ At(ai(t) — (vs(t) - V)i (8))
v(t + At)

£ 4 Xz
Ty = Ty —|—At’U@'
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Particles vs. Grids - 1D lllustration

— Navier-Stokes

— Time rate of change of the

velocity of an advected position

dei
dgt) = a;(t)

— Time rate of change of the
velocity at a fixed position

2velt) — a;(t) — (vi(t) - V)vi(2)
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Particles vs. Grids - 1D lllustration

— Relation
— Two sample positions zi(t1), z2(t2) with Notation
xo(te) = x1(t1) + Atv(xy,t1) v(xi, t;) = vi(t;)
— Taylor approximation of the velocity

v(w2,t2) = v(w1,tr) + P (2 — @p) + 2LEB (1, — )

U(:Eg,tg)—’v(:l’:l,tl) . 8’0(:1?1,751) (IL'Q—ZUl) _I_ a’U(a’Jl,tl) (tg—tl)

At o Ox At ot At
v(mz,tg)A—tv(:El,tl) _ 8U(gi,t1)v($1jt1) 4 8U(gi,t1)
T = PG 4 (v(an, ) - V)u(an, h)
% = % + (v-V)v
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Material Derivative

D'v,,;(t) . d'vi(t) L vai(t)

— =gt = celd — 28 4 (vi(1) - V)wui(t) IS the time rate of
change of the velocity of a moving tluid element

D’U@' (t) _ dv,,; (t)

— Bpl —dwdd) if 4 s 3 moving particle with 52 = v ()

Dvi(t) 8’07; (t)

— = =2+ (wit) - VIui(t) I 4 s a static grid cell
— Df;%'t(t) = —p%a)Vp@-(t) +vV2v;(t) + g

— Is a general form of the Navier-Stokes equation

— 4 Ccan be a particle or a grid cell

— Particle techniques are referred to as Lagrangian

— Grid techniques are referred to as Eulerian

University of Freiburg - Computer Science Department - 16



Navier-Stokes on Grids

_ Dui(®) _ el (t) + (03 () - V)i (t) = (t) Vpi(t) + vV2vi(t) + g

Dt

— @Grid approaches often work with per-volume
quantities in contrast to per-mass quantities

— i) (B + (wi(t) - V)ws(t)) = —Vi(t) + uV20i(t) + pi(t)g

— 20 4 (wi(t)- V)ui(t) iS the time rate of change
of the velocity of a moving fluid element

— 20 s the local acceleration

— (w(t)-V)ui(t) [S the convective acceleration
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Grid-based Fluid Solvers

— Grid solvers compute 22 at all grid cells
— Velocities at grid cells are updated with, e.g,,
v (t+A) = v () +AL 2D — v, (1) +AL (— A5 Vpilt) + vV20i(t) + g — (vs(t) - V)wi(t))

— Spatial derivatives can be approximated with,
e.g, finite differences in 1D Vp;(t) = pectbzdplzidr)
with Az being the grid cell size
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Outline

— Particles vs. grids

— Advection of the velocity fielo
— Simple grid fluid solvers

— Discussion

University of Freiburg - Computer Science Department - 19



Overview

— Navier-Stokes: 2@ — L Up(x;,t) + vV0(xi,t) + g — (v(i, 1) - Vv (i, 1)
. Ov(x;,
— Advection equation: 22@t) — _(y(x;,t) - V)v(z;, )
— Velocity v(z;,t) is advected by velocity v(x;,t)
— 1D advection equation; Z&&utd — _(y. V)T (x4, t;) = —v 2l

— Temperature T advected by constant velocity v
— Computation of T(z;,t; + At) with
_ oT a:z,t OT (xz4,t;)
T(x;, t; + At) =T (xz;,t;) + At ( ) = = T'(z;,1;) — Atv—3"
— Discretization of 2X{rit) vv|th finite differences
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1D Advection of a 1D Quantity

— E.g., 1D temperature field is advected by 1D velocity / winad

wind speed U

X £z

— T(zs,t0) is known at all positions z; at time tg
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Advection

— How to compute T
T(x;,t;) at arbitrary

positions z; ana
times ¢;?

£z X

wind speed U

— Aﬂa|ytiC SO|UtiOﬂ T(Cl?i,ti) = T(ZU@ — U - (ti — io),to)

— T'(zs,t:) is obtained by shifting z; through a distance
v- (t; —to) without changing the shape of T
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Advection on a Grid - 1D

— Discretize time and space: tiy1 —t; = At x4 —x; = Az

T wind speed U
/ \/
X Lit4 X

— T is considered at discrete positions and time points
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Advection on a Grid

— How to compute T(z;, ti41) from T(az;,t;)?

— It Tis linear: o,
T (mz—l—lat%)’ -
T(xi,ts) =T (@i tiv1) _ T(@iqa,ts) =T (xi1,t:) T(xi, ;) N
vAt 2Ax '
. . _ T . Tit1 ) — Tr;_1,t; T.’Ei_l, i ,’ )
T(mz:tz—l—lA)t T( utz) — —’UT( 1+ atngg( 7 ,t ) ( R t)’rUAt wind
: : _ - - speed vV
— 1D advection eqguation T(ws,tiddr)
OT (its) _ 0T (wisti) r; — Ax x, x, +Axr
ot ox
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1D Advection Equation on a Grid

— The continuous form 28t — _,9Tk) s discretized

Ot
— F g i{ag igan ) =10 Bs)) _UT(SUz'Jrl,tz')—T(J?i—l,t@)
= At 2Ax
forward difference central difference

— This equation contains only one unknown T'(x;,t;+1)

— T(@i,tip1) = Tw;, t;) — App Tl @it

— T(@i, tig1) = T(@s, 1) + ApZEER) — Py, 1) — Agy@Tizidi)

— If T(x;,t;) is known at all samples, i.e. grid cells =,
at time t;, T'(x;,ti41) at the next time t;41 can be
computed at all grid cells z;
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Finite Differences

— The time derivative is commonly discretized as

OT(zite) _ Tlwatiz) =T(@oti) 4 (A)

ot At
— The spatial derivative is discretized in various ways
3T(8£U;=tz‘) _ T($¢+1>tiA);T($i’ti) + O(Ax) forward difference
3T(§;ati) _ T(iﬁi,ti)—Ar];:(ivi—l;ti) + O(Az) backward difference
3T(§;:ti) _ T(m@-+1,ti2);f(a:¢_1,t@-) + O(Az?) central difference
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Solving the 1D Advection Equation

— Upwind (v > 0)

—y _ —y ) . . T(x;,t;)—T(x;_1,t;
T(m“tﬂ_lé)‘t T(xzi,t;) _ _UT(ZL’zatz) Aj;(xz—latz) T(ajiati—i—l) — T(CBi,t@') — vAt (z )Aa:(x 1,t)

— Downwind (v > 0)

T i sLq —T 1504
T(mi’ti—i_lA)t_T(mi’ti) — _UT($¢+1,t2;T($i,ti) T(gj“ t’&—|—1) = T({L’Z, tfl) - vAt (33 +1 tA)x (CU v )

— Centered (forward time centered space FTCS)

T(x;,t; —T'(x;,t; T(xitr1,8:)=T(xi—1,t: T(xitr1,t:)—T(xi_1,t;
= +1A)t it} — Tl 2)A:c(x Ll T(@i, tit1) = T(@i, t:) — vAL (mﬂtz)m(x =

— Leap-frog

T(xitiy1)—T(xitic1) T(xiy1,t:)—T(xi—1,t:) - T(xiy1,t:)—T(xi—1,t:)
AL = —v AL T(ZIZ“ t'é—|—l) = T(ZBH tz’—l) — VAt Ax
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Solving the 1D Advection Equation

— Lax-Wendroff

T(xiy1,ti) =T (xi—1,t; T(xig1,t;)—2T(x;,t;)+T(xi—1,t;
T(xz‘atz‘+1):T($¢,t¢)—vAt ( +1t2)A$( 1t)—|—%fu2At2 (ziy1,ti) éth V4T (xi_1,t;)

— Beam-Warming

3T (xi,t;)—4T (xi—1,t; T(x;_2,t; T(x;,t;)—2T (x;_1,t; T(xi—2,t;
T(xi, tig1) = T(wi, t;)—vAr 3Lt AT @ b) 3T (@izaits) | 102 Ay2 T@eta) 220 (@it t) 4T (@im2.ts)

— Lax-Friedrichs

T(zi,tiv1) = 2(T(@im1, t) + T(@iga, 1)) — vAp T ELl) A1l
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Finite Differences

— Are one way to approximate
spatial derivatives for grid cells

— Can be used to, e.g.,, compute the pressure gradient
in the Navier-Stokes equation at grid cells

— Can also approximate higher-order derivatives, e.g.

O*T(zi,t;) _ T(wigr,t:i)—2T(xs,t:)+T(xi1,ts) 2
(o) _ (o o)

— Can also compute more accurate approximations

8T(x%,t@) — T(LE@_Q,ti)—ST(LE@_l,ti)—|—8T(LET;_|_1,ti)—T(CL‘i_i_g,ti) _I_ O(Aajzl)

ox Ax?
02T (x; b —T(xi—0,t;)+16T (xi—_1,t;)—30T (z;,t;)+16T (z;itr1.t;)—T (xito,t;
8(;1::2 ) _ =T (®i2,t:i)+16T(2i1,t:) Aiﬂ; )F16T (xiq1,ti) =T (Tiq2 )+O(Ax4)
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3D Advection Equation on a Grid

. aT(.’Bi,t@) L 8T($i;ti)
— 1D form: Tot) _ 00
. 0T (xy grid cell position ana
— General form: T(at il —’UVT(Q% i) velocity are vectors
8:1:7;
oT (x; Li,l;
— N 3D; Zlet) — | Lt | (4. V)T (s, t,)
8T(a:% tz)
8zi

— Advecting a vector quantity T: 2122 = (v V)T (x5, t;)

— In the Eulerian form of the Navier-Stokes equation,
the velocity at a position is advected by the velocity
at that position 242 = —(v(a;, t;) - V)v(i, t;)
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Advecting the Velocity Field

ov xr;,l;
— P@) — (y(2y,t;) - V)o(i, t;)

speed v(x;,t;)

speed
V(T i)
XL .SL‘j T

— Application in the Navier-Stokes equation

afv(g;’“) = _P(mil;ti))vp(xi’ti)) +vVivu(xi, t;) + g —(v(®i, t;) - V)v(a, t;)
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1D/3D Velocity Advection on a Grid

. 8’0 Tgalqg 8’0 ;,lq
— 1D; et — _yy(g, 1) 20loicts

— 3D av(gz’ti) — —('U(fo“tz) ) V)v(.’ﬂut@)

Q
Q
Q

Vo (i, ti) g5 Va (@i, 1) L (@i, i) 5o vy (i, 1)
= — vy(a:i,ti)agm vy(wi,ti)agy vy(mi,ti)aiz Uy(ﬂ%‘,ti)
vz(ac,,;, t@') 8293 UV, (ZCZ', t:,;) 82y UV, (.”L'z', ti) 822 Uy (w’ia ti)
(@B T3 gzz (4, t:) + vy (x4, t4) g’;’,ﬁz (i, ti) + va (x4, t5) g;"; (@i, ts)
= — ?}x(.’L‘i, tf,;) g;z (337;, t@') -+ ’Uy(.’L‘?;, ti) gzz (.’L‘Z‘, t@') + ’l)z(aZ?;, ti) g;z (.’BZ‘, ti)
vw(m@-,ti)gzz (4, t:) + vy (x4, t5) gi; (x5, t;) + v (x4, ti)gii;j (x;,t;)
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Outline

— Particles vs. grids

— Advection of the velocity field
— Simple grid fluid solvers

— Discussion
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Governing Equations in 2D

— Momentum equation at position (z;,y;) at time ¢

dv\t _ 1 t t t
— (8_:5))71,3' = _@Vpi,j — (v - V)vy Notation
— Inviscid flow (artiticial viscosity) v; i = v(Ts,yj,t)
— No body force, non-conservation form

: Pi
— State equation p; ; = k(=22 — 1)
— Continuity equation at position (z;,y;) at time ¢

Oo\ 1t

- (8_§)z’,j = —pi;V - vi; — (v V)i

— Follows from B2 = 22 + (v - V)p
— Used for differential density update
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Governing Equations in 2D

pt, Vi i, Vg
(%):J = —prV ' 'Uf,j - ('Uff,j V)Pg,j
'Uf,j — (ug,javfj)-r
t t t
(B8)s, = — (7 (3), + b5 (3001, + 015 (39): )

(7 (5. |
(901, == (5 (8):, +ut ;(89);, + ot (52): )
(

(2):5 == (01 (32, + ot (3001, + (0L, 4, (3801
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Solver lllustration

O O o ® O

i—1,5+1 i j+1 i+1,5+1
Ay

. . t t . )
1 — 13'] Aaf; ui,j,vi,j, ’&—I—l,j uf’-;At,{Uf-;At’

. p@L _’pt_ _ . At ’ t+At  t+AL

1,747%,9 Pig 1 Pij

i—1,5—1 i,j—1 i+1,5—1

O O O @ C

' ¢ ; /
ug?;m = u; ; +At(%)z‘,j = u; ; — At (pﬁl,j (g_g)z’,j T ug,j(%)fz,j - Ug,j(g_;)-

t t t t

t i
.t 1 Pit1,;"Pi—1,j t Wit1,5"Ui—1,5 t Mij41 %51
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Simple 2D Grid Fluid Solver

for all cell (i,5) do
pg,j — k(pz—‘? — 1)

for all cell

Pressure from density

— (Pilj 8—1; ufj (g_u)tjj 4+ ’Uf,j (g_;):,g) Velocity change per time

(?91)) _ (p;g g_g f,j (g_v)tJ 3 (2—3)23) Velocity change per time

(), == (582" + oty (300, +ut s (32)! 0k (2)L) - Densty change per ime
for all cell 7 j do

utj;m 'S At(%—)t’ Velocity update for a cell

futjm it At(%)t,J Velocity update for a cell

pfjm pw — At(%)t,j Density update for a cell
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Simple 2D Grid Fluid Solver

— No neighbor search / fixed neighbor sets
— Pressure computation, e.g. state equation or PPE

— Spatial derivatives computed, e.g., with finite ditferences
— Interestingly, SPH would also be an option

— Pressure gradient and velocity divergence
are also used in particle solvers

— Advection terms only occur in grid solvers
— Velocity and density update per static cell
— No sample advection
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Discretization with Finite Differences

— The time derivatives

(30t =~ (), + s (3L, +ots ()L
v\t v\?t
(3%, =— (@), + s (B)L, + (&)L
()", =~ (o (820", + ol (B it (20)°, 0t ()1

are expressed with spatial derivatives

¢ ¢ t t t ¢ t t
(%)i,jv (g_}yj)i,j’ (%)i,j’ (2_5)@',3'7 (g_g)i,j’ (g_g)i,jv (%)i,j’ (S—Z)i,j
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Discretization with Finite Differences

— E.g., using second-order central differences

t t t t t t
(8_u)t S (i Sy o o S A o W RS A o b 95 M A V% NS R 1% b g 75 o
ot /i,j P 2Ax 2,] 2Ax 1,] 2Ay
t I t & i t
(@)t — (L PugtrPiion ot Vi Yio1s 4ot Yagb1 Vi
ot /i,j O ; 2Ay ,] 2Ax 2,7 2Ay
t t T t
(@)t S (P A .= U R o W RN AR 7 b Sl ¥ it
t)ig Pi.j 2Ax Pi,j 2Ay

t t t
t Pit1,5 Pi—1,5 t Pij4+1"Pij—1
TU; TV oA,
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Lax-Wendroff Technique

— Velocity and density update with

WA =l A(Be)! 4 AR (T
t 2 2\t

Uf,_;m = ’Uf,j + At(%)i,j + A2t (gt;))i,j

At = pl + AL(%2)) + AL (38))
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Lax-Wendroff Technique - Density

— Second time derivative 2% can be obtained by
differentiating 2 = — (pg—g +p32 +ugl + vg_;)
with respect to time
T8 == (Bl + ot ol + B udh + S5+ ofh)
— First time derivatives are computed with spatial
derivatives from the governing equations
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Lax-Wendroff Technique - Density

— Mixed time / spatial derivatives, e.g. 2% can be

obtained by differentiating, e.g. %% = — (%g—g +udl + vg_;)
with respect to =

%u 1 9p 0 1 9° du du 9%u | Ov du % u

9zdt — (_pz 95 Oe Ea—mg oz oz T Yoz T Bz oy _|_Uasc8y)

— Discretizations of higher-order derivatives, e.g.

t t t t
Yi41,5 " %i,5  Yi,5 7%

2 __%g t—1,3 t 9t t .
(8 u)t — AZE Am — u”f_{_]-aj 2uzaj_|_u7'_133
Ox?2 i,9 Ax Ax2
ut ot ut ot
5 ; i+1,54+1 " %i—1,541  %i41,5—1"%i—1,5—1
( 0 u ) — 2Ax 2Ax
O0x0y /1,5 2Ay
t ot ot Fout
_ Y1 41 Y%i—1 541 Y1, —1 T %151
4AxAy

University of Freiburg - Computer Science Department - 43



MacCormack Technigue - Update

— Velocity and density update with

yiEAL ul i+ g [(_) (@)H—.At}

At T t S\t AL]

t+At ¢ 2V v Ov \tT At

Yijg = Yiy T 9 (at)@',j T (8t)i,j )

At T Do\ tHALT

t+At =b @ t @ t+ At
Pi.j p”-l- 9 (at)i,j—i_(@t)i,j

— (&)17" are predicted derivatives at ¢+ At using

predicted values pit2%, o2 wi b2 w2t at ¢+ At
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MacCormack Technique - Prediction

— Prediction

utet =ul 4 Ap(EL),

]

_ .t At 1 pf j+1 " Pi 51 t Yit1,5 " Yi—1,5 t 9:34—1_”;‘53—1
— t
pfjJ-At pi,j T At(a_g)i,j

/ t t
_ t Uir1, U154 t Vij41Y -1 t Pit1,5Pi—1,5 t Pi 41 Pi -1
Pij — At (p’l,J 2Ax + Pi,; 2Ay + Uy j 2Ax + Yij 2Ay
_t4+At
t,] Po
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MacCormack Technique - Prediction

— Prediction of derivatives

- —t+At —t+At —t+At —t+At —t4+At —t+ At
(@)H‘At _ 1 Piy1,57Pi_1,5 4 Eﬁ—kAt Ujpq1, %14 4 @H—.At U; 541 s 51
ot ’L,J 52—;At 2Ax 1,] 2Ax 1,7 2Ay
- —t+ At —t+At —t+At —t+At —t+ At —t+At
(@)’H‘At _ 1 Pij417Pij—1 4 ﬂl?—l—‘At Yit1,; 7 Yi—1,j —|—@H—-At Yij+1"Yij—1
t/i,5 ;ﬁ?At 2Ay i,J 2Ax J 2Ay
— —t+At —t+At —t+At —t+At
(_p)H‘At — _ [pttAt YY1y StAE Y Vg
ot /4,5 (2] 2Ax Pi.;j 2Ay

_t+At —t+At _t+At  —t+At
_|_ﬂt—|—-Atpi+1,j_pi—l,j +@t+AtP¢,j+1_pi,j—1

1] 2Ax ,J 2Ay
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Outline

— Particles vs. grids

— Advection of the velocity field
— Simple grid fluid solvers

— Discussion
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Discussion

— Boundary handling
— Same concepts as for particle fluids

— Boundary samples with predefined values,
e.g. mirrored or extrapolated pressure

— Time step
— Same rules as for particle fluids (CFL number)
— Velocity times time step should be smaller than cell size
— Viscosity
— Grid solvers typically suffer from significant artificial viscosity
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Discussion

— Staggered grid
— Velocity and pressure considered at shifted positions
— Requires interpolations

— Free surface
— Level sets (initial interface is advected with the flow)
— Tracer particles (semi-Lagrangian)

— Simulation step

— Typically subdivided into advection v} ; = 'v,f,j — At(v;f,j : V)vf’j

L t+At 1 t
followed by projection »; 72" = v}, — Atpgﬂj Vp;
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Discussion - Grid Solvers in Graphics

— Advection
N t t

— Typically realized with tracer particles
— Independent particles are advected with the flow

— Interpolation of particle velocities from / to cell velocities
— PIC, FLIP, Stam'’s stable fluid
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Discussion - Grid Solvers in Graphics

— Projection
t+At % 1 t
- Vi =V — AtV

— Pressure is typically computed with a PPE
— Divergence of predicted velocity as source term
— No explicit notion of density deviation
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Grid-based Fluids

[Carlson et al,
SIGGRAPH 2004] =
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