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Motivation

Lagrangian: Acceleration 
of a moving parcel.

Eulerian: Acceleration 
at a static cell.

or
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Grid-based Fluids

 Benefits
 Fixed neighbor sets

 Constant sampling quality

 Accuracy

 …

 Challenges
 Free surfaces

 Complex boundaries

 Moving boundaries

 … [Lorenzo Rossini]
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Grid-based Fluids

[Enright et al., 
SIGGRAPH 2002]
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Outline

 Particles vs. grids

 Advection of the velocity field

 Simple grid fluid solvers

 Discussion
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Fluid Solvers

 Fluid solvers compute 
velocity fields that
represent the fluid flow

 The velocity field is 
sampled at discrete time 
points    and discrete 
positions

Velocity field at time t
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Particles vs. Grid Samples

 Particles

 Are small fractions of the fluid body

 Represent some volume

 Have a mass according 
to volume and density

 Position moves with the flow

 Velocity represents the
velocity of the fluid parcel  
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Particles vs. Grid Samples

 Grid cells

 Contain small fractions of the fluid body

 Represent some volume

 Contain some mass according 
to volume and density

 Position is static

 Velocity represents the 
flow velocity through the 
cell container
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Particles vs. Grid Samples

 Both concepts compute the same velocity field,
but typically at different sample positions

 Grid solvers do not
move the samples 
with the flow

 Particle solvers 
move the samples 
with the flow
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Particles vs. Grid Samples

 Particles

 Velocity updates                                         at a particle 
are computed using the Navier-Stokes equation  

 is the time rate of change of a particle, i.e. sample 
that is advected with the flow:

 Advection of the samples accounts 
for the advection of the flow
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Particles vs. Grid Samples

 Grid samples

 Velocity updates                                         at a grid cell
are computed using the Navier-Stokes equation 

 is the time rate of change of a static sample
with 

 accounts for the advection of the flow
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Particles vs. Grid Samples

 Particles

 Grid samples
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Particles vs. Grids – 1D Illustration

Particle approach

Grid approach
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Particles vs. Grids – 1D Illustration

 Navier-Stokes

 Time rate of change of the 
velocity of an advected position

 Time rate of change of the
velocity at a fixed position
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Particles vs. Grids – 1D Illustration

 Relation 
 Two sample positions                      with

 Taylor approximation of the velocity

Notation
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Material Derivative

 is the time rate of 
change of the velocity of a moving fluid element 

 if     is a moving particle with 

 if     is a static grid cell



 Is a general form of the Navier-Stokes equation 

 can be a particle or a grid cell

 Particle techniques are referred to as Lagrangian 

 Grid techniques are referred to as Eulerian  
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Navier-Stokes on Grids



 Grid approaches often work with per-volume
quantities in contrast to per-mass quantities



 is the time rate of change 
of the velocity of a moving fluid element

 is the local acceleration

 is the convective acceleration
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Grid-based Fluid Solvers

 Grid solvers compute         at all grid cells

 Velocities at grid cells are updated with, e.g.,

 Spatial derivatives can be approximated with,
e.g., finite differences in 1D  
with       being the grid cell size
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Outline

 Particles vs. grids

 Advection of the velocity field

 Simple grid fluid solvers

 Discussion
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Overview

 Navier-Stokes:

 Advection equation:

 Velocity              is advected by velocity

 1D advection equation:

 Temperature     advected by constant velocity

 Computation of                     with

 Discretization of              with finite differences 
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1D Advection of a 1D Quantity

 E.g., 1D temperature field is advected by 1D velocity / wind

 is known at all positions      at time 

wind speed
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Advection

 How to compute             
at arbitrary

positions      and 
times    ?

 Analytic solution

 is obtained by shifting      through a distance 
without changing the shape of

wind speed
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Advection on a Grid – 1D

 Discretize time and space:

 is considered at discrete positions and time points

wind speed
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Advection on a Grid

 How to compute                 from             ?

 If T is linear:

 1D advection equation

wind 
speed
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1D Advection Equation on a Grid

 The continuous form                                  is discretized

 E.g.,

 This equation contains only one unknown 





 If               is known at all samples, i.e. grid cells     , 
at time    ,                 at the next time        can be 
computed at all grid cells

forward difference central difference
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Finite Differences

 The time derivative is commonly discretized as

 The spatial derivative is discretized in various ways

forward difference

central difference

backward difference
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Solving the 1D Advection Equation

 Upwind

 Downwind 

 Centered (forward time centered space FTCS)

 Leap-frog
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Solving the 1D Advection Equation

 Lax-Wendroff

 Beam-Warming

 Lax-Friedrichs
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Finite Differences

 Are one way to approximate 
spatial derivatives for grid cells 

 Can be used to, e.g., compute the pressure gradient
in the Navier-Stokes equation at grid cells

 Can also approximate higher-order derivatives, e.g.

 Can also compute more accurate approximations
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3D Advection Equation on a Grid

 1D form:

 General form: 

 In 3D:

 Advecting a vector quantity    :

 In the Eulerian form of the Navier-Stokes equation,
the velocity at a position is advected by the velocity
at that position

grid cell position and 
velocity are vectors
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Advecting the Velocity Field



 Application in the Navier-Stokes equation

speed

speed
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1D/3D Velocity Advection on a Grid

 1D: 

 3D:
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Outline

 Particles vs. grids

 Advection of the velocity field

 Simple grid fluid solvers

 Discussion
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Governing Equations in 2D

 Momentum equation at position           at time 



 Inviscid flow (artificial viscosity) 

 No body force, non-conservation form

 State equation

 Continuity equation at position           at time 



 Follows from

 Used for differential density update 

Notation
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Governing Equations in 2D
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Solver Illustration
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Simple 2D Grid Fluid Solver

Velocity update for a cell

Density update for a cell

Velocity change per time

Density change per time

Pressure from density

Velocity change per time

Velocity update for a cell
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Simple 2D Grid Fluid Solver

 No neighbor search / fixed neighbor sets

 Pressure computation, e.g. state equation or PPE

 Spatial derivatives computed, e.g., with finite differences

 Interestingly, SPH would also be an option

 Pressure gradient and velocity divergence 
are also used in particle solvers

 Advection terms only occur in grid solvers

 Velocity and density update per static cell

 No sample advection 
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Discretization with Finite Differences

 The time derivatives

are expressed with spatial derivatives 
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Discretization with Finite Differences

 E.g., using second-order central differences



University of Freiburg – Computer Science Department – 41

Lax-Wendroff Technique

 Velocity and density update with
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Lax-Wendroff Technique - Density

 Second time derivative       can be obtained by 
differentiating                                                  
with respect to time

 First time derivatives are computed with spatial 
derivatives from the governing equations



University of Freiburg – Computer Science Department – 43

Lax-Wendroff Technique - Density

 Mixed time / spatial derivatives, e.g.        , can be 
obtained by differentiating, e.g. 
with respect to

 Discretizations of higher-order derivatives, e.g. 
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MacCormack Technique - Update

 Velocity and density update with

 are predicted derivatives at           using 
predicted values                                     at  
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MacCormack Technique - Prediction

 Prediction
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MacCormack Technique – Prediction

 Prediction of derivatives
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Outline

 Particles vs. grids

 Advection of the velocity field

 Simple grid fluid solvers

 Discussion
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Discussion

 Boundary handling

 Same concepts as for particle fluids

 Boundary samples with predefined values,
e.g. mirrored or extrapolated pressure

 Time step

 Same rules as for particle fluids (CFL number)

 Velocity times time step should be smaller than cell size

 Viscosity

 Grid solvers typically suffer from significant artificial viscosity
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Discussion

 Staggered grid

 Velocity and pressure considered at shifted positions

 Requires interpolations

 Free surface

 Level sets (initial interface is advected with the flow)

 Tracer particles (semi-Lagrangian)

 Simulation step

 Typically subdivided into advection
followed by projection
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Discussion – Grid Solvers in Graphics

 Advection



 Typically realized with tracer particles

 Independent particles are advected with the flow 

 Interpolation of particle velocities from / to cell velocities

 PIC, FLIP, Stam’s stable fluid
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Discussion – Grid Solvers in Graphics

 Projection



 Pressure is typically computed with a PPE

 Divergence of predicted velocity as source term 

 No explicit notion of density deviation 
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Grid-based Fluids

[Carlson et al., 
SIGGRAPH 2004]


