Simulation in Computer Graphics
Space Subdivision

Matthias Teschner

|
UNI
FRE:BURG



Outline

— Introduction
— Unitorm grid
— K-d tree
— BSP tree

University of Freiburg - Computer Science Department - 2



Model vs. Space Partitioning

B i

/

\\u

Model partitioning Space partitioning

University of Freiburg - Computer Science Department - 3



Motivation

— Restrict pairwise object tests to objects
that are located in the same region of space

— Only objects or object primitives
in the same region of space can overlap

— Efficient broad-phase approach
for larger numbers of objects

University of Freiburg - Computer Science Department - 4



Spatial Data Structures

Uniform griad Quadtree / Octree k-d tree BSP tree

— Space is subdivided into cells
— Cells maintain references to primitives intersecting the cell
— Data structures have different degrees-of-freedom

— Actual space subdivision is adapted to the scene

University of Freiburg - Computer Science Department - 5




Outline

— Introduction
— Uniftorm grid
— K-d tree
— BSP tree

University of Freiburg - Computer Science Department - 6



Basic Idea

— Space is divided into cells

— Object primitives are

placed into cells

— Object primitives in the same

cell are checked for collision

— Pairs of primitives that do

not share the same cell
are not tested (trivial reject)

University of Freiburg - Computer Science Department - 7



Implementation - Setup

Infinite uniform grid

| Hash function:
H(cell) = hash table index

Hash table

Spatial data structure Representation / implementation

University of Freiburg - Computer Science Department - 8




Implementation - Stage 1

— All vertices are hashed according to their cell

ST,

/

O

University of Freiburg - Computer Science Department - 9



Implementation - Stage 2

— All tetrahedrons are hashed according to
the cells touched by their bounding box

University of Freiburg - Computer Science Department - 10



Implementation - Stage 3

— Vertices and tetrahedrons in the same
hash table entry are tested for intersection

B SN

bbb

=
N

-o-—0—o
NN

N

C)

® -
A) > - no collision
|

B) 5 - collision
|

B - self-collision

|

University of Freiburg - Computer Science Department - 11



Vertex-in-Tetrahedron Test

Barycentric coordinates Oriented faces

— Barycentric coordinates more efficient
— They also provide useful collision information

University of Freiburg - Computer Science Department - 12



Implementation - Summary

— Store all vertices in the hash table

— Compute hash table indices for the
pounding boxes of the tetrahedrons

— Do not store the tetrahedrons in the
nash table, but check for intersection
with all vertices in the respective entry
— Parameters
— @Grid cell size, hash table size, hash function

University of Freiburg - Computer Science Department - 13



Parameters

Infinite uniform grid

| Hash function:
H(cell) 2 hash table index

Hash table

<4+—> < >
cell size hash table size

University of Freiburg - Computer Science Department - 14

FREIBURG



Grid Cell Size

— Cell size should be equal to the size of the bounding
box of an object primitive [Bentley 197/7]

200
180

— 160
140
120
100
80
60
40
20

0 1 5 3 4 5 test scenario
Cell size / average edge length

[Teschner,
Heidelberger
et al. 2003]

Collision detection [m

University of Freiburg - Computer Science Department - 15




Hash Table Size

— Hash collisions reduce the performance
— Larger hash table can reduce hash collisions

8

7

[Teschner,
Heidelberger
et al. 2003]

Collision detection [ms]
[@a]

test scenario

29 1000 2000 3000 4000 5000
Hash table size

University of Freiburg — Computer Science Department - 16

FREIBURG



Hash Function

— Should avoid hash collisions

— Should be efficient (has to be
computed for all primitives)

H(x,y,z) = (p1-x xXor pg-y xor p3-z) mod n
— Cell identifier: T, Y, 2
— Large primes: p1, P2, P3
— Hash table size: n

University of Freiburg - Computer Science Department - 17



Performance

— Linear in the number of primitives
— Independent of the number of objects

Objects Tetras Vertices Maxtime

[ms]
100 1000 1200 6
8 4000 1936 15
20 10000 4840 34
2 20514 5898 72 e
test scenarios
100 50000 24200 174 Pentium 4, 1.8GHz

University of Freiburg - Computer Science Department - 18



Summary - Uniform Grid

— Space uniformly partitionec
into axis-aligned space cells

— Primitives (or their AABBS) are scan-converted
to identify intersected space cells

— Hashed storage of cells for non-uniform distribution
— Simple and memory-efficient

University of Freiburg - Computer Science Department - 19



Summary - Uniform Grid

— Particularly interesting for deformable objects,
n-body environments and self-collision

— Parameters significantly influence the performance

— Performance dependent on the number of primitives
— Performance independent of the number of objects
— Technigque works with various types of primitives

University of Freiburg - Computer Science Department - 20



Outline

— Introduction
— Unitorm grid
— K-d tree
— BSP tree

University of Freiburg - Computer Science Department - 21



K-d Tree - 2-d Example

MR /:\
M/\ /\
st

University of Freiburg - Computer Science Department - 22



Collision Query (Range Query)

— Traverse all nodes affected by the intervals of an AABB
— Check all primitives e in the leaves for intersection

X9 L3 T
4ty ' | (ﬂjmaaaa ymaa:) !
o ° * < >
6} °
(Im’in: ymzn) y2 yl y2
. (6) ° S/ > g >
°
Y1 .
° . A e
4 L2 L5 L3
| 7\> S ] 7 ) g \>
X
> e ¢ o © o o o o
L4 I L5

University of Freiburg - Computer Science Department - 23



Outline

— Introduction
— Unitorm grid
— K-d tree
— BSP tree

University of Freiburg - Computer Science Department - 24



Binary Space Partitioning Tree BSP

— Generalized k-d tree

— Space is recursively subdivided by
means of arbitrarily oriented planes

— Space partitioning into convex cells

— Proposed by [Henry Fuchs et al. 1980] BSP tree
to solve the visible surface problem

University of Freiburg - Computer Science Department - 25



Collision Detection Example

— BSP trees can be used for the inside /
outside classification of closed polygons

/\

1
2 7\ 7\
/ out 4 out 2
+ - + -
: 7\ 7\
out in out in
Scene Scene partitioning Solid-leaf

BSP tree

University of Freiburg - Computer Science Department - 26



Collision Query

— Query point is inside / \
/\ /\

out 4 out 2

— Query point is outside / \
7’\ /\

out 4 out 2

i out in out in

University of Freiburg - Computer Science Department - 27



Construction

— Keep the number of nodes small
— Keep the number of levels small

University of Freiburg - Computer Science Department - 28



