
Matthias Teschner

Simulation in Computer Graphics
Space Subdivision

University of Freiburg – Computer Science Department – 2

Outline

 Introduction

 Uniform grid

 K-d tree

 BSP tree

University of Freiburg – Computer Science Department – 3

Model vs. Space Partitioning

Model partitioning Space partitioning

University of Freiburg – Computer Science Department – 4

Motivation

 Restrict pairwise object tests to objects
that are located in the same region of space

 Only objects or object primitives
in the same region of space can overlap

 Efficient broad-phase approach
for larger numbers of objects

University of Freiburg – Computer Science Department – 5

Spatial Data Structures

 Space is subdivided into cells

 Cells maintain references to primitives intersecting the cell

 Data structures have different degrees-of-freedom

 Actual space subdivision is adapted to the scene

Uniform grid Quadtree / Octree k-d tree BSP tree

University of Freiburg – Computer Science Department – 6

Outline

 Introduction

 Uniform grid

 K-d tree

 BSP tree

University of Freiburg – Computer Science Department – 7

Basic Idea

 Space is divided into cells

 Object primitives are
placed into cells

 Object primitives in the same
cell are checked for collision

 Pairs of primitives that do
not share the same cell
are not tested (trivial reject)

University of Freiburg – Computer Science Department – 8

Implementation - Setup

Infinite uniform grid

Hash function:

H(cell)  hash table index

Hash table

...

Spatial data structure Representation / implementation

University of Freiburg – Computer Science Department – 9

Implementation - Stage 1

 All vertices are hashed according to their cell

..
.

University of Freiburg – Computer Science Department – 10

Implementation - Stage 2

 All tetrahedrons are hashed according to
the cells touched by their bounding box

..
.

University of Freiburg – Computer Science Department – 11

Implementation - Stage 3

 Vertices and tetrahedrons in the same
hash table entry are tested for intersection
..
.

A)  no collision

B)  collision

C)  self-collision

University of Freiburg – Computer Science Department – 12

Vertex-in-Tetrahedron Test

 Barycentric coordinates more efficient

 They also provide useful collision information

Barycentric coordinates Oriented faces

University of Freiburg – Computer Science Department – 13

Implementation - Summary

 Store all vertices in the hash table

 Compute hash table indices for the
bounding boxes of the tetrahedrons

 Do not store the tetrahedrons in the
hash table, but check for intersection
with all vertices in the respective entry

 Parameters

 Grid cell size, hash table size, hash function

University of Freiburg – Computer Science Department – 14

Parameters

Infinite uniform grid

Hash function:

H(cell)  hash table index

Hash table

...

cell size hash table size

University of Freiburg – Computer Science Department – 15

Grid Cell Size

 Cell size should be equal to the size of the bounding
box of an object primitive [Bentley 1977]

test scenario

[Teschner,
Heidelberger
et al. 2003]

University of Freiburg – Computer Science Department – 16

Hash Table Size

 Hash collisions reduce the performance

 Larger hash table can reduce hash collisions

test scenario

[Teschner,
Heidelberger
et al. 2003]

University of Freiburg – Computer Science Department – 17

Hash Function

 Should avoid hash collisions

 Should be efficient (has to be
computed for all primitives)

 Cell identifier:

 Large primes:

 Hash table size:

University of Freiburg – Computer Science Department – 18

Performance

 Linear in the number of primitives

 Independent of the number of objects

test scenarios

Objects Tetras Vertices Max time
[ms]

100 1000 1200 6

8 4000 1936 15

20 10000 4840 34

2 20514 5898 72

100 50000 24200 174 Pentium 4, 1.8GHz

University of Freiburg – Computer Science Department – 19

Summary – Uniform Grid

 Space uniformly partitioned
into axis-aligned space cells

 Primitives (or their AABBs) are scan-converted
to identify intersected space cells

 Hashed storage of cells for non-uniform distribution

 Simple and memory-efficient

University of Freiburg – Computer Science Department – 20

Summary – Uniform Grid

 Particularly interesting for deformable objects,
n-body environments and self-collision

 Parameters significantly influence the performance

 Performance dependent on the number of primitives

 Performance independent of the number of objects

 Technique works with various types of primitives

University of Freiburg – Computer Science Department – 21

Outline

 Introduction

 Uniform grid

 K-d tree

 BSP tree

University of Freiburg – Computer Science Department – 22

k-d Tree – 2-d Example

University of Freiburg – Computer Science Department – 23

Collision Query (Range Query)

 Traverse all nodes affected by the intervals of an AABB
 Check all primitives in the leaves for intersection

University of Freiburg – Computer Science Department – 24

Outline

 Introduction

 Uniform grid

 K-d tree

 BSP tree

University of Freiburg – Computer Science Department – 25

Binary Space Partitioning Tree BSP

 Generalized k-d tree

 Space is recursively subdivided by
means of arbitrarily oriented planes

 Space partitioning into convex cells

 Proposed by [Henry Fuchs et al. 1980]
to solve the visible surface problem

BSP tree

University of Freiburg – Computer Science Department – 26

Collision Detection Example

 BSP trees can be used for the inside /
outside classification of closed polygons

Scene Scene partitioning Solid-leaf

BSP tree

1
2

3

4

1

2

3a

4

3b

1

3b 3a

4 2

+

+ + --

-

out out

+ - + -

out out inin

University of Freiburg – Computer Science Department – 27

Collision Query

 Query point is inside

 Query point is outside

1
2

3a

4

3b

1

3b 3a

4 2

+

+ + --

-

out out

+ - + -

out out inin

1
2

3a

4

3b

1

3b 3a

4 2

+

+ + --

-

out out

+ - + -

out out inin

University of Freiburg – Computer Science Department – 28

Construction

 Keep the number of nodes small

 Keep the number of levels small

