An example of an implicit Euler implementation

Computer Graphics University of Freiburg

2018

1 Setting

Figure 1: Example setting with four particles and three springs.

Fig. 1 illustrates an example with four particles at positions $\boldsymbol{x}_{1..4}$ with masses $m_{1..4}$ and three springs with rest lengths $L_{1..3}$ and stiffness constants $k_{1..3}$. Gravity \boldsymbol{g} , other accelerations $\boldsymbol{a}_i^{\text{other}}$ that do not depend on positions, e.g. damping of relative velocities, and spring forces $\boldsymbol{F}_i^{\text{spring}}$ are considered at particles. E.g., the acceleration \boldsymbol{a}_1^t at particle \boldsymbol{x}_1^t at time t is computed as

$$\boldsymbol{a}_{1}^{t} = \boldsymbol{g} + \boldsymbol{a}_{1}^{\text{other},t} + \frac{1}{m_{1}} \boldsymbol{F}_{1}^{\text{spring},t}$$
 (1)

with

$$F_1^{\text{spring},t} = \frac{k_1}{L_1} \left(\boldsymbol{x}_2^t - \boldsymbol{x}_1^t - L_1 \frac{\boldsymbol{x}_2^t - \boldsymbol{x}_1^t}{|\boldsymbol{x}_2^t - \boldsymbol{x}_1^t|} \right) + \frac{k_3}{L_3} \left(\boldsymbol{x}_3^t - \boldsymbol{x}_1^t - L_3 \frac{\boldsymbol{x}_3^t - \boldsymbol{x}_1^t}{|\boldsymbol{x}_3^t - \boldsymbol{x}_1^t|} \right). \tag{2}$$

Note that
$$\boldsymbol{x}_j^t - \boldsymbol{x}_i^t - L_k \frac{\boldsymbol{x}_j^t - \boldsymbol{x}_i^t}{|\boldsymbol{x}_j^t - \boldsymbol{x}_i^t|} = (|\boldsymbol{x}_j^t - \boldsymbol{x}_i^t| - L_k) \frac{\boldsymbol{x}_j^t - \boldsymbol{x}_i^t}{|\boldsymbol{x}_j^t - \boldsymbol{x}_i^t|}.$$

2 Formulation

Implicit Euler computes velocities \boldsymbol{v}_i^{t+h} at the next timestep t+h by solving a linear system. The computed velocities are used to update the particle positions with $\boldsymbol{x}_i^{t+h} = \boldsymbol{x}_i^t + h \boldsymbol{v}_i^{t+h}$. The implicit formulation for the velocity computation according to Euler would be

$$\boldsymbol{v}_{i}^{t+h} = \boldsymbol{v}_{i}^{t} + h(\boldsymbol{g} + \boldsymbol{a}_{i}^{\text{other},t+h} + \frac{1}{m_{i}}\boldsymbol{F}_{i}^{\text{spring},t+h}). \tag{3}$$

This is typically considered as too complex and the following formulation is solved instead:

$$\boldsymbol{v}_{i}^{t+h} = \boldsymbol{v}_{i}^{t} + h(\boldsymbol{g} + \boldsymbol{a}_{i}^{\text{other},t}) + h \frac{1}{m_{i}} \boldsymbol{F}_{i}^{\text{spring},t+h}. \tag{4}$$

The term $v_i^* = v_i^t + h(g + a_i^{\text{other},t})$ is explicitly computed and referred to as predicted velocity. Instead of Eq. 4, the following formulation is solved:

$$\mathbf{v}_{i}^{t+h} = \mathbf{v}_{i}^{*} + h \frac{1}{m_{i}} \mathbf{F}_{i}^{\text{spring},t+h}$$

$$m_{i} \mathbf{v}_{i}^{t+h} = m_{i} \mathbf{v}_{i}^{*} + h \mathbf{F}_{i}^{\text{spring},t+h}.$$
(5)

We now consider vectors that represent all particles, e.g.

$$\boldsymbol{x}^{t} = \begin{pmatrix} \boldsymbol{x}_{1}^{t} \\ \boldsymbol{x}_{2}^{t} \\ \boldsymbol{x}_{3}^{t} \\ \boldsymbol{x}_{4}^{t} \end{pmatrix} \quad \boldsymbol{v}^{t} = \begin{pmatrix} \boldsymbol{v}_{1}^{t} \\ \boldsymbol{v}_{2}^{t} \\ \boldsymbol{v}_{3}^{t} \\ \boldsymbol{v}_{4}^{t} \end{pmatrix} \quad \boldsymbol{F}^{\text{spring},t} = \begin{pmatrix} \boldsymbol{F}_{1}^{\text{spring},t} \\ \boldsymbol{F}_{2}^{\text{spring},t} \\ \boldsymbol{F}_{3}^{\text{spring},t} \\ \boldsymbol{F}_{4}^{\text{spring},t} \end{pmatrix}$$
(6)

Eq. 5 can now be written for the entire particle set:

$$\mathbf{M}\mathbf{v}^{t+h} = \mathbf{M}\mathbf{v}^* + h\mathbf{F}^{\text{spring},t+h} \tag{7}$$

with

$$\mathbf{M} = \begin{pmatrix} m_1 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & m_1 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & m_1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & m_2 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & m_2 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & m_2 & \dots \end{pmatrix}$$
(8)

of size 12×12 for our example setting.

3 Linearization

The formulation

$$Mv^{t+h} = Mv^* + hF^{\text{spring},t+h}$$
(9)

is replaced by the approximation

$$Mv^{t+h} = Mv^* + hF^{\text{spring},t} + hJ^t(x^{t+h} - x^t)$$
(10)

with J^t being a Jacobi matrix that represents all partial derivatives of all spring forces with respect to all positions. This linearization of the forces and the fact that $x^{t+h} - x^t = hv^{t+h}$ results in a linear system with unknown velocities v^{t+h} :

$$\boldsymbol{M}\boldsymbol{v}^{t+h} = \boldsymbol{M}\boldsymbol{v}^* + h\boldsymbol{F}^{\text{spring},t} + h\boldsymbol{J}^t h\boldsymbol{v}^{t+h}$$
$$(\boldsymbol{M} - h^2\boldsymbol{J}^t)\boldsymbol{v}^{t+h} = \boldsymbol{M}\boldsymbol{v}^* + h\boldsymbol{F}^{\text{spring},t}$$
(11)

We omit the time index for quantities at time t to improve readability. We also replace $\mathbf{F}^{\text{spring}}$ with \mathbf{F} .

$$(\boldsymbol{M} - h^2 \boldsymbol{J}) \boldsymbol{v}^{t+h} = \boldsymbol{M} \boldsymbol{v}^* + h \boldsymbol{F}$$
 (12)

4 The Jacobi matrix

The Jacobi matrix consists of submatrices $J_{i,j}$ of size 3×3 . In our example setting, we have

$$J = \begin{pmatrix} J_{1,1} & J_{1,2} & J_{1,3} & J_{1,4} \\ J_{2,1} & J_{2,2} & J_{2,3} & J_{2,4} \\ J_{3,1} & J_{3,2} & J_{3,3} & J_{3,4} \\ J_{4,1} & J_{4,2} & J_{4,3} & J_{4,4} \end{pmatrix}$$
(13)

Each submatrix $J_{i,j}$ encodes the spatial derivative of the force F_i with respect to the position x_j , i.e. the dependency of F_i from x_j . $J_{i,j}$ encodes, how the force F_i changes due a small displacement of x_j .

If a force F_i does not depend from a position x_j , the respective derivative $J_{i,j}$ is zero. In our example, the force $F_4 = m_4 g + m_4 a_4^{\text{other}}$ does not depend on any of the positions $x_{1..4}$. I.e., $J_{4,1..4} = 0$. Further, the forces $F_{1..3}$ do not depend on position x_4 . Thus, $J_{1..3,4} = 0$. The forces $F_{1..3}$ depend on positions $x_{1..3}$. So, $J_{1..3,1..3}$ have to be computed. The Jacobian in our example has the

following structure:

$$J = \begin{pmatrix} J_{1,1} & J_{1,2} & J_{1,3} & 0 \\ J_{2,1} & J_{2,2} & J_{2,3} & 0 \\ J_{3,1} & J_{3,2} & J_{3,3} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
(14)

4.1 Spring forces

The spring forces at the particles are

$$F_{1} = \frac{k_{1}}{L_{1}} \left(x_{2} - x_{1} - L_{1} \frac{x_{2} - x_{1}}{|x_{2} - x_{1}|} \right) + \frac{k_{3}}{L_{3}} \left(x_{3} - x_{1} - L_{3} \frac{x_{3} - x_{1}}{|x_{3} - x_{1}|} \right)$$

$$F_{2} = -\frac{k_{1}}{L_{1}} \left(x_{2} - x_{1} - L_{1} \frac{x_{2} - x_{1}}{|x_{2} - x_{1}|} \right) + \frac{k_{2}}{L_{2}} \left(x_{3} - x_{2} - L_{2} \frac{x_{3} - x_{2}}{|x_{3} - x_{2}|} \right)$$

$$F_{3} = -\frac{k_{2}}{L_{2}} \left(x_{3} - x_{2} - L_{2} \frac{x_{3} - x_{2}}{|x_{3} - x_{2}|} \right) - \frac{k_{3}}{L_{3}} \left(x_{3} - x_{1} - L_{3} \frac{x_{3} - x_{1}}{|x_{3} - x_{1}|} \right)$$
(15)

Each particle is connected to two springs. If we have a spring k that connects two particles i and j, the force at particle i can be denoted as $\mathbf{f}_k(\mathbf{x}_i \leftarrow \mathbf{x}_j)$. E.g.,

$$f_{1}(\mathbf{x}_{1} \leftarrow \mathbf{x}_{2}) = \frac{k_{1}}{L_{1}}(\mathbf{x}_{2} - \mathbf{x}_{1} - L_{1} \frac{\mathbf{x}_{2} - \mathbf{x}_{1}}{|\mathbf{x}_{2} - \mathbf{x}_{1}|})$$

$$f_{2}(\mathbf{x}_{2} \leftarrow \mathbf{x}_{3}) = \frac{k_{2}}{L_{2}}(\mathbf{x}_{3} - \mathbf{x}_{2} - L_{2} \frac{\mathbf{x}_{3} - \mathbf{x}_{2}}{|\mathbf{x}_{3} - \mathbf{x}_{2}|})$$

$$f_{3}(\mathbf{x}_{1} \leftarrow \mathbf{x}_{3}) = \frac{k_{3}}{L_{3}}(\mathbf{x}_{3} - \mathbf{x}_{1} - L_{3} \frac{\mathbf{x}_{3} - \mathbf{x}_{1}}{|\mathbf{x}_{3} - \mathbf{x}_{1}|})$$
(16)

The spring forces are symmetric and sum up to zero, i.e.

$$\mathbf{f}_k(\mathbf{x}_i \leftarrow \mathbf{x}_j) = -\mathbf{f}_k(\mathbf{x}_j \leftarrow \mathbf{x}_i). \tag{17}$$

The spring forces at the three particles can now be written as

$$F_{1} = f_{1}(x_{1} \leftarrow x_{2}) + f_{3}(x_{1} \leftarrow x_{3})$$

$$F_{2} = f_{1}(x_{2} \leftarrow x_{1}) + f_{2}(x_{2} \leftarrow x_{3}) = -f_{1}(x_{1} \leftarrow x_{2}) + f_{2}(x_{2} \leftarrow x_{3})$$

$$F_{3} = f_{2}(x_{3} \leftarrow x_{2}) + f_{3}(x_{3} \leftarrow x_{1}) = -f_{2}(x_{2} \leftarrow x_{3}) - f_{3}(x_{1} \leftarrow x_{3}).$$
(18)

Due to the symmetry, one force computation per spring is sufficient to assemble the overall forces at particles.

4.2 Spatial derivatives of spring forces

We consider force F_1 at particle x_1 . We have to compute the spatial derivatives of $F_1 = (F_{1,x}, F_{1,y}, F_{1,z})^{\mathrm{T}}$ with respect to positions $x_{1...3} = (x_{1...3,x}, x_{1...3,y}, x_{1...3,z})^{\mathrm{T}}$. I.e.

$$\boldsymbol{J}_{1,1} = \begin{pmatrix} \frac{\partial F_{1,x}}{\partial x_{1,x}} & \frac{\partial F_{1,x}}{\partial x_{1,y}} & \frac{\partial F_{1,x}}{\partial x_{1,z}} \\ \frac{\partial F_{1,y}}{\partial x_{1,x}} & \frac{\partial F_{1,y}}{\partial x_{1,y}} & \frac{\partial F_{1,y}}{\partial x_{1,z}} \\ \frac{\partial F_{1,z}}{\partial x_{1,x}} & \frac{\partial F_{1,z}}{\partial x_{1,y}} & \frac{\partial F_{1,z}}{\partial x_{1,z}} \end{pmatrix} \boldsymbol{J}_{1,2} = \begin{pmatrix} \frac{\partial F_{1,x}}{\partial x_{2,x}} & \frac{\partial F_{1,x}}{\partial x_{2,y}} & \frac{\partial F_{1,x}}{\partial x_{2,z}} \\ \frac{\partial F_{1,y}}{\partial x_{2,x}} & \frac{\partial F_{1,y}}{\partial x_{2,y}} & \frac{\partial F_{1,y}}{\partial x_{2,z}} \\ \frac{\partial F_{1,z}}{\partial x_{2,x}} & \frac{\partial F_{1,z}}{\partial x_{2,y}} & \frac{\partial F_{1,z}}{\partial x_{2,z}} \end{pmatrix} \boldsymbol{J}_{1,3} = \dots (19)$$

The matrices can also be rewritten using f instead of F. E.g.,

$$J_{1,1} = \begin{pmatrix} \frac{\partial f_{1,x}}{\partial x_{1,x}} & \frac{\partial f_{1,x}}{\partial x_{1,y}} & \frac{\partial f_{1,x}}{\partial x_{1,z}} \\ \frac{\partial f_{1,y}}{\partial x_{1,x}} & \frac{\partial f_{1,y}}{\partial x_{1,y}} & \frac{\partial f_{1,y}}{\partial x_{1,z}} \\ \frac{\partial f_{1,z}}{\partial x_{1,x}} & \frac{\partial f_{1,z}}{\partial x_{1,y}} & \frac{\partial f_{1,z}}{\partial x_{1,z}} \end{pmatrix} + \begin{pmatrix} \frac{\partial f_{3,x}}{\partial x_{1,x}} & \frac{\partial f_{3,x}}{\partial x_{1,y}} & \frac{\partial f_{3,x}}{\partial x_{1,z}} \\ \frac{\partial f_{3,y}}{\partial x_{1,x}} & \frac{\partial f_{3,y}}{\partial x_{1,y}} & \frac{\partial f_{3,y}}{\partial x_{1,z}} \\ \frac{\partial f_{3,z}}{\partial x_{1,x}} & \frac{\partial f_{3,z}}{\partial x_{1,y}} & \frac{\partial f_{3,z}}{\partial x_{1,z}} \end{pmatrix}$$

$$= \frac{\partial f_{1}(x_{1} \leftarrow x_{2})}{\partial x_{1}} + \frac{\partial f_{3}(x_{1} \leftarrow x_{3})}{\partial x_{1}}$$

$$(20)$$

and

$$J_{1,2} = \frac{\partial f_1(\mathbf{x}_1 \leftarrow \mathbf{x}_2)}{\partial \mathbf{x}_2} + \frac{\partial f_3(\mathbf{x}_1 \leftarrow \mathbf{x}_3)}{\partial \mathbf{x}_2}$$

$$J_{1,3} = \frac{\partial f_1(\mathbf{x}_1 \leftarrow \mathbf{x}_2)}{\partial \mathbf{x}_3} + \frac{\partial f_3(\mathbf{x}_1 \leftarrow \mathbf{x}_3)}{\partial \mathbf{x}_3}.$$
(21)

We have already discussed that $J_{1,4} = 0$, because there is no spring between particles 1 and 4. This fact can also be seen from

$$J_{1,4} = \frac{\partial f_1(x_1 \leftarrow x_2)}{\partial x_4} + \frac{\partial f_3(x_1 \leftarrow x_3)}{\partial x_4} = 0$$
 (22)

as the forces $f_1(x_1 \leftarrow x_2)$ and $f_3(x_1 \leftarrow x_3)$ do not depend on x_4 . The same argument can be used to see that $J_{1,2}$ and $J_{1,3}$ simplify to

$$J_{1,2} = \frac{\partial f_1(x_1 \leftarrow x_2)}{\partial x_2}$$

$$J_{1,3} = \frac{\partial f_3(x_1 \leftarrow x_3)}{\partial x_3}.$$
(23)

Generally,

$$J_{i,j} = \sum_{k} \frac{\partial f_k(x_i \leftarrow x_m)}{\partial x_j}.$$
 (24)

We sum over all springs k that are connected to particle i. If a spring k connects particles i and m and $j \neq i$ and $j \neq m$, then $\frac{\partial f_k(\boldsymbol{x}_i \leftarrow \boldsymbol{x}_m)}{\partial \boldsymbol{x}_j} = \mathbf{0}$.

4.3 Derivative of $f_1(x_1 \leftarrow x_2)$ with respect to x_1

The components of $\boldsymbol{f}_1(\boldsymbol{x}_1 \leftarrow \boldsymbol{x}_2)$ are

$$f_{1,x} = \frac{k_1}{L_1} \left(x_{2,x} - x_{1,x} - L_1 \frac{x_{2,x} - x_{1,x}}{\sqrt{(x_{2,x} - x_{1,x})^2 + (x_{2,y} - x_{1,y})^2 + (x_{2,z} - x_{1,z})^2}} \right)$$

$$f_{1,y} = \frac{k_1}{L_1} \left(x_{2,y} - x_{1,y} - L_1 \frac{x_{2,y} - x_{1,y}}{\sqrt{(x_{2,x} - x_{1,x})^2 + (x_{2,y} - x_{1,y})^2 + (x_{2,z} - x_{1,z})^2}} \right)$$

$$f_{1,z} = \frac{k_1}{L_1} \left(x_{2,z} - x_{1,z} - L_1 \frac{x_{2,z} - x_{1,z}}{\sqrt{(x_{2,x} - x_{1,x})^2 + (x_{2,y} - x_{1,y})^2 + (x_{2,z} - x_{1,z})^2}} \right).$$
(25)

We define

$$l_{i,j} = \sqrt{(x_{j,x} - x_{i,x})^2 + (x_{j,y} - x_{i,y})^2 + (x_{j,z} - x_{i,z})^2}$$
 (26)

and the partial derivatives of $f_1(x_1 \leftarrow x_2)$ with respect to x_1 can be written as

$$\frac{\partial f_{1,x}}{\partial x_{1,x}} = \frac{k_1}{L_1} \left(-1 + \frac{L_1}{l_{1,2}} \left(1 - \frac{(x_{2,x} - x_{1,x})(x_{2,x} - x_{1,x})}{(l_{1,2})^2} \right) \right)
\frac{\partial f_{1,x}}{\partial x_{1,y}} = \frac{k_1}{L_1} \left(0 + \frac{L_1}{l_{1,2}} \left(0 - \frac{(x_{2,x} - x_{1,x})(x_{2,y} - x_{1,y})}{(l_{1,2})^2} \right) \right)
\frac{\partial f_{1,x}}{\partial x_{1,z}} = \frac{k_1}{L_1} \left(0 + \frac{L_1}{l_{1,2}} \left(0 - \frac{(x_{2,x} - x_{1,x})(x_{2,z} - x_{1,z})}{(l_{1,2})^2} \right) \right)
\frac{\partial f_{1,y}}{\partial x_{1,x}} = \frac{k_1}{L_1} \left(0 + \frac{L_1}{l_{1,2}} \left(0 - \frac{(x_{2,y} - x_{1,y})(x_{2,x} - x_{1,x})}{(l_{1,2})^2} \right) \right)
\frac{\partial f_{1,y}}{\partial x_{1,y}} = \frac{k_1}{L_1} \left(0 + \frac{L_1}{l_{1,2}} \left(0 - \frac{(x_{2,y} - x_{1,y})(x_{2,y} - x_{1,y})}{(l_{1,2})^2} \right) \right)
\frac{\partial f_{1,y}}{\partial x_{1,z}} = \frac{k_1}{L_1} \left(0 + \frac{L_1}{l_{1,2}} \left(0 - \frac{(x_{2,y} - x_{1,y})(x_{2,x} - x_{1,z})}{(l_{1,2})^2} \right) \right)
\frac{\partial f_{1,z}}{\partial x_{1,y}} = \frac{k_1}{L_1} \left(0 + \frac{L_1}{l_{1,2}} \left(0 - \frac{(x_{2,z} - x_{1,z})(x_{2,x} - x_{1,x})}{(l_{1,2})^2} \right) \right)
\frac{\partial f_{1,z}}{\partial x_{1,y}} = \frac{k_1}{L_1} \left(0 + \frac{L_1}{l_{1,2}} \left(0 - \frac{(x_{2,z} - x_{1,z})(x_{2,y} - x_{1,y})}{(l_{1,2})^2} \right) \right)
\frac{\partial f_{1,z}}{\partial x_{1,z}} = \frac{k_1}{L_1} \left(0 + \frac{L_1}{l_{1,2}} \left(0 - \frac{(x_{2,z} - x_{1,z})(x_{2,y} - x_{1,y})}{(l_{1,2})^2} \right) \right) .$$
(27)

Finally, we have

$$\frac{\partial \mathbf{f}_{1}(\mathbf{x}_{1} \leftarrow \mathbf{x}_{2})}{\partial \mathbf{x}_{1}} = \begin{pmatrix}
\frac{\partial f_{1,x}}{\partial \mathbf{x}_{1,x}} & \frac{\partial f_{1,x}}{\partial \mathbf{x}_{1,y}} & \frac{\partial f_{1,x}}{\partial \mathbf{x}_{1,z}} \\
\frac{\partial f_{1,y}}{\partial \mathbf{x}_{1,x}} & \frac{\partial f_{1,y}}{\partial \mathbf{x}_{1,y}} & \frac{\partial f_{1,y}}{\partial \mathbf{x}_{1,z}} \\
\frac{\partial f_{1,z}}{\partial \mathbf{x}_{1,x}} & \frac{\partial f_{1,z}}{\partial \mathbf{x}_{1,y}} & \frac{\partial f_{1,z}}{\partial \mathbf{x}_{1,z}}
\end{pmatrix}$$

$$= \frac{k_{1}}{L_{1}} \left(-\mathbf{I} + \frac{L_{1}}{\|\mathbf{x}_{2} - \mathbf{x}_{1}\|} \left(\mathbf{I} - \frac{(\mathbf{x}_{2} - \mathbf{x}_{1})(\mathbf{x}_{2} - \mathbf{x}_{1})^{\mathrm{T}}}{\|\mathbf{x}_{2} - \mathbf{x}_{1}\|^{2}} \right) \right) \quad (28)$$

4.4 Assembly of J

It is sufficient to compute one 3×3 Jacobian per spring, i.e. 3 Jacobians in our example.

$$\frac{\partial \mathbf{f}_{1}(\mathbf{x}_{1} \leftarrow \mathbf{x}_{2})}{\partial \mathbf{x}_{1}} = \frac{k_{1}}{L_{1}} \left(-\mathbf{I} + \frac{L_{1}}{\|\mathbf{x}_{2} - \mathbf{x}_{1}\|} \left(\mathbf{I} - \frac{(\mathbf{x}_{2} - \mathbf{x}_{1})(\mathbf{x}_{2} - \mathbf{x}_{1})^{\mathrm{T}}}{\|\mathbf{x}_{2} - \mathbf{x}_{1}\|^{2}} \right) \right)
\frac{\partial \mathbf{f}_{2}(\mathbf{x}_{2} \leftarrow \mathbf{x}_{3})}{\partial \mathbf{x}_{2}} = \frac{k_{2}}{L_{2}} \left(-\mathbf{I} + \frac{L_{2}}{\|\mathbf{x}_{3} - \mathbf{x}_{2}\|} \left(\mathbf{I} - \frac{(\mathbf{x}_{3} - \mathbf{x}_{2})(\mathbf{x}_{3} - \mathbf{x}_{2})^{\mathrm{T}}}{\|\mathbf{x}_{3} - \mathbf{x}_{2}\|^{2}} \right) \right)
\frac{\partial \mathbf{f}_{3}(\mathbf{x}_{1} \leftarrow \mathbf{x}_{3})}{\partial \mathbf{x}_{1}} = \frac{k_{3}}{L_{3}} \left(-\mathbf{I} + \frac{L_{3}}{\|\mathbf{x}_{3} - \mathbf{x}_{1}\|} \left(\mathbf{I} - \frac{(\mathbf{x}_{3} - \mathbf{x}_{1})(\mathbf{x}_{3} - \mathbf{x}_{1})^{\mathrm{T}}}{\|\mathbf{x}_{3} - \mathbf{x}_{1}\|^{2}} \right) \right)$$
(29)

All submatrices $J_{i,j}$ can be assembled from these three Jacobians. If a spring k connects particles i and j, we have

$$\frac{\partial \mathbf{f}_k(\mathbf{x}_i \leftarrow \mathbf{x}_j)}{\partial \mathbf{x}_i} = \frac{\partial \mathbf{f}_k(\mathbf{x}_j \leftarrow \mathbf{x}_i)}{\partial \mathbf{x}_i} = -\frac{\partial \mathbf{f}_k(\mathbf{x}_i \leftarrow \mathbf{x}_j)}{\partial \mathbf{x}_i} = -\frac{\partial \mathbf{f}_k(\mathbf{x}_j \leftarrow \mathbf{x}_i)}{\partial \mathbf{x}_i} \quad (30)$$

Again, each submatrix $J_{i,j}$ is computed by summing up contributions from all springs k that are connected to particle i:

$$J_{i,j} = \sum_{k} \frac{\partial f_k(x_i \leftarrow x_m)}{\partial x_j}.$$
 (31)

We sum over all springs k that are connected to particle i. If i = j, we have

$$J_{i,i} = \sum_{k} \frac{\partial f_k(\mathbf{x}_i \leftarrow \mathbf{x}_m)}{\partial \mathbf{x}_i}.$$
 (32)

In this case, the sum contains as many elements as there are springs connected to particle i. If no spring is connected to particle i, e.g., particle 4 in our example, we have $J_{i,i} = \mathbf{0}$. If $i \neq j$, we have $J_{i,j} = \mathbf{0}$, if there is no spring between i and j. If there is one spring, we have

$$\boldsymbol{J}_{i,j} = \frac{\partial \boldsymbol{f}_k(\boldsymbol{x}_i \leftarrow \boldsymbol{x}_j)}{\partial \boldsymbol{x}_j}.$$
 (33)

4.5 The final J

We define

$$S_{1} = \frac{\partial f_{1}(x_{1} \leftarrow x_{2})}{\partial x_{1}}$$

$$S_{2} = \frac{\partial f_{2}(x_{2} \leftarrow x_{3})}{\partial x_{2}}$$

$$S_{3} = \frac{\partial f_{3}(x_{1} \leftarrow x_{3})}{\partial x_{1}}$$
(34)

and we remember

$$S_{k} = \frac{\partial f_{k}(\boldsymbol{x}_{i} \leftarrow \boldsymbol{x}_{j})}{\partial \boldsymbol{x}_{i}} = \frac{\partial f_{k}(\boldsymbol{x}_{j} \leftarrow \boldsymbol{x}_{i})}{\partial \boldsymbol{x}_{j}} = -\frac{\partial f_{k}(\boldsymbol{x}_{i} \leftarrow \boldsymbol{x}_{j})}{\partial \boldsymbol{x}_{j}} = -\frac{\partial f_{k}(\boldsymbol{x}_{j} \leftarrow \boldsymbol{x}_{i})}{\partial \boldsymbol{x}_{i}}$$
(35)

The final form of our exemplary Jacobian J is now

$$J = \begin{pmatrix} S_1 + S_3 & -S_1 & -S_3 & 0 \\ -S_1 & S_1 + S_2 & -S_2 & 0 \\ -S_3 & -S_2 & S_2 + S_3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
(36)

Each spring influences forces at two particles and depends on two particle positions. Thus, S_i occurs four times in J for a spring i.

4.6 The final system

Our system

$$\underbrace{(M - h^2 J)}_{A} v^{t+h} = \underbrace{M v^* + h F}_{s}$$
(37)

represents four particles and can be written as $Av^{t+h} = s$ or

$$\begin{pmatrix}
M_{1} - h^{2} \mathbf{J}_{1,1} & -h^{2} \mathbf{J}_{1,2} & -h^{2} \mathbf{J}_{1,3} & -h^{2} \mathbf{J}_{1,4} \\
-h^{2} \mathbf{J}_{2,1} & M_{2} - h^{2} \mathbf{J}_{2,2} & -h^{2} \mathbf{J}_{2,3} & -h^{2} \mathbf{J}_{2,4} \\
-h^{2} \mathbf{J}_{3,1} & -h^{2} \mathbf{J}_{3,2} & M_{3} - h^{2} \mathbf{J}_{3,3} & -h^{2} \mathbf{J}_{3,4} \\
-h^{2} \mathbf{J}_{4,1} & -h^{2} \mathbf{J}_{4,2} & -h^{2} \mathbf{J}_{4,3} & M_{4} - h^{2} \mathbf{J}_{4,4}
\end{pmatrix}
\begin{pmatrix}
\mathbf{v}_{1}^{t+h} \\
\mathbf{v}_{2}^{t+h} \\
\mathbf{v}_{3}^{t+h} \\
\mathbf{v}_{3}^{t+h} \\
\mathbf{v}_{4}^{t+h}
\end{pmatrix}$$

$$= \begin{pmatrix}
M_{1} \mathbf{v}_{1}^{*} \\
M_{2} \mathbf{v}_{2}^{*} \\
M_{3} \mathbf{v}_{3}^{*} \\
M_{4} \mathbf{v}_{4}^{*}
\end{pmatrix} + \begin{pmatrix}
h \mathbf{F}_{1} \\
h \mathbf{F}_{2} \\
h \mathbf{F}_{3} \\
h \mathbf{F}_{4}
\end{pmatrix} (38)$$

with

$$\mathbf{M}_{i} = \begin{pmatrix} m_{i} & 0 & 0 \\ 0 & m_{i} & 0 \\ 0 & 0 & m_{i} \end{pmatrix}$$
 (39)

or

$$\begin{pmatrix} A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \\ A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\ A_{3,1} & A_{3,2} & A_{3,3} & A_{3,4} \\ A_{4,1} & A_{4,2} & A_{4,3} & A_{4,4} \end{pmatrix} \begin{pmatrix} v_1^{t+h} \\ v_2^{t+h} \\ v_3^{t+h} \\ v_4^{t+h} \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{pmatrix}$$
(40)

4.7 Jacobi solver

The Jacobi update is

$$\boldsymbol{v}^{l+1} = \boldsymbol{v}^l + \omega \boldsymbol{D}^{-1} (\boldsymbol{s} - \boldsymbol{A} \boldsymbol{v}^l) \tag{41}$$

with l being the iteration count, $0 < \omega \le 0.5$ being a coefficient and \mathbf{D} being a matrix with the diagonal elements of \mathbf{A} . This update can be written as

$$egin{pmatrix} egin{pmatrix} m{v}_1^{l+1} \ m{v}_2^{l+1} \ m{v}_3^{l+1} \ m{v}_4^{l+1} \end{pmatrix} = egin{pmatrix} m{v}_1^l \ m{v}_2^l \ m{v}_3^l \ m{v}_4^l \end{pmatrix} +$$

$$\omega \begin{pmatrix} D_{1} & 0 & 0 & 0 \\ 0 & D_{2} & 0 & 0 \\ 0 & 0 & D_{3} & 0 \\ 0 & 0 & 0 & D_{4} \end{pmatrix}^{-1} \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \end{pmatrix} - \begin{pmatrix} A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \\ A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\ A_{3,1} & A_{3,2} & A_{3,3} & A_{3,4} \\ A_{4,1} & A_{4,2} & A_{4,3} & A_{4,4} \end{pmatrix} \begin{pmatrix} v_{1}^{l} \\ v_{2}^{l} \\ v_{3}^{l} \\ v_{4}^{l} \end{pmatrix}$$

$$(42)$$

with D_i representing the diagonal elements of $A_{i,i}$. The update could be implemented on a per particle basis, i.e.:

$$\boldsymbol{v}_{i}^{l+1} = \boldsymbol{v}_{i}^{l} + \omega \boldsymbol{D}_{i}^{-1} \left(\boldsymbol{s}_{i} - \sum_{j=1..4} \boldsymbol{A}_{i,j} \boldsymbol{v}_{j}^{l} \right)$$

$$(43)$$

This requires to represent $A_{i,j}$. As A is sparsely filled in larger practical scenarios, $A_{i,j} = \mathbf{0}$ for many i and j. Alternatively,

$$\begin{pmatrix}
A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \\
A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\
A_{3,1} & A_{3,2} & A_{3,3} & A_{3,4} \\
A_{4,1} & A_{4,2} & A_{4,3} & A_{4,4}
\end{pmatrix}
\begin{pmatrix}
v_1^l \\
v_2^l \\
v_3^l \\
v_4^l
\end{pmatrix} = \begin{pmatrix}
t_1 \\
t_2 \\
t_3 \\
t_4
\end{pmatrix}$$
(44)

could be implemented by collecting the contributions from particles and springs. In our example,

$$A = \begin{pmatrix} M_1 & 0 & 0 & 0 \\ 0 & M_2 & 0 & 0 \\ 0 & 0 & M_3 & 0 \\ 0 & 0 & 0 & M_4 \end{pmatrix} - h^2 \begin{pmatrix} S_1 + S_3 & -S_1 & -S_3 & 0 \\ -S_1 & S_1 + S_2 & -S_2 & 0 \\ -S_3 & -S_2 & S_2 + S_3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 (45)

Initialization: Set $\mathbf{t}_i = \mathbf{0}$ for all particles i (in each simulation step). For all springs k, compute $\mathbf{S}_k = \frac{\partial \mathbf{f}_k(\mathbf{x}_i \leftarrow \mathbf{x}_j)}{\partial \mathbf{x}_i}$ with i and j being the two particles of spring k (only once in the beginning of the simulation).

Iterate over particles i: Compute $\mathbf{t}_i + = \mathbf{M}_i \mathbf{v}_i^l = m_i \mathbf{v}_i^l$.

Iterate over springs k: Spring k contributes to forces i and j and connects particles i and j corresponding to four contributions in matrix J:

$$S_{k} = \frac{\partial f_{k}(\boldsymbol{x}_{i} \leftarrow \boldsymbol{x}_{j})}{\partial \boldsymbol{x}_{i}} = \frac{\partial f_{k}(\boldsymbol{x}_{j} \leftarrow \boldsymbol{x}_{i})}{\partial \boldsymbol{x}_{j}} = -\frac{\partial f_{k}(\boldsymbol{x}_{i} \leftarrow \boldsymbol{x}_{j})}{\partial \boldsymbol{x}_{j}} = -\frac{\partial f_{k}(\boldsymbol{x}_{j} \leftarrow \boldsymbol{x}_{i})}{\partial \boldsymbol{x}_{i}}$$
(46)

Compute

$$\mathbf{t}_{i} + = -h^{2} \left(\frac{\partial \mathbf{f}_{k}(\mathbf{x}_{i} \leftarrow \mathbf{x}_{j})}{\partial \mathbf{x}_{i}} \mathbf{v}_{i}^{l} + \frac{\partial \mathbf{f}_{k}(\mathbf{x}_{i} \leftarrow \mathbf{x}_{j})}{\partial \mathbf{x}_{j}} \mathbf{v}_{j}^{l} \right)
= -h^{2} \left(\mathbf{S}_{k} \mathbf{v}_{i}^{l} - \mathbf{S}_{k} \mathbf{v}_{j}^{l} \right) = -h^{2} \mathbf{S}_{k} \left(\mathbf{v}_{i}^{l} - \mathbf{v}_{j}^{l} \right)
\mathbf{t}_{j} + = -h^{2} \left(\frac{\partial \mathbf{f}_{k}(\mathbf{x}_{j} \leftarrow \mathbf{x}_{i})}{\partial \mathbf{x}_{i}} \mathbf{v}_{i}^{l} + \frac{\partial \mathbf{f}_{k}(\mathbf{x}_{j} \leftarrow \mathbf{x}_{i})}{\partial \mathbf{x}_{j}} \mathbf{v}_{j}^{l} \right)
= -h^{2} \left(-\mathbf{S}_{k} \mathbf{v}_{i}^{l} + \mathbf{S}_{k} \mathbf{v}_{j}^{l} \right) = -h^{2} \mathbf{S}_{k} \left(\mathbf{v}_{i}^{l} - \mathbf{v}_{i}^{l} \right) \tag{47}$$

Iterate over particles i: Compute

$$\boldsymbol{v}_{i}^{l+1} = \boldsymbol{v}_{i}^{l} + \omega \boldsymbol{D}_{i}^{-1} \left(\boldsymbol{s}_{i} - \boldsymbol{t}_{i} \right)$$

$$\tag{48}$$

Note: Matrix D_i contains the three diagonal elements a_{11} , a_{22} , a_{33} , of $A_{i,i}$. I.e.,

$$\boldsymbol{D}_{i}^{-1} = \begin{pmatrix} \frac{1}{a_{11}} & 0 & 0\\ 0 & \frac{1}{a_{22}} & 0\\ 0 & 0 & \frac{1}{a_{33}} \end{pmatrix} \tag{49}$$

These values can be precomputed and stored at particles.