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Figure 1: Example setting with four particles and three springs.

Fig. 1 illustrates an example with four particles at positions @1, 4 with masses

my. 4 and three springs with rest lengths L3 and stiffness constants k1, 3. Grav-

ity g, other accelerations a;?ther that do not depend on positions, e.g. damping

of relative velocities, and spring forces F; "8

the acceleration a! at particle &} at time ¢ is computed as

at =g + aother,t + 1 Fspring,t
1 1 1
my

with

- k xh — ! k-
spring,t _ V1 t t 2 1 3 t t
F| Ty —x) — Li—— | + Ty — T —

Ly |z — @] Ly

t t 2 t t z;—x;
P B S— — — —J]
Note that @} — x} — Lj el = (|z% — =i — L) ]

are considered at particles. E.g.,
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2 Formulation

t+h

Implicit Euler computes velocities v;"" at the next timestep ¢ 4 A by solving a

linear system. The computed velocities are used to update the particle positions
t+h
i

according to Euler would be

with x =zl + hvarh. The implicit formulation for the velocity computation

1 rine
,Uerh _ ’Uf + h(g + a?ther,t+h + 7Fibprmg,t+h)' (3)
0

This is typically considered as too complex and the following formulation is
solved instead:
1 .
’Uerh — ’Uf + h(g + a?ther,t) + hi-F‘Z_SP“ngvH'h. (4)
(3

other,t
)

The term v} = vl + h(g+ a

predicted velocity. Instead of Eq. 4, the following formulation is solved:

) is explicitly computed and referred to as

1 ing,t+h
oIt = pF 4 h PNt

m;
i t+h
mav!lth = mgvy + RFPTe T, (5)

We now consider vectors that represent all particles, e.g.

spri t
ot vl FyPive
t t spring,t
t __ ) t __ ) spring,t __ F2
z' = v = F = . (6)
t t Fsprlng,t
T3 U3 3
SDT t
x! v} F;Prne

Eq. 5 can now be written for the entire particle set:

M,UtJrh — Mouv* + thpring,t+h (7)
with
mi1 O 0 0 0 0
0 m;p O 0 0 0
0 0 m;y O 0 0
M=|0 0 0 ms 0 0 (8)
0 0 0 0 mg O
0 0 0 0 0 mg

of size 12 x 12 for our example setting.



3 Linearization
The formulation
Mu'*™" = Mv* + pFPrivetth (9)
is replaced by the approximation
Mot = Mv* 4+ hFsPrinet b gt th — gt (10)

with J? being a Jacobi matrix that represents all partial derivatives of all spring
forces with respect to all positions. This linearization of the forces and the fact

that x'*t" —x! = hv'™" results in a linear system with unknown velocities v!*":

Mvt+h - Muv* 4 thpring,t 4 thh’UH—h
(M — R*J")o'*" = Mu* + hF>rine! (11)

We omit the time index for quantities at time ¢ to improve readability. We also
replace FP"8 with F.

(M — W2 J)v'™ = Mv* + hF (12)

4 The Jacobi matrix

The Jacobi matrix consists of submatrices J; ; of size 3 x 3. In our example

setting, we have

Jig Jio Jig Jia
Jo1 Jop Jaz Joas (13)
J31 J32 J33 Jsza

Jug Jap Jaz Jua

Each submatrix J; ; encodes the spatial derivative of the force F; with respect
to the position x;, i.e. the dependency of F; from ;. J;; encodes, how the
force F; changes due a small displacement of ;.

If a force F; does not depend from a position x;, the respective derivative
J; ; is zero. In our example, the force Fy = myg + m4a2ther does not depend
on any of the positions ;. 4. lLe., J4 1.4 = 0. Further, the forces Fi. 3 do not
depend on position x4. Thus, Ji. 34 = 0. The forces F. 3 depend on positions

Z1.3. S0, J1.3,1..3 have to be computed. The Jacobian in our example has the



following structure:

Jii Jizg Jiz 0
J J. J. 0
J— 2,1 J22 J23 (14)
J31 Jzo Jzz O
0 0 0O O
4.1 Spring forces
The spring forces at the particles are
k To — T k: T3 — T
Fi=— <CI32—$1—L121> + = (wS_wl_L3“>
Ly |zo — 21 L |3 — 21|
k Tro — T k T3 — T
o M <m2 o L121> LR (mg o LQH)
L1 |£L‘2 — iL‘1| L2 |Zl$3 — 332|
ko Tr3 — To ks T3 — T1
F;=—— —xy — Lo—m—= )| — — —xy — Lg———— 15
3 Ly (153 T2 2 |:c3 — w2| Ls T3 — I 3 |w3 — :c1| ( )

Each particle is connected to two springs. If we have a spring k that connects
two particles ¢ and j, the force at particle ¢ can be denoted as fi(x; < x;).
E.g.,

1 L2 — L1
Jil@i < x2)= —(z2 —x1 — L1 —
( ) L1 ( |:B2 _ m1|
2 T3 — T2
— = = —xy— Lo——m——
fa(x2 x3) L, (x3 — 2 2 s — ac2|)
3 T3 — L1
fgxl(—.’llg :7$3—$1—L37 16
( )= F o (16)
The spring forces are symmetric and sum up to zero, i.e.
fk(:cZ < :cj) = —fk(:cj — 331) (].7)

The spring forces at the three particles can now be written as

Fi = fi(z1 < x2) + f3(z1 < x3)
Fy = fi(zg < x1) + fo(T2 + 23) = — f1(z1 < x2) + fo(T2 < T3)
F3 = fo(xs < x2) + f3(x3 ¢ x1) = —fa(x2 < ®3) — f3(x1 < x3).  (18)

Due to the symmetry, one force computation per spring is sufficient to assemble
the overall forces at particles.



4.2 Spatial derivatives of spring forces

We consider force F; at particle 1. We have to compute the spatial derivatives
of Fi = (F1 4, F1y, Flyz)T with respect to positions 1.3 = (z1.3,4, Z1..3,4, 9:1“312)T
Le.

OF1 OF1 o OF1 & OF1 o OF1 & OF1 »
Bxlyw Bacl,y Bxlyz 8%2@ (9{)221?,, 81272
| am, oFm., oF, | ar, o8F., 08F, _
J171 - 81171 Owl,y 81172 1,2 — 6w2,w 8:1321!/ 8902,2 J173 e (19)
BFLZ 8F1,Z (‘:‘)FLZ 8F1,Z (‘:‘)FLZ BFl,Z
8:51@ (9&71,7/ 8:::1,2 6:62,m axgyy 3&?2,2

The matrices can also be rewritten using f instead of F. E.g.,

0fi,a Ofie Ofiaw Ofs, e Ofse  Ofsw
0r1,e O0x1,y Ox1 . 0ty Oz1, Oi.
Ji = Ofi,y Of1,y  Of1y + Ofs,y Ofsy  Ofsy
1,1 = 0Ty o Oy y 0Ty, 0%, oy y 0Ty,
Of1,= Of1,-  Of1,= Ofs,> Ofs,=  Ofs,»
oy o Oy y 0x1,2 0x1,¢ Oz y Oy, -
_ 8f1(a:1 < mg) 4 8f3(a:1 < mg) (20)
8331 6331
and
3f1(a:1 < .’132) 3]"3(:61 < .’133)
Jl,g = 9 +
o 8332
J . 8f1(:c1 — 1132) 8f3($1 — iL’g)
1,3 = + . (21)
8333 (9583

We have already discussed that J; 4 = 0, because there is no spring between

particles 1 and 4. This fact can also be seen from

6f1(381 < .’1}2) 4 af3(331 <— .’133)

J =
14 oxy oxy

-0 (22)

as the forces fi(x1 < x2) and f3(x; + x3) do not depend on x4. The same
argument can be used to see that J; 2 and J; 3 simplify to

_ 3f1(a:1 < wg)

J12 92y
Ofs(x1 <=
Jis = Ofs(@1 < 5) ala;g 3), (23)
Generally,
8fk(mz < xm)
Jij= Z = om, (24)

k

We sum over all springs k that are connected to particle i. If a spring k connects

particles i« and m and j # i and j # m, then %{;w"’) =0.



4.3 Derivative of fi(x; + x2) with respect to x;

The components of f;(x1 + @2) are

Ly

k1
fl,m =7 | T2z —T1

k
fl,y = !

k
fl,z = Lill <x2,z_'Tl

We define

L2, — L1,z

V(@2w —212)% + (T2, — 21,4)? + (22,

T2,y — Tly

s

T | T2,y — T1, 7L1
Ly ( ! ! V(E2e —214)? + (22 — 21,4)? + (22,2

X2,z — X1,z

V(@2w —o12)2 + (22, — 21,4)% + (22,

lij = \/(ffj,z = @iw)? + Xy = iy)? + (252 —3i2)?

)
)
=)

(26)

and the partial derivatives of fi(x; < x2) with respect to &1 can be written as

afl,x _ M

al’l’x

8fl,w

Oy

afl,x

3x17z
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Finally, we have

Of1,« Af1,x Af1,x
0%, Oy, oxy .
Ofi(xy < x2) _ [ any an, on,

- 81’112 8{1}1’ 81‘1,2
Oz Ofi.  Ofi. Ofis

x5 0T1,y Oz, -

(et () e

4.4 Assembly of J

It is sufficient to compute one 3 x 3 Jacobian per spring, i.e. 3 Jacobians in our

example.
8f1(:131<—3}2) :ﬂ (—I+ L1 (I— (332—%1)(%2—%1)T>>
oz, Ly 22 — 21| |22 — 1|
Ofa(xa < x3) ko ( T Lo ( (23 — T2) (w3 — wz)T)>
_ = =T+ — T 5
Oxo Lo les — 2] |23 — 22|
Ofs(xy < x3) k3 ( Ls ( (3 — 1) (T3 — -’Bl)T)>
9B\t = %) N p, B (p_ 29
om L\ moml s — 1] (#)

All submatrices J; ; can be assembled from these three Jacobians. If a spring k
connects particles ¢ and j, we have
afk(icl < :Bj) _ 8fk(a:j — CCl) _3fk(.’131' — a:j) _8fk(.’13j < :131)

(“):ni aiL'j - aiL‘j - 6113z (30)

Again, each submatrix J; ; is computed by summing up contributions from all
springs k that are connected to particle i:

Jij= Z M (31)

& 8:cj
We sum over all springs k that are connected to particle i. If i = j, we have

Jii= Z M (32)

ox;
k 1

In this case, the sum contains as many elements as there are springs connected to
particle i. If no spring is connected to particle i, e.g., particle 4 in our example,
we have J; ; = 0. If i # j, we have J; ; = 0, if there is no spring between ¢ and
j. If there is one spring, we have

Jij = . (33)

8(1:j



4.5 The final J

We define
S, = Of1(x1 < x2)
8331
52 _ 8f2($2 — mg)
aIEQ
8f3<£L‘1 < 133)
— — e 4
S3 6113‘1 (3 )

and we remember

_ Ofn(xi ) Ofu(m; «xi)  Ofu(mimy)  Ofu(x; « @)

Sk 8:1% 611]‘ B 8(15]‘ a 8331
(35)
The final form of our exemplary Jacobian J is now
Si1 + 853 -8 -85 0
— — 0
J_ S1 S1+ So So (36)
—S3 -85 So+S3 0
0 0 0 0

Each spring influences forces at two particles and depends on two particle posi-

tions. Thus, S; occurs four times in J for a spring i.

4.6 The final system

Our system

(M — h2J)v'*h = Mv* + hF (37)
S —— ——
A S
represents four particles and can be written as Avtt" = s or
M1 — h2J171 —h2J172 —h2J173 —h2J174 ’Ui—"_h
7h2.]271 M2 — h2J272 7h2.]273 7h2.]274 ’Ué+h
—h2J3, —h2J35  Ms—h2J33 —h2J34 vith
—h2J4’1 —h2J472 —h2J473 M4 — h2J4’4 ’Ui+h
Ml’UT hFl
M>sv3 hF:
=10 es)
Mgv{; th
]\44’(}21< hF4



with

m; 0 0
M;,=|10 m; O (39)
0 0 my
or
Ay A Az A vith s1
A2,1 A2,2 A2,3 A2,4 ’U§+h _ S2 (4())
A3,1 A3,2 A3,3 A3,4 ’U§+h S3
Ay Asp Ayz Agy vith EN
4.7 Jacobi solver
The Jacobi update is
v =0l fwD (s — Av') (41)

with [ being the iteration count, 0 < w < 0.5 being a coefficient and D being a
matrix with the diagonal elements of A. This update can be written as

w (o
| [w

e
vt v}
D, 0 0 O S An Ais Ais Arg) [0l
w 0 D, O 0 s2 | Az Agp Azz Apy v}
0 0 D; O S5 Asi Ass Ass Asa| |0
0 0 0 D, Sy Ay Ago Ay Agy v}

(42)
with D; representing the diagonal elements of A;;. The update could be im-
plemented on a per particle basis, i.e.:

vi“ = ! +wD; ' | s — Z Ai,jvj- (43)
j=1..4

This requires to represent A; ;. As A is sparsely filled in larger practical sce-
narios, A; ; = 0 for many ¢ and j. Alternatively,

A1 Aip Az Ay v! t
Aoy Azo Ags Agy vl _ to (44)
Az Azx Az Az v} ts
Ay Agp Auz Ay v ty



could be implemented by collecting the contributions from particles and springs.

In our example,

M, 0 0 0 S1+ 53 -5, —S5 0
M _ _
A= 0 2 0 0 B2 S1 S1+ S, So 0 (45)
0 0 M; 0 —-S3 —Ss So+S3 0
0 0 0 M, 0 0 0 0

Initialization: Set t; = 0 for all particles ¢ (in each simulation step). For

all springs k, compute Sj, = W

with ¢ and j being the two particles of
spring k (only once in the beginning of the simulation).

l

i

Iterate over particles i: Compute t;+ = Mivﬁ = m;v

Tterate over springs k: Spring k contributes to forces ¢ and j and connects
particles ¢ and j corresponding to four contributions in matrix J:

_ 8fk(:l:i < acj) _ 8fk(:cj < ZBZ') . _afk(il:i < iL'j) _ _(9fk(il:j < :Bl)

Sy,

Bzci 8:13]‘ 8mj 8ZEZ
(46)
Compute
tt = 2 afk(ml — wj)’l)é i afk((ltl — wj)vl_
8%1‘ 8(13j 7
= —h? (Skvﬁ - Skvé) = —h28S, (vi - vé)
Ofr(x; + x;) Ofr(x; < x;)

4= _}2 J ! J l

ti+ h ( o, v, + oz, v;
= —h? (—=Spv} + Spvl) = =128k (vl — v}) (47)

Iterate over particles i: Compute

vi“ = vﬁ + wD;1 (si —t;) (48)

Note: Matrix D; contains the three diagonal elements a1, az2, ass, of A, ;.
Le.

7

0
D'=l0 L o (49)
1

az3

These values can be precomputed and stored at particles.

10



