Simulation in Computer Graphics - Exercises

Computer Graphics - Computer Science Department - University of Freiburg

Space Subdivision

In this exercise, we implement a simple particle simulation with inter-particle
repulsion forces. To detect the neighborhood of a particle, we employ a space
subdivision technique.

Many particle simulation methods need to compute inter-particle forces, i.e.
forces that act between pairs of particles. Usually these forces are repulsing,
they prevent that particles get too close and overlap. Examples for such particle
simulations include SPH methods in fluid dynamics or crowd simulations. In
order to compute a force between a pair of particles, we must determine the
neighbors of a particle p;, i.e. the particles p;, j = 1...n whose distance to p;
is smaller than a given threshold d : {p; : |p; — p;| < d}. The most simple way
to determine these neighbors was to test all n? pairs of particles.

A more efficient way is to partition the world space into hexagonal cells. The
cells are collected in a linear array of size N, x Ny x N, where N,, N, and
N, are the number of cells in x-, y-, and z-direction. Each cell contains a list
of all particles located in that cell. In a first step, we compute for each particle
the coordinates of the cell in which the particle is located. We then add the
particle to the cells particle list. To determine the neighborhood of a particle,
we determine the cell this particle is located in, and then we can simply traverse
the cells particle list. To ensure that all neighboring particles are detected, also
the neighboring cells in the so-called 3-cube (i.e. all 3 x 3 x 3 cells around the
particle) must be traversed.

e Implement the function getCell which returns the coordinates (i, j, k) of
the cubical cell in which the particle particle is located. Consider that the
cell is a cube with edge length CELL_SIZE. Moreover, try to avoid negative
cell indices.

e Implement the function getCellID which computes the unique cell iden-
tification number from a cell coordinate triplet (4, j, k).

e Implement the function addSingleParticleForce which computes the
inter-particle forces for a pair of particles. The minimum distance d
between two particles is the sum of their radii (particlel.radius +
particle2.radius). The force results from a spring with resting length
d and stiffness PARTICLE_FORCE_CONSTANT.

e Implement the function addParticleForces which determines the neigh-
borhood of the particle and calls addSingleParticleForce for each par-
ticle in the neighborhood.

e Experiment with different cell sizes CELL_SIZE.

