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Figure 1: A selection of scenes simulated inside the position-based dynamics framework.

Abstract
The physically-based simulation of mechanical effects has been an important research topic in computer graphics for more than
two decades. Classical methods in this field discretize Newton’s second law and determine different forces to simulate various
effects like stretching, shearing, and bending of deformable bodies or pressure and viscosity of fluids, to mention just a few.
Given these forces, velocities and finally positions are determined by a numerical integration of the resulting accelerations.
In the last years position-based simulation methods have become popular in the graphics community. In contrast to classical
simulation approaches these methods compute the position changes in each simulation step directly, based on the solution of
a quasi-static problem. Therefore, position-based approaches are fast, stable and controllable which make them well-suited
for use in interactive environments. However, these methods are generally not as accurate as force-based methods but provide
visual plausibility. Hence, the main application areas of position-based simulation are virtual reality, computer games and
special effects in movies and commercials.
In this tutorial we first introduce the basic concept of position-based dynamics. Then we present different solvers and compare
them with the variational formulation of the implicit Euler method in connection with compliant constraints. We discuss ap-
proaches to improve the convergence of these solvers. Moreover, we show how position-based methods are applied to simulate
elastic rods, cloth, volumetric deformable bodies, rigid body systems and fluids. We also demonstrate how complex effects like
anisotropy or plasticity can be simulated and introduce approaches to improve the performance. Finally, we give an outlook
and discuss open problems.

Keywords: physically-based animation, position-based dynamics, deformable solids, rigid bodies, fluids

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Animation
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1. Tutorial Details

1.1. Presenters

Jan Bender Jan Bender received his doctoral degree in the begin-
ning of 2007 from the University of Karlsruhe. The topic of his
thesis was the interactive dynamic simulation of multibody sys-
tems. In the following years he continued his research in the area of
physically-based simulation as post-doc at the Karlsruhe Institute
of Technology (2007-2010) and as assistant professor at the Grad-
uate School of Computational Engineering, TU Darmstadt (2010-
2016). Since 2016 he is professor at the Visual Computing Institute
at RWTH Aachen University and leads the Computer Animation
Group. His current research areas include: rigid body dynamics, de-
formable solids, fluids, position-based methods, collision detection
and resolution, cutting, fracturing and real-time visualization. He
has served on program committees of major graphics conferences
and is associate editor for IEEE Computer Graphics and Applica-
tions.

• email address: bender@cs.rwth-aachen.de
• URL: www.interactive-graphics.de

Matthias Müller Matthias Müller received his PhD in atomistic
simulation of dense polymer systems in 1999 from ETH Zürich.
During his post-doc with the MIT Computer Graphics Group
(1999-2001), he changed fields to macroscopic physically based
simulations. He has published papers on particle-based water simu-
lation and visualization, finite element-based soft bodies, cloth sim-
ulation, and fracture simulation. The main focus of his research are
unconditionally stable, fast and controllable simulation techniques
for the use in computer games. Most relevant to this tutorial, he is
one of the founders of the field of position based simulation meth-
ods.

In 2002, he co-founded the game middleware company
NovodeX (acquired in 2004 by AGEIA), where he was head
of research and responsible for extension of the physics simulation
library PhysX by innovative new features. He has been head of
the PhysX research team of NVIDIA since that company acquired
AGEIA Technologies, Inc. in early 2008.

• email address: matthiasm@nvidia.com
• URL: www.matthias-mueller-fischer.ch

Miles Macklin Miles Macklin is a researcher on the PhysX re-
search team at NVIDIA. Since 2013, he has been working on a
unified physics library called NVIDIA Flex, built using Position-
Based Dynamics. The technology in Flex has been the subject of
two papers at SIGGRAPH and has now been released to several
games and visual effects studios. Prior to joining NVIDIA, Miles
worked in the games industry as a visual effects engineer at Sony
Computer Entertainment on early Playstation3 development, Rock-
steady Studios in London on the Batman Arkham series, and Lu-
casArts in San Francisco on the Star Wars franchise. His current
research is focused on real-time methods for simulation and ren-
dering using GPUs.

• email address: mmacklin@nvidia.com
• URL: www.mmacklin.com

1.2. Length

This is a half day tutorial (180 minutes).

1.3. Necessary Background

In our tutorial we will make a short introduction in the basics of
physically-based animation. However, general knowledge in this
area is recommended.

1.4. Potential Target Audience

This tutorial is intended for researchers and developers in the area
of computer animation who are interested in interactive physically-
based simulation methods. This will be an intermediate level tuto-
rial.

© 2017 The Author(s)
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2. Introduction

The simulation of solid objects such as rigid bodies, soft bodies
or cloth has been an important and active research topic in com-
puter graphics for more than 30 years. The field was introduced
to graphics by Terzopoulos and his colleagues in the late eighties
[TPBF87a]. Since then, a large body of work has been published
and the list is growing rapidly. There exists a variety of survey pa-
pers [GM97,MTV05,NMK∗06,MSJT08,BET14] which document
this development.

In this tutorial we focus on a special class of simulation meth-
ods, namely position-based approaches [BMO∗14]. These methods
were originally developed for the simulation of solids. However,
some recent works demonstrated that the position-based concepts
can even be used to simulate fluids and articulated rigid bodies.
Classical dynamics simulation methods formulate the change of
momentum of a system as a function of applied forces, and evolve
positions through numerical integration of accelerations and ve-
locities. Position-based approaches, instead, compute positions di-
rectly, based on the solution to a quasi-static problem.

Physical simulation is a well studied problem in the computa-
tional sciences and therefore, many of the well established meth-
ods have been adopted in graphics such as the Finite Element
Method (FEM) [OH99], the Finite Differences Method [TPBF87b],
the Finite Volume Method [TBHF03], the boundary element
method [JP99] or particle-based approaches [DSB99, THMG04].
The main goal of computer simulations in computational physics
and chemistry is to replace real-world experiments and thus, to be
as accurate as possible. In contrast, the main applications of phys-
ically based simulation methods in computer graphics are special
effects in movies and commercials and more recently, computer
games and other interactive systems. Here, speed and controllabil-
ity are the most important factors and all that is required in terms of
accuracy is visual plausibility. This is especially true for real-time
applications.

Position-based methods are tailored particularly for use in inter-
active environments. They provide a high level of control and are
stable even when simple and fast explicit time integration schemes
are used. Due to their simplicity, robustness and speed these ap-
proaches have recently become very popular in computer graphics
and in the game industry.

Collision detection is an important part of any simulation system.
However, an adequate discussion of this topic is beyond the scope
of this tutorial. Therefore, we refer the reader to the surveys of Lin
and Gottschalk [LG98] and the one of Teschner et al. [TKH∗05].

3. Background

The most popular approaches for the simulation of dynamic sys-
tems in computer graphics are force based. Internal and exter-
nal forces are accumulated from which accelerations are com-
puted based on Newton’s second law of motion. A time integration
method is then used to update the velocities and finally the positions
of the object. A few simulation methods (most rigid body simula-
tors) use impulse based dynamics and directly manipulate veloc-
ities [BFS05, Ben07]. In contrast, geometry-based methods omit

the velocity layer as well and immediately work on the positions.
The main advantage of a position-based approach is its controllabil-
ity. Overshooting problems of explicit integration schemes in force
based systems can be avoided. In addition, collision constraints can
be handled easily and penetrations can be resolved completely by
projecting points to valid locations.

Among the force based approaches, one of the simplest methods
is to represent and simulate solids with mass-spring networks. A
mass spring system consists of a set of point masses that are con-
nected by springs. The physics of such a system is straightforward
and a simulator is easy to implement. However, there are some sig-
nificant drawbacks of the simple method.

• The behavior of the object depends on the way the spring net-
work is set up.

• It can be difficult to tune the spring constants to get the desired
behavior.

• Mass spring networks cannot capture volumetric effects directly
such as volume conservation or prevention of volume inversions.

The Finite Element Method solves all of the above problems be-
cause it considers the entire volume of a solid instead of replacing it
with a finite number of point masses. Here, the object is discretized
by splitting the volume into a number of elements with finite size.
This discretization yields a mesh as in the mass spring approach in
which the vertices play the role of the mass points and the elements,
typically tetrahedra, can be viewed as generalized springs acting on
multiple points at the same time. In both cases, forces at the mass
points or mesh vertices are computed due to their velocities and the
actual deformation of the mesh.

In this tutorial we focus on position-based simulation methods
which omit the velocity and acceleration layer and directly mod-
ify the positions. In the following we first introduce the basics of
physically-based simulation, before we present the position-based
concept in the next section.

3.1. Equations of Motion

Each particle i has three attributes, namely its mass mi, its position
xi and its velocity vi. The equation of motion of a particle is derived
from Newton’s second law:

v̇i =
1
mi

fi, (1)

where fi is the sum of all forces acting on particle i. The relationship
between ẋ and v is described by the velocity kinematic relationship:

ẋi = vi. (2)

While particles have only three translational degrees of freedom,
rigid bodies have also three rotational ones. Therefore, a rigid body
requires additional attributes, namely its inertia tensor Ii ∈ R3×3,
its orientation, which is typically represented by a unit quaternion
qi ∈H, and its angular velocity ωi ∈R3. For a rigid body generally
a local coordinate system is chosen so that its origin is at the cen-
ter of mass and its axes are oriented such that the inertia tensor is
diagonal in local coordinates.

© 2017 The Author(s)
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Newton’s second law actually applies only to particles. By view-
ing rigid bodies as collections of infinite numbers of particles, Euler
extended this law to the case of rigid bodies. Therefore, the equa-
tions of motion for rigid bodies are also known as the Newton-Euler
equations. The equation of motion for the rotational part of a rigid
body is:

ω̇i = I−1
i (τi− (ωi× (Iiωi))) , (3)

where τi is the sum of all moments. A moment can be a pure mo-
ment or a byproduct of a force τ = (p− x)× f if the force f acts
at a point p and x is the center of mass of the body. The velocity
kinematic relationship for the rotational part is defined by

q̇i =
1
2

ω̃iqi, (4)

where ω̃i is the quaternion [0,ωx
i ,ω

y
i ,ω

z
i ].

3.2. Time Integration

A simulation step for an unconstrained particle or rigid body is per-
formed by numerical integration of Equations (1)-(2) or Equations
(1)-(4), respectively. The most popular integration method in the
field of position-based dynamics is the symplectic Euler method
which is introduced in the following.

In contrast to the well-known explicit Euler, the symplectic Euler
uses the velocity at time t0+∆t instead of time t0 for the integration
of the position vector. The time integration for a particle is then
performed by the following equations:

vi(t0 +∆t) = vi(t0)+∆t
1
mi

fi(t0)

xi(t0 +∆t) = xi(t0)+∆t vi(t0 +∆t).

In the case of a rigid body also Equations (3) and (4) must be
integrated. Using the symplectic Euler method this yields:

ωi(t0 +∆t) = ωi(t0)+∆t I−1
i (t0) ·

(τi(t0)− (ωi(t0)× (Ii(t0)ωi(t0))))

q(t0 +∆t) = q(t0)+∆t
1
2

ω̃i(t0 +∆t)qi(t0).

Note that due to numerical errors the condition ‖q‖ = 1, which
must be satisfied by a quaternion that represents a rotations, can
be violated after the integration. Therefore, the quaternion must be
normalized after each time integration step.

Symplectic Euler is a first-order integrator, and is used only for
the prediction step of the algorithm. In Position Based Dynamics
(PBD), constraint forces are integrated implicitly as described in
Section 4.2.4.

3.3. Constraints

Constraints are kinematic restrictions in the form of equations and
inequalities that constrain the relative motion of bodies. Equality
and inequality constraints are referred to as bilateral and unilateral
constraints, respectively. Generally, constraints are functions of po-
sition and orientation variables, linear and angular velocities, and
their derivatives to any order. However, position-based simulation

methods only consider constraints that depend on positions and in
the case of rigid bodies on orientations. Hence, a bilateral constraint
is defined by a function

C(xi1 ,qi1 , . . . ,xin j
,qin j

) = 0

and a unilateral constraint by

C(xi1 ,qi1 , . . . ,xin j
,qin j

)≥ 0,

where {i1, . . . in j} is a set of body indices and n j is the cardinality of
the constraint. Typically, the constraints used in PBD only depend
on positions and time but not on velocities. Such constraints are
called holonomic.

Since constraints are kinematic restrictions, they also affect the
dynamics. Classical methods determine forces to simulate a dy-
namic system with constraints. This is done, e.g. by defining a po-
tential energy E = k

2C2 and deriving the forces as f = −∇E (soft
constraints) or via Lagrange multipliers derived from constrained
dynamics (hard constraints) [Wit97]. In contrast to that position-
based approaches modify the positions and orientations of the bod-
ies directly in order to fulfill all constraints.

4. The Core Of Position Based Dynamics

In this section we present Position-Based Dynamics (PBD), an ap-
proach which omits the velocity and acceleration layer and imme-
diately works on the positions [MHHR07]. We will first describe
the basic idea and the simulation algorithm of PBD. Then we will
focus specifically on how to solve the system of constraints that
describe the object to be simulated.

In the following the position-based approach is introduced first
for particle systems. An extension to handle rigid bodies is pre-
sented in Section 5.9.

4.1. The Algorithm

The objects to be simulated are represented by a set of N particles
and a set of M constraints. For each constraint we introduce a stiff-
ness parameter k which defines the strength of the constraint in a
range from zero to one. This gives a user more control over the
elasticity of a body.

4.1.1. Time Integration

Given this data and a time step ∆t, the simulation proceeds as de-
scribed by Algorithm 1. Since the algorithm simulates a system
which is second order in time, both the positions and the velocities
of the particles need to be specified in (1)-(3) before the simula-
tion loop starts. Lines (5)-(6) perform a simple symplectic Euler
integration step on the velocities and the positions. The new loca-
tions pi are not assigned to the positions directly but are only used
as predictions. Non-permanent external constraints such as colli-
sion constraints are generated at the beginning of each time step
from scratch in line (7). Here the original and the predicted posi-
tions are used in order to perform continuous collision detection.
The solver (8)-(10) then iteratively corrects the predicted positions
such that they satisfy the Mcoll external as well as the M internal
constraints. Finally, the corrected positions pi are used to update

© 2017 The Author(s)
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Algorithm 1 Position-based dynamics
1: for all vertices i do
2: initialize xi = x0

i , vi = v0
i , wi = 1/mi

3: end for
4: loop
5: for all vertices i do vi← vi +∆twifext(xi)
6: for all vertices i do pi← xi +∆tvi
7: for all vertices i do genCollConstraints(xi→ pi)
8: loop solverIteration times
9: projectConstraints(C1, . . . ,CM+MColl ,p1, . . . ,pN )

10: end loop
11: for all vertices i do
12: vi← (pi−xi)/∆t
13: xi← pi
14: end for
15: velocityUpdate(v1, . . . ,vN )
16: end loop

the positions and the velocities. It is essential here to update the ve-
locities along with the positions. If this is not done, the simulation
does not produce the correct behavior of a second order system.
As you can see, the integration scheme used here is very similar to
the Verlet method. It is also closely related to Jos Stam’s Nucleus
solver [Sta09] which also uses a set of contraints to describe the
objects to be simulated. The main difference is that Nucleus solves
the constraints for velocities, not positions.

4.1.2. Damping

The quality of dynamic simulations can generally be improved by
the incorporation of an appropriate damping scheme. As a positive
effect, damping can improve the stability by reducing temporal os-
cillations of the point positions of an object. This enables the use
of larger time steps which increases the performance of a dynamic
simulation. On the other hand, damping changes the dynamic mo-
tion of the simulated objects. The resulting effects can be either
desired, e.g. reduced oscillations of a deformable solid, or disturb-
ing, e.g. changes of the linear or angular momentum of the entire
object.

Generally, a damping term CẊ can be incorporated into the mo-
tion equation of an object where Ẋ denotes the vector of all first
time derivatives of positions. If the user-defined matrix C is diago-
nal, absolute velocities of the points are damped, which sometimes
is referred to as point damping. If appropriately computed, such
point damping forces result in an improved numerical stability by
reducing the acceleration of a point. Such characteristics are de-
sired in some settings, e.g. in the context of friction. In the general
case, however, the overall slow-down of an object, caused by point
damping forces, is not desired. Point damping forces are, e.g., used
in [TF88] or in [PB88], where point damping is used for dynamic
simulations with geometric constraints such as point-to-nail.

In order to preserve linear and angular momentum of deformable
objects, symmetric damping forces, usually referred to as spring
damping forces, can be used. Such forces can be represented by
non-diagonal entries in the matrix C. Damping forces are, e.g., de-
scribed by Baraff and Witkin [BW98] or Nealen et al. [NMK∗06].

These forces can also be applied to position-based methods. How-
ever, as the approaches of Baraff and Witkin and Nealen et al. rely
on topological information of the object geometry, they cannot be
applied to meshless techniques such as shape matching.

Point and spring damping can be used to reduce current veloci-
ties or relative velocities. However, it is generally more appropriate
to consider predicted velocities or relative velocities for the next
time step.

An interesting damping alternative has been presented
in [SGT09]. Here, the idea of symmetric, momentum-conserving
forces is extended to meshless representations. Global symmetric
damping forces are computed with respect to the center of mass
of an object. While such forces conserve the linear momentum,
the preservation of the angular momentum is guaranteed by force
projection onto relative positions or by torque elimination using
Linear Programming. The approach presented in [SGT09] itera-
tively computes damping forces. The paper, however, also shows
the convergence of the iterative process and how the solution can
be computed directly without performing iterations. Therefore,
the approach is an efficient alternative to compute damping forces
for arbitrary position-based deformation models with or with-
out connectivity information. The approach can be used to damp
oscillations globally or locally for user-defined clusters.

4.2. Solver

4.2.1. The System to be Solved

The goal of the solver step (8)-(10) in Algorithm 1 is to correct the
predicted positions of the particles such that they satisfy all con-
straints. In what follows and in contrast to Algorithm 1, we will
use the symbol x for the positions of the particles the solver works
on which is a more common symbol for positions. In Algorithm 1
we have a larger context and used the symbol p to distinguish the
predicted positions from the positions of the previous time step.

The problem that needs to be solved comprises of a set of M
equations for the 3N unknown position components, where M is
now the total number of constraints. This system does not need to
be symmetric. If M > 3N (M < 3N), the system is over-determined
(under-determined). In addition to the asymmetry, the equations
are in general non-linear. The function of a simple distance con-
straint C(x1,x2) = |x1 − x2|2 − d2 yields a non-linear equation.
What complicates things even further is the fact that collisions pro-
duce inequalities rather than equalities. Solving a non-symmetric,
non-linear system with equalities and inequalities is a tough prob-
lem.

Let x be the concatenation [xT
1 , . . . ,x

T
N ]

T and let all the constraint
functions C j take the concatenated vector x as input while only
using the subset of coordinates they are defined for. We can now
write the system to be solved as

C1(x) � 0

. . .

CM(x) � 0,

where the symbol� denotes either = or≥. Newton-Raphson itera-
tion is a method to solve non-linear symmetric systems with equal-
ities only. The process starts with a first guess of a solution. Each

© 2017 The Author(s)
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constraint function is then linearized in the neighborhood of the
current solution using

C(x+∆x) =C(x)+∇C(x) ·∆x+O(|∆x|2) = 0.

This yields a linear system for the global correction vector ∆x

∇C1(x) ·∆x =−C1(x)
. . .

∇CM(x) ·∆x =−CM(x),

where ∇C j(x) is the 1× N dimensional vector containing the
derivatives of the function C j w.r.t. all its parameters, i.e. the N
components of x. It is also the j-th row of the linear system. Both,
the rows ∇C j(x) and the right hand side scalars −C j(x) are con-
stant because they are evaluated at the location x before the system
is solved. When M = 3N and only equalities are present, the system
can be solved by any linear solver, e.g. a preconditioned conjugate
gradient method. Once it is solved for ∆x the current solution is up-
dated as x← x+∆x. A new linear system is generated by evaluat-
ing∇C j(x) and−C j(x) at the new location after which the process
repeats.

If M 6= 3N the resulting matrix of the linear system is non-
symmetric and not invertible. Goldenthal et al. [GHF∗07] solve this
problem by using the pseudo-inverse of the system matrix which
yields the best solution in the least-squares sense. Still, handling
inequalities is not possible directly.

4.2.2. The Non-Linear Gauss-Seidel Solver

In the PBD approach, non-linear Gauss-Seidel is used. It solves
each constraint equation separately. Each constraint yields a single
scalar equation C(x) � 0 for all the particle positions associated
with it. The subsystem is therefore highly under-determined. PBD
solves this problem as follows. Again, given x we want to find a
correction ∆x such that C(x + ∆x) � 0. It is important to notice
that PBD also linearizes the constraint function but individually for
each constraint. The constraint equation is approximated by

C(x+∆x)≈C(x)+∇C(x) ·∆x� 0. (5)

The problem of the system being under-determined is solved by
restricting ∆x to be in the direction of ∇C which is also a require-
ment for linear and angular momentum conservation. This means
that only one scalar λ - a Lagrange multiplier - has to be found such
that the correction

∆x = λM−1∇C(x)T (6)

solves Equation (5), where M = diag(m1,m2, . . . ,mN). This yields
the following formula for the correction vector of a single particle
i

∆xi =−λ wi∇xiC(x)T , (7)

where

λ =
C(x)

∑ j w j|∇x jC(x)|2
(8)

and wi = 1/mi. Formulated for the concatenated vector x of all po-
sitions we get

λ =
C(x)

∇C(x)M−1∇C(x)T . (9)

As mentioned above, the solver linearizes the constraint func-
tions. However, in contrast to the Newton-Raphson method, the
linearization happens individually per constraint. It is important
to note that linearization does not affect the projection of an indi-
vidual distance constraint. This is because despite being non-linear
globally, a distance constraint is linear along the constraint gradi-
ent which happens to be the search direction. This is true for other
constraints as well like the tetrahedral volume constraint we will
discuss in Section 5.5.1. Constraints of this type can be solved in a
single step. Because the positions are immediately updated after a
constraint is processed, these updates will influence the lineariza-
tion of the next constraint because the linearization depends on
the actual positions. Asymmetry does not pose a problem because
each constraint produces one scalar equation for one unknown La-
grange multiplier λ. Inequalities are handled trivially by first check-
ing whether C(x) ≥ 0. If this is the case, the constraint is simply
skipped.

The fact that each constraint is linearized individually before its
projection makes the solver more stable than a global approach in
which the linearizations are kept fixed for the entire global solve of
a Newton iteration.

We have not considered the stiffness k of the constraint so far.
There are several ways to incorporate it. The simplest variant is
to multiply the corrections ∆x by k ∈ [0 . . .1]. However, for multi-
ple iteration loops of the solver, the effect of k is non-linear. The
remaining error for a single distance constraint after ns solver iter-
ations is ∆x(1− k)ns . To get a linear relationship we multiply the
corrections not by k directly but by k′ = 1− (1− k)1/ns . With this
transformation the error becomes ∆x(1− k′)ns = ∆x(1− k) and,
thus, becomes linearly dependent on k and independent of ns as de-
sired. However, the resulting material stiffness is still dependent on
the time step of the simulation. Real time environments typically
use fixed time steps in which case this dependency is not problem-
atic.

4.2.3. Hierarchical Solver

The Gauss-Seidel method is stable and easy to implement but it
typically converges significantly slower than global solvers. The
main reason is that error corrections are propagated only locally
from constraint to constraint. Therefore, the Gauss-Seidel method
is called a smoother because it evens out the high frequency errors
much faster than low frequency errors.

A popular method to increase the convergence rate of the Gauss-
Seidel method is to create a hierarchy of meshes in which the coarse
meshes make sure that error corrections propagate fast across the
domain. A smoother works on all meshes of the hierarchy one by
one while the error corrections are carried over across meshes of
different resolutions typically in multiple cycles from fine to coarse
levels and back. This technique is called the multi-grid method
[GW06]. Transferring corrections from coarse to fine meshes and
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Figure 2: The construction of a mesh hierarchy: A fine level l is
composed of all the particles shown and the dashed constraints.
The next coarser level l + 1 contains the proper subset of black
particles and the solid constraints. Each fine white particle needs
to be connected to at least k (=2) black particles – its parents –
shown by the arrows.

from fine to coarse meshes is called prolongation and restriction,
respectively. Multi-grid methods differ in the way the hierarchy is
created, in how the restriction and prolongation operators are de-
fined and in what order the meshes are processed.

In [Mül08], Müller et al. used this technique and introduced Hi-
erarchical Position Based Dynamics (HPBD). They define the orig-
inal simulation mesh to be the finest mesh of the hierarchy and
create coarser meshes by only keeping a subset of the particles of
the previous mesh. The hierarchy is traversed only once from the
coarsest to the finest level. Therefore, they only need to define a
prolongation operator. By making sure that each particle of a given
level is connected to at least two particles in the next coarser level
(see Figure 2), prolongation amounts to interpolating the informa-
tion from adjacent particles of the coarser level. They also propose
a method to create distance constraints on the coarse meshes based
on the constraints of the original mesh. It is important to note that
these coarse constraints must be unilateral, i.e. only act if the cur-
rent distance is larger than the rest distance otherwise they would
prevent bending and folding.

In Section 5.6 we describe a much simpler and effective way to
speed up error propagation for the specific but quite common case
of cloth that is attached to a kinematic or static object.

4.2.4. Connection to Implicit Methods

As Liu et al. [LBOK13] pointed out, PBD is closely related to im-
plicit backward Euler integration schemes. We can see this by con-
sidering backward Euler as a constrained minimization over posi-
tions. Starting with the traditional implicit Euler time discretization
of the equations of motion:

xn+1 = xn +∆tvn+1 (10)

vn+1 = vn +∆tM−1
(

Fext + k∇Cn+1
)

(11)

where C is the vector of constraint potentials, and k is the stiffness,
we can eliminate velocity to give:

M(xn+1−2xn +xn−1−∆t2M−1Fext) = ∆t2k∇Cn+1. (12)

Equation (12) can be seen as the first order optimality condition for
the following minimization:

min
x

1
2
(xn+1− x̃)T M(xn+1− x̃)−∆t2kCn+1 (13)

where x̃ is the predicted position, given by:

x̃ = 2xn−xn−1 +∆t2M−1Fext (14)

= xn +∆tvn +∆t2M−1Fext . (15)

Taking the limit as k →∞ we obtain the following constrained
minimization:

min
x

1
2
(xn+1− x̃)T M(xn+1− x̃)

s.t. Ci(xn+1) = 0, i = 1, . . . ,n.
(16)

We can interpret this minimization problem as finding the clos-
est point on the constraint manifold to the predicted position (in
a mass-weighted measure). PBD approximately solves this mini-
mization using a variant of the fast projection algorithm of Gold-
enthal et al. [GHF∗07], which first takes a prediction step and then
iteratively projects particles onto the constraint manifold. PBD fol-
lows this approach, but differs in the method used to solve the
projection step. In contrast to [GHF∗07] PBD does not necessar-
ily linearize and solve the system as a whole in each Newton step.
Instead, it linearizes one constraint at a time in a Gauss-Seidel fash-
ion as discussed in Section 4.2.1. This helps to make PBD robust
in the presence of large constraint non-linearities.

Projective Dynamics [BML∗14] presents a modification to PBD
that allows treating constraints in an implicit manner that does
not depend on the constraints being infinitely stiff. This is accom-
plished by adding additional constraints that act to pull the solution
back towards the predicted (inertial) position.

4.2.5. Second Order Methods

Now we have established the connection to backward Euler, we
can apply higher order integration schemes to PBD. Following the
derivation in [EB08] we will adapt BDF2, a second order accurate
multistep method. First, we write the second order accurate BDF2
update equations:

xn+1 =
4
3

xn− 1
3

xn−1 +
2
3

∆tvn+1 (17)

vn+1 =
4
3

vn− 1
3

vn−1 +
2
3

∆tM−1
(

Fext + k∇Cn+1
)
. (18)

Eliminating velocity and re-arranging gives

M
(

xn+1− x̃
)
=

4
9

∆t2k∇Cn+1, (19)

where the inertial position x̃ is given by

x̃ =
4
3

xn− 1
3

xn−1 +
8
9

∆tvn− 2
9

∆tvn−1 +
4
9

∆t2M−1Fext . (20)

Equation (19) can again be considered as the optimality condition
for a minimization of the same form as (16). Once the constraints
have been solved, the updated velocity is obtained according to
(17),

vn+1 =
1
∆t

[
3
2

xn+1−2xn +
1
2

xn−1
]
. (21)
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To evaluate this more accurate scheme we need only store the previ-
ous position and velocity, and perform some additional basic arith-
metic during the prediction and velocity update steps, while the
rest of the PBD algorithm is unchanged. The benefits of this simple
modification are an order of magnitude less numerical damping,
and faster convergence for the constraint projection. This can be
understood by considering the algorithm as using previous time-
step information in order to generate predicted positions that stay
closer to the constraint manifold, making projection faster.

4.2.6. XPBD

One limitation of PBD described so far is that the stiffness of con-
straints is dependent on the time-step size and iteration count used
for the constraint solver. In the limit of infinite constraint iterations,
the constraints will become infinitely stiff. Surprisingly this con-
vergence to an infinitely stiff solution occurs regardless of how the
constraint stiffness coefficients are set.

The problem of time-step and iteration count dependent stiffness
in PBD was addressed with an extension called XPBD [MMC16].
XPBD derives from a compliant constraint formulation [SLM06]
that associates an inverse stiffness, or compliance, α = 1

k with each
constraint.

The derivation of XPBD shows that we can think of the λ calcu-
lated for each constraint during a PBD iteration as an incremental
change to a total multiplier. This modifies equation (9) in regular
PBD as follows

∆λ =
−C(x)− α̃λ

∇C(x)M−1∇C(x)T + α̃
. (22)

Here α̃ = α

∆t2 is the time-step scaled compliance parameter.

Now, after each iteration we not only update the system posi-
tions, we also update each constraint’s total Lagrange multiplier as
follows

λ = λ+∆λ (23)

x = x+∆x. (24)

The additional terms in the denominator of (22) act to limit the
amount of force a constraint can apply, specifically as λ grows,
the incremental constraint change becomes smaller. In the case of
zero compliance (α = 0) we obtain exactly the same formulation as
regular PBD, corresponding to infinitely stiff constraints (9).

The total Lagrange multiplier λ has a useful interpretation. It is a
measure of the total force applied by the constraint to the particles,
this is a physical quantity that can be used to drive haptic devices,
or force dependent effects.

We note that XPBD does not make PBD converge faster, the
same number of iterations would be required to reach a stiff solu-
tion. However, XPBD does return a consistent solution that corre-
sponds to a well-defined energy potential. As in PBD, if the solver
is terminated before convergence then this will manifest as artificial
compliance of the constraints.

5. Specific Constraints

In the following we will introduce different constraints that can be
used to simulate a variety of materials such as articulated rigid bod-
ies, soft bodies, cloth or even fluids with PBD. For better readability
we define xi, j = xi−x j.

5.1. Stretching

To give an example, let us consider the distance constraint function
C(x1,x2) = |x1,2| − d. The derivatives with respect to the points
are ∇x1C(x1,x2) = n and ∇x2C(x1,x2) =−n with n =

x1,2
|x1,2| . The

scaling factor λ is, thus, λ =
|x1,2|−d

1+1 and the final corrections

∆x1 =−
w1

w1 +w2
(|x1,2|−d) n

∆x2 =+
w2

w1 +w2
(|x1,2|−d) n,

which are the formulas proposed in [Jak01] for the projection of
distance constraints (see Figure 3). They can be derived as a special
case of the general constraint projection method.

Figure 3: Projection of the constraint C(x1,x2) = |x1,2| − d. The
corrections ∆xi are weighted according to the inverse masses wi =
1/mi.

5.2. Bending

In cloth simulation it is important to simulate bending in addition to
stretching resistance. To this end, for each pair of adjacent triangles
(x1,x3,x2) and (x1,x2,x4) a bilateral bending constraint is added
with constraint function

Cbend(x1,x2,x3,x4) =

acos
(

x2,1×x3,1

|x2,1×x3,1|
·

x2,1×x4,1

|x2,1×x4,1|

)
−ϕ0

and stiffness kbend . The scalar ϕ0 is the initial dihedral angle be-
tween the two triangles and kbend is a global user parameter defin-
ing the bending stiffness of the cloth (see Figure 4). The advan-
tage of this bending term over adding a distance constraint between
points x3 and x4 is that it is independent of stretching. This is be-
cause the term is independent of edge lengths. In Figure 9 we show
how bending and stretching resistance can be tuned independently.

5.3. Isometric Bending

A bending constraint for inextensible surfaces was introduced
in [BKCW14]. The definition of this constraint is based on the dis-
crete isometric bending model of Bergou et al. [BWH∗06], which
can be applied if a surface deforms isometrically, i.e., if the edge
lengths remain invariant. Since many textiles cannot be stretched
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Figure 4: For bending resistance, the constraint function
C(x1,x2,x3,x4) = arccos(n1 · n2)− ϕ0 is used. The actual dihe-
dral angle ϕ is measured as the angle between the normals of the
two triangles.

significantly, this method is an appropriate choice in garment sim-
ulation.

For each interior edge ei a stencil s is defined which consists of
the two triangles adjacent to ei. The vector xs = (x0,x1,x2,x3)

T

contains the four vertices of the stencil and the vector es =
[x0x1,x1x2,x2x0,x0x3,x3x1] contains the five stencil edges start-
ing with the common edge (see Figure 5).

x0

x1

x2 x3e0

e2 e3

e1 e4

Figure 5: The isometric bending constraint is defined using the the
stencil of an interior edge e0.

Using the isometric bending model the local Hessian bending
energy of a stencil is determined by

Q =
3

A0 +A1
KT K,

where A0 and A1 are the areas of the adjacent triangles and K is the
vector

K = (c01 + c04, c02 + c03, −c01− c02, −c03− c04),

where c jk = cot∠e j,ek. The matrix Q ∈ R4×4 is constant and can
be precomputed with the initial configuration of the stencil. The
local Hessian bending energy can be used to define a bending con-
straint as

Cbend(xs) =
1
2 ∑

i, j
Qi, j xT

i x j.

Since the Hessian bending energy is constant, the gradients are de-
termined by

∂Cbend
∂xi

= ∑
j

Qi, jx j.

Figure 6 shows a cloth simulation with the introduced bending
constraint.

Figure 6: A heavy sphere is pushing down a piece of cloth that
is thrown over four statues. Realistic wrinkles evolve due to the
isometric bending constraint.

Figure 7: Constraint function C(q,x1,x2,x3) = (q− x1) · n− h
makes sure that q stays above the triangle x1,x2,x3 by the cloth
thickness h.

5.4. Collisions

5.4.1. Triangle Collisions

Self collisions within cloth can be handled by additional unilateral
constraints. For vertex q moving through a triangle x1, x2, x3, the
constraint function reads

C(q,x1,x2,x3) = (q−x1) ·
x2,1×x3,1

|x2,1×x3,1|
−h,

where h is the cloth thickness (see Figure 7). If the vertex enters
from below with respect to the triangle normal, the constraint func-
tion has to be

C(q,x1,x2,x3) = (q−x1) ·
x3,1×x2,1

|x3,1×x2,1|
−h.

5.4.2. Environment Collisions

Collisions between particles and kinematic shapes, represented as
e.g.: triangle or convex meshes, can be handled by first detecting
a set of candidate contact planes for each particle, then for each
contact plane normal n, a non-penetration constraint is introduced
into the system of the form

C(x) = nT x−drest = 0, (25)

where drest is the distance the particle should maintain from the
geometry at rest.
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Figure 8: A sand castle before collapse (left). After 300 frames the
position-based friction model maintains a steep pile (middle), while
the velocity level friction model has almost completely collapsed
(right).

5.4.3. Particle Collisions

Collisions between particles can be handled in a similar manner
to the environment by linearizing and introducing a contact plane,
however, it is often more robust to maintain the non-linear nature
of the constraint, in the form:

C(xi,x j) = |xi j|− (ri + r j)≥ 0, (26)

where ri and r j are the radii of the two particles. This constraint can
be used to model granular-like materials as shown in [MMCK14].

5.4.4. Friction

Müller et al. [MHHR07] handled friction by introducing damping
forces applied after the constraint solve. This approach is suitable
for weak frictional effects, but cannot model static friction, because
the positional constraints can freely violate the frictional forces. To
model situations where friction is strong relative to the constraints
(see Figure 8), Macklin et al. [MMCK14] include frictional effects
as part of the position level constraint solve.

Once interpenetration between particles has been resolved, a
frictional position delta is calculated based on the relative tangen-
tial displacement of the particles during this time-step. The relative
displacement is given by

∆x⊥ =
[
(x∗i −xi)− (x∗j −x j)

]
⊥ n, (27)

where x∗i and x∗j are the current candidate positions for the colliding
particles, including any previously applied constraint deltas, xi and
x j are the positions of the particles at the start of the time-step, and
n = x∗i j/|x∗i j| is the contact normal. The frictional position delta for
particle i is then computed as

∆xi =
wi

wi +w j

{
∆x⊥, |∆x⊥|< µsd
∆x⊥ ·min( µkd

|∆x⊥| ,1), otherwise
(28)

where d is the penetration depth, and µk,µs are the coefficients of
kinetic and static friction, respectively. The first case in Eq. (28)
models static friction by removing all tangential movement when
the particle’s relative velocity is below the traction threshold. The
second case models kinetic Coulomb friction, limiting the frictional
position delta based on the penetration depth of the particle. The
position change on particle j is given by

∆x j =−
w j

wi +w j
∆xi. (29)

Friction with kinematic shapes is handled using the same method,
with the shape treated as having infinite mass and the contact plane
defined by its geometry.

5.5. Volume Conservation

The conservation of volume plays an important role in the dynamic
simulation of deformable bodies [HJCW06, ISF07, DBB09]. Since
most soft biological tissues are incompressible, this is an essential
extension in the field of medical simulation. However, it is also used
in the field of shape modeling [vFTS06] since volume conserving
deformations appear more realistic.

5.5.1. Tetrahedral Meshes

For tetrahedral meshes it is useful to have a constraint that con-
serves the volume of single tetrahedron. Such a constraint has the
form

C(x1,x2,x3,x4) =
1
6
(
x2,1×x3,1

)
·x4,1−V0,

where x1, x2, x3 and x4 are the four corners of the tetrahedron and
V0 is its rest volume. In a similar way, the area of a triangle can be
kept constant by introducing

C(x1,x2,x3) =
1
2

∣∣x2,1×x3,1
∣∣−A0.

5.5.2. Cloth Balloons

For closed triangle meshes, overpressure inside the mesh as shown
in Figure 10 can easily be modeled with an equality constraint con-
cerning all N vertices of the mesh:

C(x1, . . . ,xN) =

(
ntriangles

∑
i=1

(xt i
1
×xt i

2
) ·xt i

3

)
− kpressureV0.

Here t i
1, t

i
2 and t i

3 are the three indices of the vertices belonging to
triangle i. The sum computes the actual volume of the closed mesh.
It is compared against the original volume V0 times the overpres-
sure factor kpressure. This constraint function yields the gradients

∇xiC = ∑
j:t j

1=i

(xt j
2
×xt j

3
)+ ∑

j:t j
2=i

(xt j
3
×xt j

1
)+ ∑

j:t j
3=i

(xt j
1
×xt j

2
).

These gradients have to be scaled by the scaling factor given in
Equation (8) and weighted by the masses according to Equation (7)
to get the final projection offsets ∆xi.

5.5.3. Surface Meshes

In the following we introduce the position-based approach for vol-
ume conservation of Diziol et al. [DBB11]. This method considers
only the surface of a simulated object and does not require interior
particles which reduces the computational effort. The volume V of
a volumetric 3D shape V can be determined by using the divergence
theorem as proposed in [Mir96] and [HJCW06]:∫∫∫

V

∇·xdx =
∫∫
∂V

xTndx = 3V, (30)
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Figure 9: The image shows a mesh that is simulated using stretching and bending constraints. The top row shows (kstretching,kbending) =
(1,1), ( 1

2 ,1) and ( 1
100 ,1). The bottom row shows (kstretching,kbending) = (1,0), ( 1

2 ,0) and ( 1
100 ,0).

Figure 10: Simulation of overpressure inside a character.

where ∂V is the boundary of the shape and n is the surface normal.
If the boundary is given as triangle mesh, the integral can be written
as sum over all triangles i:

V (X) :=
1
3

∫∫
∂V

xTndx =
1
9 ∑

i
Ai(xi1 +xi2 +xi3)

Tni, (31)

where Ai is the area and i1, i2 and i3 are the vertex indices of the i-th
triangle. Now we can define a volume constraint C :=V (X)−V0 =
0 and compute a corresponding position correction (see Section 4):

∆xV
i =− wiC(X)

∑ j w j‖∇x jC(X)‖2∇xiC(X). (32)

The weights wi are used to realize a local volume conservation (see
below). The gradient can be approximated by

∇C(X)≈ 1
3
[nT

1 , . . . ,n
T
n ]

T,

where ni = ∑A jn j is the sum of the area weighted normals of all
triangles which contain particle i.

The weights in Equation (32) are chosen as follows:

wi = (1−α)wl
i +αwg

i , wl
i =

‖∆xi‖
∑ j ‖∆x j‖

, wg
i =

1
n
,

where wl
i and wg

i are the weights for local and global volume con-

servation, respectively, and the user-defined value α ∈ [0,1] is used
to blend between both. The vector ∆xi contains the total position
change of the i-th. Hence, strongly deformed particles participate
more in volume correction. The weight of a colliding particle is set
to zero in order to ensure that a collision constraint is not violated
during the position correction for the volume conservation. Finally,
the weights are smoothed by a Laplacian filter.

Diziol et al. also propose another definition for the local weights
wl

i . To propagate volume changes through the object, they first de-
termine pairs of opposing particles in a pre-processing step by in-
tersecting the geometry with multiple rays. For each particle i one
particle k on the opposite side of the volumetric body is stored.
Then they choose a local weight which does not only depend on the
position change ∆xi of a particle but also on the distance changes
∆di of the corresponding particle pairs:

wl
i =

βsi∆di +(1−β)‖∆xi‖
∑ j
(
βs j∆d j +(1−β)‖∆x j‖

) ,
where si is a user-defined stiffness parameter and β ∈ [0,1] is used
to define the influence of the distance changes.

Analogous to the positions correction we perform a velocity cor-
rection to fulfill the constraint ∂C/∂t = 0. This leads to a divergence
free velocity field.

In Figure 11 different configurations for the presented volume
conservation method are compared with each other.

5.5.4. Robust Collision Handling with Air Meshes

As Müller et al. show in [MCKM15], per-element volume con-
straints can also be used to robustly handle collisions. To this end,
they tessellate the air between objects. Collisions can then be pre-
vented by making sure that the air elements do not invert with the
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Figure 11: Four spheres with different volume conservation
squeezed by a plate. Left to right: global conservation, local con-
servation with distance constraints, local conservation without dis-
tance constraints and no volume conservation. The maximum vol-
ume loss was 0.6%, 0.7%, 0.7% and 40% respectively.

unilateral constraints

Cair element(x1,x2,x3,x4) =
(
x2,1×x3,1

)
·x4,1 ≥ 0 and

Cair element(x1,x2,x3) =
∣∣x2,1×x3,1

∣∣≥ 0

in 3D and 2D, respectively. When the volume of an air element is
positive, the element is passive, does not disturb the simulation and
causes no computational cost. The main advantage of air meshes
over existing collision handling methods is that air meshes have a
memory. Even if a scene is completely flattened as shown in Figure
12, the objects pop up in the correct order when released. This is
particularly useful in the simulation on complex clothing as shown
in Figure 13. Air meshes not only detect entangled states easily,
they also allow the smooth recovery from arbitrary entangled states
which is a hard problem as the literature on this topic shows.

Müller et al. note that when large relative translations and rota-
tions between objects occur, the air elements can lock and report
collisions in a collision free state. The authors solve this problem
by running a mesh optimization step. They perform edge flips in
2D and generalized edge flips in 3D whenever they improve the
mesh quality. This step prevents locking - not provably but in all
practical examples. In 2D, the optimization step is fast and allows
the simulation of arbitrary scenarios. In 3D, mesh optimization is
significantly more expensive. Fortunately, in the case of complex
clothing, locking does not cause disturbing visual artifacts.

5.6. Long Range Attachments

Recently, Kim et al. [KCM12] found a surprisingly simple and ro-
bust technique they call Long Range Attachments (LRA) to pre-
vent cloth from getting stretched globally with low iteration counts.
Their method exploits the fact that stretching artifacts almost al-
ways appear when cloth is attached. In this case, instead of only
applying attachment constraints to the subset of the vertices near
the region where the cloth is attached and relying on error prop-
agation of the solver for all other vertices, they apply unilateral
attachment constraints to all the vertices by attaching each vertex
to one or more attachment point directly. The rest lengths of these
long range attachments can either be set to the Euclidean distance
in the rest state or via measuring geodesic lengths along the cloth.
Figure 14 demonstrates the method on a single rope attached at one
end. The method allows the simulation of a piece of cloth with 90K
vertices at interactive rates as shown in Figure 15.

5.7. Strands

A similar approach was recently proposed by Müller et al.
[MKC12] to guarantee zero stretch in a single pass for the case of
attached ropes. This approach allows the simulation of thousands
of hair strands in real time (see Figure 16). Figure 17 visualizes
the basic idea. Particle x1 is attached. To satisfy the first distance
constraint, particle x2 is moved towards x1 such that their mutual
distance is l0. Particle x3 is then moved towards the new position
of x2 and similarly along the chain until the last particle is reached.
After this single pass, all the distance constraints are satisfied.
This method is called Follow The Leader (FTL). While LRA
guarantees zero stretch of all the particles w.r.t. the attachment
points, the constraint between consecutive particles can still re-
main overstretched. On the other hand, in contrast to LRA which is
momentum conserving, FTL introduces unphysical behavior. Not
projecting distance constraints symmetrically means that a system
is simulated for which each particle has infinitely more mass than
its successor. To compensate for this behavior, the authors replace
the PBD velocity update vi← (pi−xi)/∆t in Algorithm 1 by

vi←
pi−xi

∆t
+ sdamping

−di+1
∆t

,

where di+1 is the position correction applied to particle i+ 1 and
sdamping ∈ [0,1] a scaling factor do influence damping. While this
modification of DFTL (dynamic FTL) hides the unphysical behav-
ior of FTL, it introduces a certain amount of damping which is
acceptable for the simulation of hair and fur as the author’s results
show.

5.8. Continuous Materials

Recently, position-based methods based on a continuum-based for-
mulation were presented. In the following we introduce three meth-
ods which use this formulation. The first method defines a con-
straint for the strain energy of a deformable solid [BKCW14] while
the second one directly constrains the strain tensor [MCKM14].
The third method constrains the strain measures of one dimensional
elastic bodies, so called Cosserat rods, which can undergo bending
and twisting deformations [KS16].
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Figure 12: With air mesh based collision handling, both the characters themselves as well as their spacial order is recovered from a
completely flat state.

Figure 13: Smooth recovery from a severely entangled cloth state
using an air mesh for collision handling.

Figure 14: The Long Range Attachments (LRA) method used to
simulate an inextensible rope attached at one end. Each particle is
constrained or remain inside a sphere centered at the attachment
point (red) whose radius is the initial distance from the particle to
the attachment. For each configuration, target positions are shown
in green when particles need to be projected. Particles inside the
constraint spheres are allowed to move freely.

5.8.1. Strain Energy Constraint

In continuum mechanics the deformation of a body is defined by
the function

φ(X) = X+u = x,

Figure 15: Simulation of a piece of cloth with 90K vertices at 20fps
on a GPU using LRA.

which maps a point X in material space to its corresponding de-
formed location x in world space using a continuous displacement
field u. The Jacobian of this function F =

∂φ(X)
∂X , also known as de-

formation gradient, is used to determine the non-linear Green strain
tensor

ε =
1
2

(
FT F− I

)
, (33)

where I denotes the identity matrix. Hooke’s generalized law gives
us the relation between stress and strain

S = Cε,

where C is the elasticity tensor which defines the elastic behavior of
the material. For isotropic materials this relationship is called Saint-
Venant Kirchhoff model, where C is defined by two independent
variables, often expressed by the engineering constants Young’s
modulus k and Poisson ratio ν. The energy of a deformed solid
is defined by integrating the scalar strain energy density field

Ψs =
1
2

ε : S =
1
2

tr(εT S)
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Figure 16: Dynamic FTL allows the simulation of every hair strand in real time. From left to right: 47k hair strands simulated at 25 fps
including rendering and hair-hair repulsion. Long hair composed of 1.9m particles at 8 fps. Curly hair using visualization post-processing.
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Figure 17: Follow The Leader (FTL) projection. Starting from the
attachment down, each particle is moved directly towards its pre-
decessor such that their mutual distance constraint is satisfied.

over the entire body Ω:

Es =
∫

Ω

ΨsdX, (34)

where tr(·) is the trace of a matrix.

In order to simulate deformable solids with the position-based
approach an energy constraint C(x) = Es(x) = 0 is defined. A dis-
cretization of the solid is required to compute the energy. We use
tetrahedral meshes for volumetric bodies and triangle meshes for
surface models in combination with linear Lagrangian shape func-
tions to discretize the body. For linear shape functions the deforma-
tion gradient of a tetrahedral element is determined by

Ftet = DsD−1
m ,

where Ds is the deformed shape matrix and Dm the constant refer-
ence shape matrix defined by the vertices of the tetrahedral element

Ds =
(
x1−x4 x2−x4 x3−x4

)
Dm =

(
X1−X4 X2−X4 X3−X4

)
.

The deformation gradient Ftri ∈ R2×2 for a triangular element is
defined analogously in the two-dimensional space of the triangle
plane.

The constraint of a tetrahedral element can now be defined as

C(x) = Es(x) =V Ψs(Ftet),

where V is the undeformed volume of the element. Additionally,
the position-based solver requires the gradients of the constraint
∇Cxi = ∂Es/∂xi which are determined by[

∂Es

∂x1

∂Es

∂x2

∂Es

∂x3

]
=V P(Ftet)D−T

m ,
∂Es

∂x4
=−

3

∑
i=1

∂Es

∂xi
,

where P(F) = FCε is the first Piola-Kirchhoff stress tensor.

Note that common constitutive models are not designed to han-
dle degenerate or inverted tetrahedral elements. However, this prob-
lem can be solved by using the inversion handling of Irving et
al. [ITF04].

The constraint of a triangular element is defined analogously

C(x) = Es(x) = AΨ(Ftri),

where A is the area of the undeformed triangle. The constraint gra-
dients of the three vertices are determined by[

∂Es

∂x1

∂Es

∂x2

]
= AP(Ftri)D−T

m ,
∂Es

∂x3
=−

2

∑
i=1

∂Es

∂xi
.

The proposed energy constraint formulation [BKCW14] has the
advantage that it can handle complex physical effects like lateral
contraction, anisotropy or elastoplasticity (see Figure 18, right).
Moreover, it is not limited to the introduced Saint-Venant Kirchhoff
model, also other material models like e.g. the Neo-Hookean model
are supported. Finally, Bender et al. [BKCW14] demonstrated that
this approach is very efficient and even faster than shape matching.
Therefore, the method allows to simulate complex scenes with a
high number of elements (see Figure 18, left).

5.8.2. Strain Based Dynamics

In [MCKM14] the authors propose another position-based method
based on continuum mechanics which allows the control of stretch
and shear deformations independent of the tessellation of the mesh.
The basic idea is to force the components of Green’s strain tensor ε

defined in Equation (33) to zero by introducing one constraint per
independent component

Cstretch(x) = Sii−1 (35)

Cshear(x) = Si j i < j, (36)

where S = FT F and x defines the positions of the four particles
adjacent to a tetrahedral element or the three particles adjacent to
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Figure 18: Position-based simulation using the strain energy constraint. Left: 100 Stanford Armadillos with 371700 tetrahedral elements
falling through a funnel. Right: Elastoplastic Stanford Dragon is deformed persistently due to the weight of a heavy sphere.

Figure 19: Varying the cloth stiffness parameters of different
strain components. From top to bottom the resistance to x-stretch,
y-stretch and shear are: (high,high,high), (hight,high,low) and
(low,high,high). Our method allows the control of these modes in-
dependently on triangle meshes with highly non-regular tessella-
tions as the one used here.

a triangle. In the soft body case there are three stretch and three
shear constraints where as there are two stretch and one shear con-
straint in the cloth case. The paper above gives the explicit update
formulas derived from these constraints.

The stretch constraints formulated as in Equation (35) are
quadratic along the gradient and can therefore not be solved in a
single step. This problem can be fixed by defining the stretch con-
straints as

Cstretch(x) =
√

Sii−1,

which is linear along the constraint gradient.

The shear constraint function Si j can also be written as Si j =

fi · f j, where fi and f j are the ith and jth column vectors of F. How-
ever, this function not only penalizes the angle between the axes
of the deformed coordinate system, i.e. the dot product of the col-
umn vectors, but also the principal stretches, i.e. the magnitudes of
the column vectors. The following modification of Equation (36)
decouples strain from stretch

Cshear(x) =
fi · f j

|fi||f j|
.

Figure 19 shows Strain Based Dynamics on cloth in action. Even
though the tessellation of the mesh is not aligned with the principal
directions, stretch and shear w.r.t. to those directions can be con-
trolled. In Figure 20, the deformation of a torus is controlled by
varying the stiffnesses of the volume, stretch and shear constraints.

5.8.3. Elastic Rods

In continuum mechanics elastic rods are modeled as a smooth curve
r(s) : [s0,s1] → R3 with curve parameter s which is called cen-
terline. To simulate bending and twisting motion, an orthonormal
frame with basis vectors {d1(s),d2(s),d3(s)} is attached to each
point of the centerline. The vectors d1 and d2 span the plane of the
rod’s cross section and d3 = d1× d2 is the cross section normal.
Given a world coordinate system with the basis {e1,e2,e3} the vec-

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.



J. Bender, M. Müller and M. Macklin / A Survey on Position Based Dynamics, 2017

Figure 20: Varying soft body stiffness parameters. Figures (a) - (d) show the recovery of a torus from a heavily entangled state by increasing
the volume stiffness. For (e) we reduced all but the volume conservation stiffness values. As a result, the torus heavily deforms but its volume
is conserved. Figure (f) shows the result of only softening the volume stiffness and the stiffness along the main axis of the torus. The result of
high shear and low stretch resistance is shown in Figure (g) where angle distortion is small while the shape is stretched. Figure (h) shows
the opposite configuration. Here, stretching is small while the torus bends heavily.
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Figure 21: The geometry of the discrete rod.

tors dk can be represented as rotated basis vectors dk = qẽkq̄ with
the rotation quaternion q(s) and the conjugate quaternion q̄(s).

The strain measure Γ(s) measures the deviation of tangent of the
centerline and the cross section normal d3, which is called shear
deformation:

Γ(s) =
∂

∂s
r(s)−d3(s).

Further it measures stretch or compression of the rod because d3
has unit length and we assume that in the rest pose r(s) is a unit
speed parametrization. A second strain measure for bending and
torsion deformations is defined using the Darboux vector Ω:

∆Ω = Ω−Ω0 = =

(
2q̄ ∂q

∂s
−2q̄0 ∂q0

∂s

)
,

where=(·) denotes the imaginary or vector part of a quaternion and
the superscript 0 denotes values in rest pose. The Darboux vector
describes the rate of change of the basis vectors dk when the curve
parameter s is varied and it is the spatial analog of the angular ve-
locity.

For position-based simulation the rod is discretized as line seg-
ments and the mass is lumped in particles at their endpoints (see
Figure 21). The frames are attached to the midpoints of the line
segments, which is the commonly used staggered grid discretiza-
tion. The strain measures are discretized using finite differences.
Thereby the Darboux vector at the particle positions has to be in-
terpolated from the two adjacent quaternions, which is not unique.
The stretch and shear constraint for two adjacent particles with po-
sitions p1 and p2 and the quaternion q in between becomes

Cs (p1,p2,q) = 1
l (p2−p1)−d3(q) = 0.

To achieve simpler and faster computations, we replace the iner-
tia tensor I of the frame with a scalar mass mq so that the inverse
tensor is just the inverse mass wq. This yields the displacements

∆p1 =+ w1l
w1+w2+4wql2 Cs,

∆p2 =− w2l
w1+w2+4wql2 Cs,

∆q =− wql2

w1+w2+4wql2 C̃sqẽ3. (37)

The bending and torsion constraint for two adjacent quaternions
q1 and q2 becomes

Cb (q1,q2) = =
(

q̄1q2− q̄0
1q0

2

)
= Ω−αΩ

0 = 0,

α =

{
+1 if |Ω−Ω

0|2 ≤ |Ω+Ω
0|2

−1 if |Ω−Ω
0|2 > |Ω+Ω

0|2,

where α is required to get a unique constraint function since q and
−q describe the same rotation which means that the rest pose Dar-
boux vector is not unique. The displacements drive the rod towards
the rest pose, which is nearer to the current configuration. They can
be computed with the following formulas:

∆q1 =+
wq1

wq1+wq2
q2C̃b,

∆q2 =−
wq2

wq1+wq2
q1C̃b.

It is important to normalize the quaternions after the displace-
ments are applied, because only unit quaternions represent proper
rotations.

An example of a complex rod simulation is shown in Figure 22.

5.9. Rigid Body Dynamics

The position-based simulation method is not limited to particle-
based models. It can also be used to simulate articulated rigid body
systems with joint and contact constraints [DCB14].

A particle has three translational degrees of freedom (DOF). In
addition a rigid body has three rotational ones. We parameterize
the rotation by a vector ϑ which represents a rotation of |ϑ| about
the axis ϑ/ |ϑ| in order to define constraint functions C(x,ϑ) for
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Figure 22: Slinky walking down a stairway. It has 50 curls and is modeled with 1000 discrete rod elements. It was simulated using 50 solver
iterations and took 7 ms per simulation step (without collision detection) on a single core of an Intel Core i5 CPU.

positions and orientations. The vector ϑ is also known as the ex-
ponential map [Gra98]. Analogous to Equation (5) each constraint
for rigid bodies is approximated by a linearization of the constraint
equation:

C(x+∆x,ϑ+∆ϑ)≈ C(x,ϑ)+J(x,ϑ)
(

∆xT ,∆ϑ
T
)T

.

However, instead of formulating constraints with respect to x and
ϑ it is easier and more intuitive to use the concept of connectors
which was introduced by Witkin et al. [WGW90]. A connector can
be a point or vector in local coordinates of a rigid body which is
used to define a constraint. The definition of connectors allows to
formulate generic constraints without knowledge about the body it-
self. For example a ball joint which removes all translational DOFs
between two linked bodies is defined by the constraint

C(P1,P2) = P1−P2 = 0,

where P1 and P2 are connector points in the first and second body,
respectively.

The world space position of a connector point Pi of a body j with
position x j and orientation ϑ j is defined by

Pi(x j,ϑ j) = x j +R(ϑ j)ri, (38)

where ri denotes the position of the connector in the local coordi-
nate system of the body. The Jacobian of a constraint function C(P)
which depends on a set of connector points P is determined by

J =
∂C(P)

∂P︸ ︷︷ ︸
constraint

specific part

·
(

∂P
∂x

∂P
∂ϑ

)T

︸ ︷︷ ︸
connector

specific part

,

where the first term is constraint specific and can be computed with-
out knowledge of the body while the second term only depends on
the connector type.

For our ball joint example the constraint specific part of the Ja-
cobian is determined by ∂C(P)/∂P1 = −∂C(P)/∂P2 = I, where I
is the identity matrix. The connector specific part for a point con-
nector is obtained by deriving Equation (38) with respect to x and
ϑ. The first term is determined by ∂P/∂x = I while the second term
∂P/∂ϑ requires the computation of ∂R(ϑ)/∂ϑ which is explained
in detail by Grassia [Gra98].

In the following we describe how the position and orientation
corrections are computed for rigid bodies. Analogous to Equa-
tions (5)-(8) first a Lagrange multiplier λ is determined by solving

JM−1JT
λ =−C(x,ϑ). (39)

Then the Lagrange multiplier is used to compute the position and
orientation change of the linked rigid bodies[

∆xT ,∆ϑ
T
]
= M−1JT

λ. (40)

The position-based solver for rigid bodies works analogously
to the one for particles. Each constraint is linearized individually
and position and orientation corrections are determined in a Gauss-
Seidel fashion.

Collisions can be simulated by defining inequality constraints
for colliding rigid bodies (see Figure 23, right). These constraints
can be handled similar to unilateral particle constraints [DCB14].
Moreover, servo motors can be simulated by combining hinge or
slider joints with additional constraints that define the goal posi-
tions and orientations for the linked bodies (see Figure 23, left).

Finally, after computing position and orientation changes of the
rigid bodies we have to update the velocities and angular velocities
(cf. Algorithm 1, line 12). The velocity update is done as follows:

vn+1 =
1
∆t

(
xn+1−xn

)
ω

n+1 =
2
∆t
=
(

qn+1 · q̄n
)
.

5.10. Fluids

It is also possible to simulate fluids in the PBD framework even
though it has been used almost exclusively for the simulation of
deformable objects. We mention fluids simply as an item in the list
of possible constraints because all that is needed to simulate liquids
and gases is a specialized constraint.

A straightforward approach would be to model the fluid as a sys-
tem of particles constrained to maintain a minimum distance from
each other, however this leads to granular-like behavior and will
typically fail to reach hydrostatic equilibrium when coming to rest.
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Figure 23: Left: Millipede with walking over several obstacles. The simulation model consists of 261 rigid bodies, 340 constraints and 240
motors. Right: 2000 rigid bodies collide with each other.

An alternative method is presented by Macklin and Müller [MM13]
where fluid incompressibility is enforced using density constraints.
Borrowing the concept of a density estimator from Smoothed Par-
ticle Hydrodynamics (SPH) [Mon94, Mon92], a density constraint
is constructed for each particle i in the system as follows

Ci(x1, ...,xn) =
ρi

ρ0
−1, (41)

where ρ0 is the fluid rest density and ρi is the density at a parti-
cle, defined as the sum of smooth kernels [MCG03] centered at the
particle’s neighbor positions

ρi = ∑
j

m jW (xi−x j,h).

Note that here each particle’s mass is assumed to be one, and the
rest density adjusted accordingly. In order to solve these density
constraints using position-based dynamics, the derivative of the
constraint function (41) with respect to each particle’s position is
required. This can be calculated using the gradient of SPH kernels

∇xkCi =
1
ρ0

∑
j
∇xkW (xi−x j,h) if k = i

−∇xkW (xi−x j,h) if k = j.

Note that the kernel W and its gradient ∇xkW can be computed
very efficiently using lookup tables [BK16].

By taking advantage of symmetry in the SPH smoothing kernel
W , the corrective change in position due to the particle’s own den-
sity constraint, and the density constraints of its neighbors is given
by

∆xi =
1
ρ0

∑
j

(
λi +λ j

)
∇W (xi−x j,h),

where λ is the per-constraint scaling factor (see Equation (6)). Fig-
ure 24 shows a real-time water simulation using this method.

5.11. Shape Matching

The geometrically motivated concept of shape matching to simu-
late deformable objects was introduced by Müller et al. [MHTG05].
Shape matching is a meshless approach which is able to simulate

Figure 24: A wave pool scene consisting of 128k fluid particles
simulated in 10ms/frame on the GPU. Incompressibility is enforced
using density constraints solved using position-based dynamics.

visually plausible elastic and plastic deformations (see Figure 25).
This approach is easy to implement, very efficient and uncondition-
ally stable.

Shape matching can be seen as a form of constraint projection
which can directly be integrated in the position-based dynamics
algorithm. By performing shape matching in line (9) of Algorithm 1
it can be easily combined with other position-based constraints.

The basic idea of simulating elastic behavior with shape match-
ing is shown in Figure 26. For the simulation the initial configura-
tion of the deformable object must be stored. Since no connectivity
information is needed, this configuration is defined by the initial
positions x̄i. In each time step the positions and velocities of the
particles are updated without considering any internal constraints
between the particles. Only external forces and collision response
are taken into account. Instead of using internal constraints, goal
positions are determined by matching the initial shape with the de-
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Figure 25: Robust and volume-conserving deformations using shape matching. Armadillos (32442 particles total), 20 ducks and 20 tori
(21280 particles total) and 20 balls (7640 particles total) were simulated in real-time on a GPU.
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Figure 26: The initial shape with the vertex positions x̄i is matched
to the deformed configuration xi to obtain goal positions gi. The
deformed shape is pulled towards these goal positions to simulate
elastic behavior.

formed configuration. Then, each particle is pulled towards its goal
position.

In the following we first describe how the goal positions are de-
termined. Then we show how large deformations can be simulated
using region-based shape matching and introduce fast summation
techniques for this approach. In the end the concept of oriented par-
ticles and different extensions of the shape matching method are
presented.

5.11.1. Goal Positions

In order to obtain goal positions for the deformed shape the best
rigid transformation is determined which matches the set of initial
positions x̄ and the set of deformed positions x. The corresponding
rotation matrix R and the translational vectors c and c̄ are deter-
mined by minimizing

∑
i

wi (R(x̄i− c̄)+ c−xi)
2 ,

where wi are the weights of the individual points. The optimal
translation vectors are given by the center of mass of the initial
shape and the center of mass of the deformed shape:

c̄ = 1
M ∑

i
mix̄i, c = 1

M ∑
i

mixi, M = ∑
i

mi. (42)

If we minimize the term ∑i(Ar̄i− ri)
2 with ri = xi− c and r̄i =

x̄i− c̄, we get the optimal linear transformation A of the initial and
the deformed shape. This transformation is determined by:

A =

(
∑

i
mirir̄T

i

)(
∑

i
mir̄ir̄T

i

)−1

= ArAs. (43)

In our case we are only interested in the rotational part of this trans-
formation. Since As is symmetric, it contains no rotation. There-
fore, we only need to extract the rotational part of Ar to get the
optimal rotation R for shape matching. This can be done by a polar
decomposition Ar = RS of the transformation matrix where S is a
symmetric matrix.

Finally, the goal positions are determined by

gi = T
[

x̄i
1

]
,

where T =
[
R (c−Rc̄)

]
. These goal positions are used to com-

pute position corrections:

∆xi = α(gi(t)−xi(t)) ,

where α ∈ [0,1] is a user-defined stiffness parameter which defines
how far the particles are pulled to their goal positions.

5.11.2. Region-Based Shape Matching

The shape matching algorithm described above allows only for
small deviations from the initial shape. For the simulation of large
deformations the concept of region-based shape matching became
popular, see e.g. [MHTG05, RJ07, DBB11]. The idea is to per-
form shape matching on several overlapping regions of the origi-
nal shape. In each region we can have a small deviation from the
corresponding part of the initial shape which results in a large de-
formation over all regions.

Diziol et al. [DBB11] propose to define a region for each particle
of the model where the i-th region contains all particles in the ω-
ring of the i-th particle in the original mesh of the model. Shape
matching is a meshless method but Diziol et al. require a mesh to
define the shape matching regions. Rivers and James [RJ07] use a
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Figure 27: The stiffness of the model depends on the region size.
Smaller regions (top) allow larger deformations than larger regions
(bottom). The hexagons in the left images represent the overlapping
regions of the model. The right images show the goal positions after
one particle is moved away.

regular lattice instead to define their regions. No matter which kind
of regions are used, the stiffness of the model depends on the size
of the overlapping regions (see Figure 27). Enlarging the regions
results in a more global shape matching and therefore the stiffness
of the simulated model is increased.

In region-based shape matching a particle is part of multiple re-
gions. In the following we denote the set of regions to which a
particle i belongs by <i. Since particles can belong to more than
one region, Rivers and James [RJ07] proposed to use modified par-
ticle masses m̃i = mi/|<i| for shape matching. This ensures that a
particle which is part of many regions has not more influence than
others. The optimal translation vectors for a region i are determined
by

c̄i =
1

M̃i
∑

j∈<i

m̃ jx̄ j, ci =
1

M̃i
∑

j∈<i

m̃ jx j, (44)

where M̃i = ∑ j∈<i
m̃ j is the effective region mass which can be

precomputed. The optimal rotation matrix R is computed by ex-
tracting the rotational part of the following matrix:

Ar,i = ∑
j∈<i

m̃ jx j x̄T
j − M̃icic̄T

i . (45)

In this form the first term depends on the particles j of the region
while the second term depends on the region i. This isolation of
the dependencies is required for fast summation techniques (see
below).

After performing shape matching for all regions, we get multiple
goal positions for each particle. The final goal position for a particle
is determined by blending the goal positions of the corresponding
regions:

gi =
1
|<i| ∑

j∈<i

T j

[
x̄i
1

]
.

5.11.3. Fast Summation Techniques

In the case of region-based shape matching the stiffness increases
with growing region size ω. However, at the same time the com-

putation of the optimal translation c and the transformation matrix
Ar becomes a bottleneck since large sums have to be computed
for each region. For a mesh with the dimension d and n regions,
O(ωdn) operations are required with the naive approach.

5.11.3.1. Regular Lattices Rivers and James demonstrated
in [RJ07] how the number of operations for computing the sums
can be reduced to O(n) for regular lattices (d = 3). Their op-
timization is closely related to the concept of summed-area ta-
bles [Cro84]. In their approach they compute the summation for
a set of particles just once and reuse it for all regions that contain
this set. This reduces redundant computations significantly for
a system with large overlapping regions. The fast summation of
Rivers and James is based on the usage of cubical regions. These
cubical regions can be subdivided in two-dimensional plate regions
which can again be subdivided in one-dimensional bar regions. The
region summation is performed in three passes. In the first pass the
sum for each bar is determined. The results are used to compute the
sums for the plates which are again used to obtain the final region
sum. Each pass requires O(ω) operations. However, the region sum
can even be determined in constant time if we take into account
that the sum of two neighboring bars, plates or cubes only differs
by one element. Lattice shape matching can be performed in linear
time if the sums in Equations (44) and (45) are evaluated using the
fast summation technique described above.

The FastLSM method of Rivers and James has several limita-
tions. To handle regions where the lattice is not regular, e.g. on the
boundary, several sums are defined in a pre-processing step for the
corresponding node. In the case of fracturing the definition of these
sums must be performed at run-time which is expensive to com-
pute. Small features need a fine sampling to obtain realistic results.
Since a regular lattice is used, a fine sampling yields an explosion
of the computational costs. FastLSM does not support a varying
region size to simulate inhomogeneous material.

5.11.3.2. Adaptive Lattices Steinemann et al. [SOG08] intro-
duce an adaptive shape matching method which is based on lattice
shape matching to overcome these limitations. A fast summation
is realized by an octree-based sampling and an interval-based def-
inition of the shape matching regions. The hierarchical simulation
model is created by starting with a coarse cubic lattice and then
performing an octree subdivision. The subdivision process can be
controlled by a user-defined criterion. At the end of the process a
simulation node is placed at the center of each leaf cell and a virtual
node at the center of each non-leaf cell. A virtual node stores the
sum of all its descendant simulation nodes.

The fast summation for the hierarchical model is performed by
an interval-based method which requires O(1) operations per re-
gion. For each simulation node ni a shape matching region is de-
fined by a region width ωi. To perform a fast summation, all sum-
mation nodes of the region i are determined in a pre-processing
step. First, for each node n j of the octree the interval of minimum
and maximum distances of all descendant leaves of n j to ni are de-
termined. Then, during a top-down traversal each node n j where
the maximum distance is smaller than the region width is added to
region i. If the descendant leaf nodes are contained only partially
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in region i, the current node must be refined. Only in this case the
traversal continues.

The top-down traversal assigns O(1) summation nodes to each
region. A fast summation can now be performed in two steps. In the
first step the sums of all nodes in the hierarchy are determined. This
is done by first computing the sums for the simulation nodes which
are the leaf nodes of the hierarchy, and then updating the sums of
the virtual nodes in a bottom-up fashion. The second step sums up
the values of the summation nodes for each region. For a roughly
balanced octree the computation of the sums takes O(n) time where
n is the number of simulation nodes. Hence, the adaptive shape
matching method requires linear time when using the described fast
summation technique to evaluate Equations (44) and (45).

5.11.3.3. Triangle Meshes In contrast to Rivers and James,
Diziol et al. [DBB11] only use the surface mesh of a volumet-
ric model to simulate its deformation. Therefore, no interior ele-
ments are required for the simulation which reduces the compu-
tational costs. Diziol et al. introduce a fast summation technique
for arbitrary triangle meshes (d = 2) to compute the large sums of
the region-based approach efficiently. This technique only requires
O(ωn) operations instead of O(ω2n) and can be performed very
efficiently in parallel.

The fast summation technique of Diziol et al. is based on a sub-
division of all particles of the mesh in disjoint paths. A path i is a
set of vertices xi1 , . . . ,xin which are connected by edges. The paths
are determined in a precomputation step. The goal of the path con-
struction algorithm is that each region is intersected by a minimum
number of paths. To determine the optimal path layout is computa-
tionally expensive. Therefore, a heuristic is used to find a good path
layout. Starting with a single vertex, adjacent vertices are added to
a path until the path length exceeds a maximum size or cannot be
extended any further. The heuristic tries to avoid gaps by choos-
ing vertices which have neighbors that are already part of a path.
To obtain paths which are as parallel as possible we add the vertex
which is closest to a plane passing through the starting vertex of the
current path, e.g. the xy-plane.

The fast summation is split in two phases (see Figure 28). In
the first phase the prefix sum for each path i is computed with j ∈
[1,ni]:

cp
i j
=

j

∑
k=1

m̃ik xik , Ap
i j
=

j

∑
k=1

m̃ik xik x̄T
ik .

Since the prefix sums for all paths are independent of each other,
they can be computed in parallel. The sums for a region r are com-
puted by first setting cr := 0 and Ar := 0. Then for each path i
which intersects the region in the interval [ik, . . . , il ], the following
terms are added:

cr := cr + cp
il − cp

ik−1
, Ar := Ar +Ap

il −Ap
ik−1

. (46)

The final translational vector and the affine matrix are determined
by cr := (1/M̃r)cr and Ar := Ar− M̃rcr c̄T

r respectively.

5.11.4. Oriented Particles

For a small number of particles or particles that are close to co-
linear or co-planar (as in Figure 29), the matrix Ar in Equation (43)

P0

P1

P2

P3

P4

−
x0+x1+x2

−
x1+x2+x3

Path P0 sum
in regions

x0+x1x0 x0+x1+x2+x3x0+x1+x20Prefix sum P0

x0 x1 x2 x3

Figure 28: Fast summation technique for arbitrary triangle
meshes [DBB11]. First the prefix sums for the disjoint paths are
determined. Then the region sum is computed by adding the differ-
ence of the intersection interval for each path.

becomes ill-conditioned and the polar decomposition needed to ob-
tain the optimal rotation tends to be numerically unstable.

To solve this problem, Müller et al. [MC11] proposed to use
oriented particles. By adding orientation information to particles,
the polar decomposition becomes stable even for single particles.
The moment matrix of a single spherical particle with orientation
R ∈ R3×3 and finite radius r at the origin is well defined and can
be computed via an integral over its volume as

Asphere =
∫

Vr

ρ(Rx)xT dV = ρR
∫

Vr

xxT dV

=
4

15
πr5

ρR =
4
15

πr5 m
Vr

R

=
1
5

mr2R,

where Vr is the volume of a sphere of radius r. Since R is an or-
thonormal matrix, Ai always has full rank and an optimal condition
number of 1. For an ellipsoid with radii a,b and c we get

Aellipsoid =
1
5

m

 a2 0 0
0 b2 0
0 0 c2

R.

However, the moment matrices of the individual particles cannot
simply be added because each one is computed relative to the ori-
gin. We need the moment matrix of particle i relative to the position
xi− c.

Fortunately, this problem can be fixed easily. As we saw above,
the equation for computing the moment matrix

A = ∑
i

mi(xi− c)(x̄i− c̄)T (47)

can be re-written as

A = ∑
i

mixix̄T
i −Mcc̄T ,

where c̄ and c are the centers of mass of the initial and the deformed
shape, respectively (see Equation (42)).

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.



J. Bender, M. Müller and M. Macklin / A Survey on Position Based Dynamics, 2017

Therefore, shifting the evaluation from the origin to the position
xi− c yields

Aglobal
i = Ai +mixix̄T

i −micc̄T .

Equation (47) now generalizes to

A = ∑
i

(
Ai +mixix̄T

i

)
−Mcc̄T

= ∑
i

(
Ai +mi(xi− c)(x̄i− c̄)T

)
.

As you can see, the last form looks like Equation (47) but with all
the individual particle moment matrices added in the sum.

In addition to position x and velocity v, oriented particles carry a
rotation which can be defined as an orthonormal matrix R as above
or a unit quaternion q. They also carry the angular velocity ω. In
the prediction step of position-based dynamics, these two quantities
have to be integrated as well:

xp← x+v∆t

qp←
[

ω

|ω| sin(
|ω|∆t

2
),cos(

|ω|∆t
2

)

]
q.

For stability reasons, qp should directly be set to q if |ω|< ε.

After the prediction step, the solver iterates multiple times
through all shape match constraints in a Gauss-Seidel type fash-
ion as before. To simulate objects represented by a mesh of linked
particles, Müller and Chentanez [MC11] define one shape match-
ing group per particle. A group contains the corresponding particle
and all the particles connected to it via a single edge. The positions
of the particles in a group are updated as in regular shape matching
by pulling them towards the goal positions while the orientation of
the center particle only is replaced by the optimal rotation of shape
matching.

After the solver has modified the predicted state (xp,qp), the
current state is updated using the integration scheme

v← (xp−x)/∆t

x← xp

ω← axis(qpq−1) · angle(qpq−1)/∆t

q← qp,

where axis() returns the normalized direction of a quaternion and
angle() its angle. Again, for stability reasons, ω should be set
to zero directly if |angle(qpq−1)| < ε. There are two rotations,
r = qpq−1 and −r transforming q into qp. It is important to al-
ways choose the shorter one, i.e. if rw < 0 use −r, where rw is
the real part of the quaternion. As in traditional PBD for transla-
tion, changing the rotational quantity qp in the solver also affects
its time derivate ω through the integration step creating the required
second order effect.

The orientation information of particles cannot only be used to
stabilize shape matching but also to move a visual mesh along with
the physical mesh. With position and orientation, each particle de-
fines a full rigid transformation at every point in time. This allows
the use of traditional linear blend skinning with particles replacing
skeletal bones.

An additional advantage of having orientation information is that
ellipsoids can be used as collision volumes for particles. This al-
lows a more accurate approximation of the object geometry than
with the same number of spherical primitives (see Figure 30).

Figure 29: This underwater scene demonstrates the ability of the
oriented particle approach to handle sparse meshes such as the
one-dimensional branches of the plants or the fins of the lion fish.

Figure 30: The rotation information of oriented particles cannot
only be used to stabilize shape matching, it also allows the use of
ellipsoids as collision primitives. The figure shows how the same
mesh is approximated much more accurately with ellipsoids (right)
than with the same number of spheres (left).

5.11.5. Plastic Deformation

Shape matching can be extended in order to simulate plastic defor-
mations [MHTG05]. If we perform a polar decomposition Ar = RS
for the linear transformation matrix Ar (see Equation (43)), we
get a rotational part R and a symmetric part S = RT Ar. The ma-
trix S represents a deformation in the unrotated reference frame.
Hence, for each region we can store the plastic deformation state in
a matrix Sp which is initialized with the identity matrix I. As pro-
posed by Goktekin et al. [GBO04], we use two parameters cyield
and ccreep to control the plastic behavior of the material. If the con-
dition ‖S− I‖2 > cyield is fulfilled for the deformation matrix S of
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the current time step, the plastic deformation state is updated as
follows:

Sp← [I+∆tccreep(S− I)] Sp.

After this update, Sp is divided by 3
√

det(Sp) in order to conserve
the volume. The plastic state Sp is integrated in the shape matching
process by deforming the reference shape in Equation (43). This is
done by replacing the definition of r̄i (see Section 5.11.1) with

r̄i = Sp (x̄i− c̄) .

Note that the plasticity can be bound by the condition ‖Sp− I‖2 >
cmax where cmax is the threshold for the maximum plastic defor-
mation. If this condition is fulfilled, we use Sp ← I+ cmax(Sp−
I)/‖Sp− I‖2.

5.11.6. Large Elasto-Plastic Deformation

The approach described in the previous section works well as long
as the plastic deformation remains relatively small. However, when
large deformations or topological changes occur as in the dough
example in Figure 31, the sampling of the volume by particles and
their clustering has to be adapted during the simulation.

Chentanez et al. [CMM16] proposed a shape matching method
that can handle large elasto-plastic deformations. For plasticity they
use the model of [Cho14] which is slightly more sophisticated than
the one described in the previous section. To define the region that
has to be sampled with particles, they move an explicit triangle
mesh surface along with the particles using linear blend skinning.
Their particle re-sampling method then comprises five steps: re-
moving invalid particles, seeding new particles in under-sampled
regions, updating the current clusters, remove invalid clusters and
add new clusters.

More specifically, particles are removed if the distance to their
closest neighbor falls below a threshold or if they leave the surface
mesh. Particles are added using poisson disk sampling in clusters
for which the Frobenius norm of the plasticity matrix S exceeds a
threshold. Deleted particles are removed from all clusters that ref-
erence them and the new particles are added to close enough clus-
ters. Then, existing clusters are removed if their particle count falls
below or rises above given thresholds, the Frobenius norm of the
plasticity matrix gets too large or if all referenced particles belong
to more than a given number of other clusters. To add new clusters,
a list of particles that are not referenced by a minimum number
of clusters is created. Then, a subset of particles is selected whose
mutual distances are above the cluster radius. For each particle in
this subset, a new cluster is created. For more details and a descrip-
tion of how the surface mesh is updated we refer the reader to the
original paper.

5.11.7. Cloth Simulation

Stumpp et al. [SSBT08] present a region-based shape matching ap-
proach for the simulation of cloth. In their work they define a region
for each triangle in the model. But instead of using the triangles
directly as regions for shape matching, overlapping regions are de-
fined. The region of a triangle is defined by the outer corners of
its adjacent triangles. These overlapping regions enable the bend-
ing resistance of the cloth model. Since the model of Stumpp et

al. uses regions with only three vertices, the stiffness of high res-
olution models is too low for realistic results. Therefore, they in-
troduce so-called fiber clusters to increase the stretching stiffness.
These one-dimensional regions are determined in a pre-processing
step by subdividing the mesh into multiple edge strips. During the
simulation each strip is traversed in both directions to obtain ad-
ditional goal positions. The resulting displacements are translated
so that they sum up to 0 to preserve the momentum of the model.
The final goal positions are blended with the goal positions of the
triangular regions.

The usage of fiber clusters increases the stiffness of the cloth
model. However, this effect is limited and for high-resolution mod-
els the stiffness is still too low to achieve a realistic cloth behav-
ior. Bender et al. [BWD13] solve this problem by the introduction
of multi-resolution shape matching (see Figure 32) which is based
on the idea of multi-grid solvers [Hac85]. A shape matching re-
gion is defined for each edge and each triangle in a cloth model.
To increase the influence of these simple regions and therefore
the stretching and shearing stiffness of the model, shape matching
is performed on different resolution levels. Multi-resolution shape
matching enables the robust simulation of stiff cloth models in lin-
ear time.

In the following we first describe 2D shape matching for trian-
gular regions and then introduce multi-resolution shape matching.

For a cloth simulation with triangular regions, shape matching
is performed per triangle in the two-dimensional space of the tri-
angle plane. First the optimal translation vectors of the regions are
computed by evaluating Equation (44). Then, for each triangle with
the vertices x1, x2 and x3 and the normal n a projection matrix is
determined:

P =

(
aT

x
aT

y

)
∈ R2×3

with

ax =
x2−x1
‖x2−x1‖

, ay =
n×ax

‖n×ax‖
.

The matrix P is used to project the vectors r and r̄ in Equation (43)
to get a 2D version of the matrix Ar:

r̄′i = P̄(x̄i− c̄) , r′i = P(xi− c) ,

where r̄′i ∈ R2 can be precomputed. The optimal rotation for
shape matching is obtained by performing a 2D polar decompo-
sition [SD92] for the resulting matrix A′r ∈ R2×2. This rotation
matrix is used to compute 2D goal positions g′i for the particles
and the corresponding 2D position changes ∆x′i :

g′i = R′r̄′i , ∆x′i = α
1
|<i|

(g′i−x′i).

Finally, the vectors ∆x′i are transformed to world space by ∆xi =
PT

∆x′i and the particle positions are updated. This process is shown
in Figure 33.

In a simulation with multi-resolution shape matching [BWD13]
two intergrid transfer operators are required to couple the differ-
ent meshes in the multi-resolution hierarchy. The restriction oper-
ator Il

l+1 transfers values from level l + 1 to the next coarser level

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.



J. Bender, M. Müller and M. Macklin / A Survey on Position Based Dynamics, 2017

Figure 31: Simulation of a piece of dough undergoing large plastic deformations. In this case, shape matching groups and sampling have
to be dynamically adjusted.

Figure 32: A stiff cloth model with 32467 triangles is simulated
using multi-resolution shape matching with five hierarchy levels.
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Figure 33: 2D shape matching. The initial configuration of a trian-
gle in 2D (left) is matched to the deformed configuration (middle)
by projecting the deformed triangle into 2D and computing the op-
timal translation and rotation to get goal positions (right).

l and the prolongation operator Il+1
l transfers values in the oppo-

site direction. These operators can be defined by barycentric coor-
dinates [GW06]. In each simulation step first the positions of the
finest mesh are updated by time integration. For non-nested mod-
els the positions of the coarser meshes are interpolated using the
restriction operator. Then multi-resolution shape matching is per-
formed in a V-cycle as described by Algorithm 2.

Algorithm 2 Multi-resolution shape matching
1: for l = lmax to 1 do
2: Store current positions: x̂l ← xl

3: Perform shape matching
4: xl−1 := xl−1 + Il−1

l (xl− x̂l)
5: end for
6: for l = 0 to lmax do
7: Store current positions: x̂l ← xl

8: Perform shape matching
9: if l 6= lmax then

10: xl+1 := xl+1 + Il+1
l (xl− x̂l)

11: end if
12: end for

In the restriction phase the hierarchy is traversed from the finest
to the coarsest mesh performing a shape matching step on each
level and projecting the resulting position differences xl− x̂l to the
next coarser level with the restriction operator. In the prolongation
phase the hierarchy is traversed in the opposite direction. On each
level a shape matching step is performed and the position differ-
ences are interpolated and added to the next finer level. Since only
position differences are propagated between the levels, fine details
are conserved on finer levels. However, fine details could get lost
if the original shape matching method is used on the coarse levels
of the hierarchy. Wrinkles on a fine resolution cause a compres-
sion of elements on a coarser level. Shape matching reduces this
compression and thus eliminates fine details. Therefore, Bender et
al. [BWD13] propose a modified computation of the goal positions
on the coarse levels of the hierarchy so that shape matching only
prevents stretching on these levels but not a compression.

6. Implementation

6.1. Parallelization

The parallelization of the position-based approach is an important
topic since multi-core systems and massively parallel GPUs are
ubiquitous today.
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6.1.1. Graph-Coloring Methods

In a single CPU implementation, the solver processes the con-
straints one by one in a Gauss-Seidel-type fashion. Thereby, after
each constraint projection, the positions of affected particles are im-
mediately updated. In a parallel implementation, the constraints are
processed in parallel by multiple threads. If two constraints affect-
ing the same particle are handled by two different threads simulta-
neously, they are not allowed to immediately update the particle’s
position because writing to the same position simultaneously leads
to race conditions making the process unpredictable. A solution to
circumvent this problem is to use atomic operations. Such opera-
tions are guaranteed not to be interrupted. However, atomics can
slow down parallel execution significantly.

To avoid these issues, a parallel implementation of PBD needs
to split the constraints into groups or phases. In each phase, none
of the constraints are allowed to share a common particle. With
this restriction, the constraints in the first phase can be processed
in parallel without conflicts. Then, after a global synchronization,
the next phase can be processed. This cycle is repeated until all
constraints are processed.

As an example, if N particles are connected in a serial chain, the
constraints 1− 2,3− 4,5− 6,7− 8, .. can be processed in phase 1
and the constraints 2−3,4−5,6−7, .. in phase 2. This specific ex-
ample corresponds to the Red-Black Gauss Seidel scheme, where
there are two sets (colors) of constraints. For more general types
of constraints such as the stretch, shear and bending constraints
of cloth, more phases are needed. In this general case, splitting
constraints into phases corresponds to the graph coloring problem,
where each constraint corresponds to a node of the graph and two
constraints are connected by an edge if they affect one or more
common particles. The minimum number of colors determines how
many phases are needed in the parallel execution of PBD. Keeping
the number of phases small is not the only optimization criterion.
The sets also need to have similar sizes for good load balancing.

6.1.2. Jacobi Methods

For some models with high valence, graph-coloring methods may
generate poor work load distributions, where initial sets of con-
straints may be large, but tailing sets are very small. This imbal-
ance leads to resource under-utilization and potentially high syn-
chronization costs when many colors are required. An alternative
method for parallelizing PBD is to use a Jacobi-style constraint
solver. In a Jacobi solve, each constraint may be processed in par-
allel, and the position delta for each particle obtained by summing
the delta from each constraint at the end of an iteration.

Jacobi methods often converge significantly slower than Gauss-
Seidel iteration, and may not converge at all, for example if the sys-
tem matrix is not positive definite. To address this problem, under-
relaxation based on the concept of constraint averaging [BFA02],
or mass-splitting [TBV12] can be applied. At the end of the iter-
ation, once all constraints are processed, the particle’s total con-
straint delta is divided by ni, the number of constraints affecting
the particle, to obtain the averaged position update ∆x̃:

∆x̃i =
1
ni

∆xi. (48)

This form of local relaxation is not guaranteed to conserve mo-
mentum when neighboring particles have differing number of con-
straints, however, visual errors are typically not noticeable. Averag-
ing constraint forces as described above ensures convergence, but
in some cases this averaging is too aggressive and the number of
iterations required to reach a solution increases. To address this a
global user-parameter ω can be introduced to control the rate of
successive over-relaxation (SOR),

∆x̃i =
ω

ni
∆xi. (49)

We recommend using 1 ≤ ω ≤ 2, although higher values may be
used depending on the scene being simulated. Additional under-
relaxation (ω < 1) is not typically required as the constraint aver-
aging is sufficient to avoid divergence.

6.1.3. Hybrid Methods

To take advantage of both Gauss-Seidel and Jacobi solvers, Fratar-
cangeli et al. [FP15] proposed a hybrid approach. They use graph
coloring and modify the graph such that it produces a desired num-
ber of k colors by splitting high valence particles, i.e. solving them
Jacobi style. An even simpler hybrid approach is to solve the first
k− 1 colors using k− 1 Gauss-Seidel passes and then solve the
remaining constraints with one Jacobi pass.

6.1.4. Shape Matching

In Section 5.11.3 we presented different fast summation techniques
for shape matching. The one of Diziol et al. [DBB11] is best suited
for a parallel implementation on the GPU. In the following the GPU
implementation of this technique with CUDA is described in detail.
For such an implementation memory access and memory layouts
play an important role as well as the number of kernel calls.

Since each kernel call introduces a computational overhead, the
particles of all objects in a simulation are packed into one single ar-
ray. This array is ordered according to the path layout which is used
for the fast summation (see Section 5.11.3). Since the array con-
tains the paths one after another, a segmented prefix sum [SHZO07]
can be used to determine the prefix sums of all paths at once. To
avoid numerical problems due to the 32 bit floating-point arith-
metics on the GPU, the path length is limited to 512. The resulting
prefix sums are stored in texture memory to benefit from the tex-
ture cache when the translational vectors and the affine matrices are
determined (see Equation (46)).

The multi-resolution approach described in Section 5.11.7 can
be implemented on the GPU as follows. Shape matching on each
level of the hierarchy is performed by computing the goal positions
per element in parallel in a first step. The results are stored for each
element. In a second step shape matching is completed by summing
up the contributions of all elements containing a vertex to get a final
goal position for the vertex. The restriction and the prolongation of
the results can be performed efficiently using the sparse matrix data
structure of Weber et al. [WBS∗13]. This implementation allows to
simulate the deformation of a cloth model with more than 200k
triangles on the finest level in 22 ms/step on a GeForce GTX 470.
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Figure 34: Rigid body bunnies, attached to cloth by deformable
ropes parachute to the ground. A drag model on the clothing parti-
cles slows the descent of the bunnies.

6.2. Unified Solver

Macklin et al. [MMCK14] present a method that brings together
many of the PBD applications in a unified framework. The core
idea is to represent everything in the system by particles, and lever-
age fast GPU particle-particle collision techniques [Gre08] to gen-
erate complex interactions efficiently.

In this framework, rigid bodies are represented by voxelizing
closed triangle meshes, and adding particles in interior cells. A
shape-matching constraint is then added to the system to enforce
the rigid particle configuration. Interaction between objects is ac-
complished by simply connecting particles by constraints, e.g.:
tethering a rigid object to the corners of a piece of cloth generates
a basic parachute (see Figure 34).

Particles are extended with an integer phase attribute, which is
used to control the generation of constraints. One possible inter-
pretation of the phase attribute is that particles of the same phase
do not generate collision constraints. For example, when model-
ing rigid bodies, particles belonging to the same body are given the
same phase to avoid generating internal collisions.

Fluids are modeled using the density constraint of Section 5.10,
because the fluid is also modeled by particles, full two-way cou-
pling with clothing, rigid bodies, and granular materials is possi-
ble. Constraints may also be combined to achieve new effects, e.g.:
a rigid body constraint combined with the fluid density constraint
can be animated to model phase changes such as melting.

7. Applications

In this section we introduce different application areas of position-
based methods. These methods are mainly used in interactive ap-
plications where performance, controllability and stability are more
important than accuracy, like e.g. in [SGdA∗10, DB13]. But there
exist also other works which use a position-based approach for sta-
bilization.

7.1. Strain Limiting

Strain limiting is an important topic in the field of cloth simulation.
The reason is that the low solver iteration counts used in real-time
applications yield stretchy cloth. Since most cloth types are per-
ceived by the human eye as completely inextensible, it is important
to make simulated cloth inextensible in order to avoid disturbing
visual artifacts [GHF∗07, BB08].

A strain limiting method makes sure that the overall stretch of
the cloth stays below a certain threshold. In force based simula-
tions, strain limiting is a separate pass which is executed before
or after the regular cloth solver. In most cases, this pass moves
the positions of vertices directly, even in force based simulations.
Therefore, most strain limiting methods fall under the category of
position-based methods.

A straightforward way of limiting strain is to iterate through all
edges of a cloth mesh and project the adjacent particles of over-
stretched edges as shown in Figure 3 so that the stretch of the edge
does not exceed the stretch limit. Provot [Pro95] was among the
first to use this method in the context of cloth simulation. He per-
forms a single iteration through all cloth edges after a force based
solver. Desbrun et al. [DSB99] and Bridson et al. [BMF03] later
used the same post solver strain limiter but with multiple iterations
through all edges. Due to its simplicity, this method is still one of
the most popular strain limiting methods used in cloth simulations.

The method is very similar to position-based cloth simulation.
The main difference is that the strain limiting pass described above
does not influence the velocities. These are updated by the force-
based solver. In contrast, position-based cloth simulation derives
the new velocities from the projections, making an additional
solver pass obsolete. Therefore, every position-based strain limit-
ing method used in force based simulations can directly be used in
a PBD solver.

The result of projecting along edges depends on the structure of
the mesh. To reduce this artifact, Wang et al. [WOR10] propose to
limit the principal strains of the 2D deformation field within each
triangle. The 2D deformation field can be determined by consider-
ing the 2D coordinates of the vertices of a triangle within the planes
of the rest and current triangle configurations. Wang et al. compute
the principal strains of the 2D deformation gradient, clamp them
and construct a new 2D transformation using the clamped strains.
With this new transformation they correct the current positions of
the triangle vertices. As before, to limit strain globally, they iterate
through all triangles multiple times in a Gauss-Seidel fashion.

Due to the relatively slow convergence rate of a Gauss-Seidel
solver, high iteration counts are necessary to limit the strain glob-
ally which slows down the simulation. The two main methods to
improve the convergence rate are the use of a global Newton-
Raphson solver as proposed by Goldenthal et al. [GHF∗07] or to
perform Gauss-Seidel iterations on a hierarchy of meshes as pro-
posed in [Mül08], [WOR10] and [SKBK13]. However, these meth-
ods complicate the implementation and even though their conver-
gence rate is higher, a single iteration can be significantly more
expensive than a simple Gauss-Seidel iteration.

7.2. Wrinkle Meshes

In cloth simulations, reducing the mesh resolution not only reduces
the cost of a single solver iteration but also the number of itera-
tions required to get visually pleasing results. In [MC10] the au-
thors proposed a way to reduce the resolution of the dynamic mesh
without losing too much visual detail. The most significant detail
in cloth simulations are small wrinkles. The method is based on the
observation that global dynamic behavior of the cloth and wrinkle
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formation can be separated. Therefore, expensive dynamic simula-
tion including collision handling is performed on a low-resolution
mesh. The wrinkle formation is handled on a high resolution mesh
that is attached to the dynamic mesh (see Figures 35 and 36). Since
wrinkles do not oscillate, it is sufficient to use a static solver with a
low iteration count on the high-resolution mesh.

Figure 35: Basic idea of wrinkle meshes. The high resolution wrin-
kle mesh (white vertices) follows the low-resolution dynamic mesh
(black vertices) by restricting the white vertices to remain within a
certain distance (gray discs) to the dynamic mesh.

Figure 36: Visualization of the wrinkle mesh (solid) and the under-
lying dynamic mesh (wireframe).

Figure 37 shows the constraints defined on the high-resolution
mesh to make it form wrinkles and follow the dynamic mesh. The
attachment constraints makes sure that the vertices of the wrinkle
mesh stay close to their attachment points on the dynamic mesh.
If the dynamic mesh has outside/inside information, a one-sided
constraint can be used which makes sure that the wrinkle vertices
stay on the outside of the dynamic mesh, thus avoiding penetra-
tions with other objects. The stretching and bending constraints are
responsible for wrinkle formation.

7.3. Further Applications

Another application area for position-based methods is interactive
surgical simulation. In this area Wang et al. [WXX∗06] introduce a
mass-spring model based on a surface mesh to simulate deformable
bodies in real-time. Since such a model can neither preserve its vol-
ume nor resume its rest shape in the absence of external forces,
the authors propose to couple the surface model with a rigid core
by using spring forces. This rigid core is simulated using shape
matching [MHTG05] which results in a fast and stable simulation.
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Figure 37: Static constraints on a wrinkle mesh: Attachment con-
straint (top left), one sided attachment constraint (top right), stretch
constraint (bottom left) and bending constraint (bottom right).

Kubiak et al. [KPGF07] present a simulation method for surgical
threads which is based on the position-based dynamics approach
of Müller et al. [MHHR07]. Their method simulates the stiffness,
bending and torsion of a thread and also provides feedback for a
haptic device. For the simulation Kubiak et al. define distance con-
straints for stiffness and bending, torsion constraints, contact con-
straints and friction constraints. The presented method allows for
an interactive and robust simulation of knots.

The simulation of complex hairstyles using a shape matching ap-
proach is presented by Rungjiratananon et al. [RKN10]. Their ap-
proach is based on Lattice Shape Matching which was originally in-
troduced by Rivers and James [RJ07]. For the simulation each hair
strand is represented by a chain of particles which is subdivided
in overlapping chain regions. After shape matching an additional
position-based strain limiting is applied to each strand which moves
the particles in the direction of their root. Different hair styles are
realized by using appropriate initial configurations and by modify-
ing the region sizes of a chain.

Umetani et al. [USS14] use a position-based rod model which
is derived from the Cosserat theory in order to simulate complex
bending and twisting of elastic rods. The authors define material
frames on the centerline of each edge to represent the orienta-
tions along the rod. These material frames are represented by ghost
points which are coupled with the edges by position-based con-
straints.

O’Brien et al. [ODC11] use position-based dynamics for the
physically plausible adaptation of motion-captured animations. In
their work they use a vertex-based character skeleton and different
constraints to preserve the skeleton structure, to define joint lim-
its and to implement a center of mass control. In addition to the
kinematic constraints, they define a couple of dynamics constraints
which consider vertices in multiple frames. Dynamics constraints
are used to enforce smooth acceleration and dynamical correctness.

Fierz et al. [FSAH12] introduce a position-based approach to sta-
bilize a finite element simulation. When using an explicit time inte-
gration for a finite element simulation, the time step size is typically
limited by the stiffness of the model and its spatial discretization. In
each simulation step Fierz et al. use the Courant-Friedrichs-Lewy
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(CFL) condition to determine the maximum allowed time step size
for each tetrahedral element in their volumetric simulation model.
However, instead of using the time step size given by the CFL con-
dition to perform a stable simulation step with an explicit integra-
tion scheme, they use a fixed size and mark all elements where the
condition is not met. The marked elements are then simulated us-
ing a shape matching approach while for all other elements a linear
finite element method is used for the simulation.

8. Conclusion

In this tutorial, we focused on position-based approaches. Such ge-
ometrically motivated techniques are not force-driven and are par-
ticularly appropriate in interactive applications due to their versa-
tility, robustness, controllability and efficiency. We explained gen-
eral ideas of position-based methods and introduced several spe-
cific constraints. Various aspects and efficient solution strategies
were discussed with a particular focus on the benefits of position-
based approaches compared to force-driven techniques.

Position-based dynamics is fast, easy to implement and control-
lable. Furthermore, it avoids the overshooting problems of force-
based simulation models when using an explicit time integration
scheme. The method can handle arbitrary bilateral and unilateral
constraints as long as the gradient of the constraint function can be
determined. Therefore, this method is very flexible and has already
been used to simulate cloth, deformable solids and fluids.

However, position-based dynamics also has some disadvantages.
The stiffness of the model does not only depend on the user-defined
stiffness parameter but also on the time step size and the number of
solver iterations. Although the dependency can be reduced as de-
scribed in Section 4.2.2, it cannot be completely removed. There-
fore, it is difficult to adjust parameters independently. Decoupling
these parameters as well as adaptive time stepping are open prob-
lems and important topics for future work. Another drawback is
that position-based dynamics is not convergent, i.e. the simula-
tion does not converge to a certain solution with mesh refinement.
Hence, the usage of adaptive meshes is another open problem.

Acknowledgments We wish to thank Tassilo Kugelstadt for help-
ing us with the elastic rods part.

References
[BB08] BENDER J., BAYER D.: Parallel simulation of inextensible cloth.

In VRIPHYS 08: Fifth Workshop in Virtual Reality Interactions and Phys-
ical Simulations (2008), pp. 47–56. 27

[Ben07] BENDER J.: Impulsbasierte Dynamiksimulation von Mehrkör-
persystemen in der virtuellen Realität. PhD thesis, University of Karl-
sruhe, Germany, 2007. 4

[BET14] BENDER J., ERLEBEN K., TRINKLE J.: Interactive simulation
of rigid body dynamics in computer graphics. Computer Graphics Forum
33, 1 (2014), 246–270. 4

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Robust treatment of
collisions, contact and friction for cloth animation. ACM Trans. Graph.
21, 3 (July 2002), 594–603. 26

[BFS05] BENDER J., FINKENZELLER D., SCHMITT A.: An impulse-
based dynamic simulation system for VR applications. In Proceedings
of Virtual Concept (2005), Springer. 4

[BK16] BENDER J., KOSCHIER D.: Divergence-free sph for incompress-
ible and viscous fluids. IEEE Transactions on Visualization and Com-
puter Graphics (2016). 19

[BKCW14] BENDER J., KOSCHIER D., CHARRIER P., WEBER D.:
Position-based simulation of continuous materials. Computers & Graph-
ics 44, 0 (2014), 1 – 10. 9, 13, 15

[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Simulation of clothing
with folds and wrinkles,. In Proc. ACM/Eurographics Symposium on
Computer Animation (2003), pp. 28–36. 27

[BML∗14] BOUAZIZ S., MARTIN S., LIU T., KAVAN L., PAULY M.:
Projective dynamics: Fusing constraint projections for fast simulation.
ACM Trans. Graph. 33, 4 (July 2014), 154:1–154:11. 8

[BMO∗14] BENDER J., MÜLLER M., OTADUY M. A., TESCHNER M.,
MACKLIN M.: A survey on position-based simulation methods in com-
puter graphics. Computer Graphics Forum 33, 6 (2014), 228–251. 4

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simulation. In
Proceedings of Computer graphics and interactive techniques (1998),
SIGGRAPH ’98, ACM, pp. 43–54. 6

[BWD13] BENDER J., WEBER D., DIZIOL R.: Fast and stable cloth sim-
ulation based on multi-resolution shape matching. Computers & Graph-
ics (2013). 24, 25

[BWH∗06] BERGOU M., WARDETZKY M., HARMON D., ZORIN D.,
GRINSPUN E.: A quadratic bending model for inextensible surfaces. In
Proc. Symposium on Geometry processing (2006), Eurographics Associ-
ation, pp. 227 – 230. 9

[Cho14] CHOI M. G.: Real-time simulation of ductile fracture with ori-
ented particles. Computer Animation and Virtual Worlds 25, 3-4 (2014),
455–463. 24

[CMM16] CHENTANEZ N., MÜLLER M., MACKLIN M.: Real-time sim-
ulation of large elasto-plastic deformation with shape matching. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (Aire-la-Ville, Switzerland, Switzerland, 2016), SCA
’16, Eurographics Association, pp. 159–167. 24

[Cro84] CROW F. C.: Summed-area tables for texture mapping. SIG-
GRAPH Comput. Graph. 18, 3 (Jan. 1984), 207–212. 21

[DB13] DEUL C., BENDER J.: Physically-Based Character Skinning. In
VRIPHYS 13: 10th Workshop on Virtual Reality Interactions and Physi-
cal Simulations (Lille, France, 2013), Eurographics Association, pp. 25–
34. 27

[DBB09] DIZIOL R., BENDER J., BAYER D.: Volume conserving simu-
lation of deformable bodies. In Short Paper Proceedings of Eurographics
(Mar. 2009). 11

[DBB11] DIZIOL R., BENDER J., BAYER D.: Robust real-time deforma-
tion of incompressible surface meshes. In Proceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (2011),
SCA ’11, Eurographics Association. 11, 20, 22, 26

[DCB14] DEUL C., CHARRIER P., BENDER J.: Position-based rigid
body dynamics. Computer Animation and Virtual Worlds (2014). 17,
18

[DSB99] DESBRUN M., SCHRÖDER P., BARR A.: Interactive animation
of structured deformable objects. In Proc. of SIGGRAPH 99 (1999),
ACM, pp. 1–8. 4, 27

[EB08] ENGLISH E., BRIDSON R.: Animating developable surfaces us-
ing nonconforming elements. ACM Trans. Graph. 27, 3 (2008), 66. 8

[FP15] FRATARCANGELI M., PELLACINI F.: Scalable partitioning for
parallel position based dynamics. EUROGRAPHICS 2015 34, 2 (2015).
26

[FSAH12] FIERZ B., SPILLMANN J., AGUINAGA I., HARDERS M.:
Maintaining large time steps in explicit finite element simulations using
shape matching. Visualization and Computer Graphics, IEEE Transac-
tions on 18, 5 (may 2012), 717 –728. 28

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.



J. Bender, M. Müller and M. Macklin / A Survey on Position Based Dynamics, 2017

[GBO04] GOKTEKIN T. G., BARGTEIL A. W., O’BRIEN J. F.: A
method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3 (Aug.
2004), 463–468. 23

[GHF∗07] GOLDENTHAL R., HARMON D., FATTAL R., BERCOVIER
M., GRINSPUN E.: Efficient simulation of inextensible cloth. ACM
Trans. Graph. 26, 3 (2007), 49. 7, 8, 27

[GM97] GIBSON S. F., MIRTICH B.: A survey of deformable modeling in
computer graphics. Tech. Rep. TR-97-19, Mitsubishi Electric Research
Lab., 1997. 4

[Gra98] GRASSIA F. S.: Practical parameterization of rotations using the
exponential map. Journal of Graphics Tools 3 (1998), 29–48. 18

[Gre08] GREEN S.: Cuda particles. nVidia Whitepaper 2, 3.2 (2008), 1.
27

[GW06] GEORGII J., WESTERMANN R.: A multigrid framework for
real-time simulation of deformable bodies. Computer & Graphics 30
(2006), 408–415. 7, 25

[Hac85] HACKBUSCH W.: Multi-Grid methods and applications, vol. 4
of Springer Series in Computational Mathematics. Springer, 1985. 24

[HJCW06] HONG M., JUNG S., CHOI M., WELCH S.: Fast volume
preservation for a mass-spring system. IEEE Comput. Graph. Appl. 26
(2006), 83–91. 11

[ISF07] IRVING G., SCHROEDER C., FEDKIW R.: Volume conserving
finite element simulations of deformable models. ACM Trans. on Graph-
ics 26, 3 (July 2007), 13:1–13:6. 11

[ITF04] IRVING G., TERAN J., FEDKIW R.: Invertible finite elements
for robust simulation of large deformation. In Proc. of the 2004 ACM
SIGGRAPH/Eurographics Symp. on Comput. Anim. (2004), Eurograph-
ics Association, pp. 131–140. 15

[Jak01] JAKOBSEN T.: Advanced character physics. In Proceedings,
Game Developer’s Conference 2001 (2001). 9

[JP99] JAMES D. L., PAI D. K.: Artdefo: accurate real time deformable
objects. In Proc. of SIGGRAPH 99 (1999), ACM, pp. 65–72. 4

[KCM12] KIM T.-Y., CHENTANEZ N., MÜLLER M.: Long Range At-
tachments - A Method to Simulate Inextensible Clothing in Computer
Games. In Eurographics/ ACM SIGGRAPH Symposium on Computer
Animation (2012), Lee J., Kry P., (Eds.), Eurographics Association,
pp. 305–310. 13

[KPGF07] KUBIAK B., PIETRONI N., GANOVELLI F., FRATARCAN-
GELI M.: A robust method for real-time thread simulation. In Pro-
ceedings of the 2007 ACM symposium on Virtual reality software and
technology (2007), VRST ’07, ACM, pp. 85–88. 28

[KS16] KUGELSTADT T., SCHOEMER E.: Position and orientation based
cosserat rods. In Proceedings of the 2016 ACM SIGGRAPH/Eurograph-
ics Symposium on Computer Animation (2016), Eurographics Associa-
tion. 13

[LBOK13] LIU T., BARGTEIL A. W., O’BRIEN J. F., KAVAN L.: Fast
simulation of mass-spring systems. ACM Transactions on Graphics 32,
6 (Nov. 2013), 209:1–7. Proceedings of ACM SIGGRAPH Asia 2013,
Hong Kong. 8

[LG98] LIN M. C., GOTTSCHALK S.: Collision detection between geo-
metric models: A survey. In In Proc. of IMA Conference on Mathematics
of Surfaces (1998), pp. 37–56. 4

[MC10] MÜLLER M., CHENTANEZ N.: Wrinkle meshes. In Proceedings
of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (2010), SCA ’10, Eurographics Association, pp. 85–92. 27

[MC11] MÜLLER M., CHENTANEZ N.: Solid simulation with oriented
particles. ACM Trans. Graph. 30, 4 (July 2011), 92:1–92:10. 22, 23

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-based fluid
simulation for interactive applications. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation (2003),
SCA ’03, Eurographics Association, pp. 154–159. 19

[MCKM14] MÜLLER M., CHENTANEZ N., KIM T.-Y., MACKLIN
M.: Strain based dynamics. In Proceedings of the 2014 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (2014), Eu-
rographics Association. 13, 15

[MCKM15] MÜLLER M., CHENTANEZ N., KIM T.-Y., MACKLIN M.:
Air meshes for robust collision handling. to appear in ACM Trans.
Graph. (2015). 12

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M., RATCLIFF
J.: Position based dynamics. Journal of Visual Communication and
Image Representation 18, 2 (2007), 109–118. 5, 11, 28

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHNER M., GROSS
M.: Meshless deformations based on shape matching. ACM Trans.
Graph. 24, 3 (2005), 471–478. 19, 20, 23, 28

[Mir96] MIRTICH B.: Fast and accurate computation of polyhedral mass
properties. J. Graph. Tools 1, 2 (Feb. 1996), 31–50. 11

[MKC12] MÜLLER M., KIM T.-Y., CHENTANEZ N.: Fast Simulation
of Inextensible Hair and Fur. In VRIPHYS 12: 9th Workshop on Vir-
tual Reality Interactions and Physical Simulations (2012), Eurographics
Association. 13

[MM13] MACKLIN M., MÜLLER M.: Position based fluids. ACM Trans.
Graph. 32, 4 (July 2013), 104:1–104:12. 19

[MMC16] MACKLIN M., MÜLLER M., CHENTANEZ N.: Xpbd:
position-based simulation of compliant constrained dynamics. In Pro-
ceedings of the 9th International Conference on Motion in Games
(2016), ACM, pp. 49–54. 9

[MMCK14] MACKLIN M., MÜLLER M., CHENTANEZ N., KIM T.-Y.:
Unified particle physics for real-time applications. ACM Trans. Graph.
33, 4 (July 2014), 153:1–153:12. 11, 27

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics. Annual
Review of Astronomy and Astrophysics 30, 1 (1992), 543–574. 19

[Mon94] MONAGHAN J. J.: Simulating free surface flows with sph. J.
Comput. Phys. 110, 2 (Feb. 1994), 399–406. 19

[MSJT08] MÜLLER M., STAM J., JAMES D., THÜREY N.: Real time
physics: class notes. In ACM SIGGRAPH 2008 classes (2008), SIG-
GRAPH ’08, ACM, pp. 88:1–88:90. 4

[MTV05] MAGNENAT-THALMANN N., VOLINO P.: From early draping
to haute couture models: 20 years of research. The Visual Computer 21
(2005), 506–519. 4

[Mül08] MÜLLER M.: Hierarchical Position Based Dynamics. In VRI-
PHYS 08: Fifth Workshop in Virtual Reality Interactions and Physical
Simulations (2008), Faure F., Teschner M., (Eds.), Eurographics Associ-
ation, pp. 1–10. 8, 27

[NMK∗06] NEALEN A., MÜLLER M., KEISER R., BOXERMAN E.,
CARLSON M.: Physically based deformable models in computer graph-
ics. Computer Graphics Forum 25, 4 (December 2006), 809–836. 4,
6

[ODC11] O’BRIEN C., DINGLIANA J., COLLINS S.: Spacetime vertex
constraints for dynamically-based adaptation of motion-captured anima-
tion. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (2011), SCA ’11, ACM, pp. 277–286.
28

[OH99] O’BRIEN J. F., HODGINS J. K.: Graphical modeling and anima-
tion of brittle fracture. In SIGGRAPH ’99: Proceedings of the 26th an-
nual conference on Computer graphics and interactive techniques (New
York, NY, USA, 1999), ACM Press/Addison-Wesley Publishing Co.,
pp. 137–146. 4

[PB88] PLATT J. C., BARR A. H.: Constraints methods for flexible ob-
jects. In Proceedings of the 15th annual conference on Computer graph-
ics and interactive techniques (1988), SIGGRAPH ’88, ACM, pp. 279–
288. 6

[Pro95] PROVOT X.: Deformation constraints in a mass-spring model to
describe rigid cloth behavior. In In Graphics Interface (1995), Davis
W. A., Prusinkiewicz P., (Eds.), Canadian Human-Computer Communi-
cations Society, pp. 147–154. 27

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.



J. Bender, M. Müller and M. Macklin / A Survey on Position Based Dynamics, 2017

[RJ07] RIVERS A. R., JAMES D. L.: FastLSM: fast lattice shape match-
ing for robust real-time deformation. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 papers (2007), ACM, p. 82. 20, 21, 28

[RKN10] RUNGJIRATANANON W., KANAMORI Y., NISHITA T.: Chain
shape matching for simulating complex hairstyles. Computer Graphics
Forum 29, 8 (2010), 2438–2446. 28

[SD92] SHOEMAKE K., DUFF T.: Matrix animation and polar decom-
position. In Proceedings of the conference on Graphics interface ’92
(1992), Morgan Kaufmann Publishers Inc., pp. 258–264. 24

[SGdA∗10] STOLL C., GALL J., DE AGUIAR E., THRUN S.,
THEOBALT C.: Video-based reconstruction of animatable human char-
acters. ACM Trans. Graph. 29, 6 (Dec. 2010), 139:1–139:10. 27

[SGT09] SCHMEDDING R., GISSLER M., TESCHNER M.: Optimized
damping for dynamic simulations. In Spring Conference on Computer
Graphics (2009), pp. 205–212. 6

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS J. D.:
Scan primitives for GPU computing. In Proc. of the 22nd ACM SIG-
GRAPH/Eurographics Symp. on Grap. Hardware (2007), Eurographics
Association, pp. 97–106. 26

[SKBK13] SCHMITT N., KNUTH M., BENDER J., KUIJPER A.: Multi-
level Cloth Simulation using GPU Surface Sampling. In VRIPHYS 13:
10th Workshop on Virtual Reality Interactions and Physical Simulations
(Lille, France, 2013), Eurographics Association, pp. 1–10. 27

[SLM06] SERVIN M., LACOURSIERE C., MELIN N.: Interactive sim-
ulation of elastic deformable materials. In SIGRAD 2006. The An-
nual SIGRAD Conference; Special Theme: Computer Games (2006),
Linköping University Electronic Press. 9

[SOG08] STEINEMANN D., OTADUY M. A., GROSS M.: Fast adaptive
shape matching deformations. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (2008), SCA
’08, Eurographics Association, pp. 87–94. 21

[SSBT08] STUMPP T., SPILLMANN J., BECKER M., TESCHNER M.: A
Geometric Deformation Model for Stable Cloth Simulation. In VRIPHYS
08: Fifth Workshop in Virtual Reality Interactions and Physical Simula-
tions (2008), Faure F., Teschner M., (Eds.), Eurographics Association,
pp. 39–46. 24

[Sta09] STAM J.: Nucleus: Towards a unified dynamics solver for com-
puter graphics. IEEE International Conference on Computer-Aided De-
sign and Computer Graphics (2009), 1–11. 6

[TBHF03] TERAN J., BLEMKER S., HING V. N. T., FEDKIW R.: Finite
volume methods for the simulation of skeletal muscle. In Proc. of the
2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. (2003),
Eurographics Association, pp. 68–74. 4

[TBV12] TONGE R., BENEVOLENSKI F., VOROSHILOV A.: Mass split-
ting for jitter-free parallel rigid body simulation. ACM Trans. Graph. 31,
4 (July 2012), 105:1–105:8. 26

[TF88] TERZOPOULOS D., FLEISCHER K.: Deformable models. The
Visual Computer 4 (1988), 306–331. 6

[THMG04] TESCHNER M., HEIDELBERGER B., MULLER M., GROSS
M.: A versatile and robust model for geometrically complex deformable
solids. In Proceedings of the Computer Graphics International (Wash-
ington, DC, USA, 2004), CGI ’04, IEEE Computer Society, pp. 312–319.
4

[TKH∗05] TESCHNER M., KIMMERLE S., HEIDELBERGER B., ZACH-
MANN G., RAGHUPATHI L., FUHRMANN A., CANI M.-P., FAURE F.,
MAGNENAT-THALMANN N., STRASSER W., VOLINO P.: Collision de-
tection for deformable objects. Computer Graphics Forum 24, 1 (Mar.
2005), 61–81. 4

[TPBF87a] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER K.:
Elastically deformable models. In Proceedings of the 14th annual con-
ference on Computer graphics and interactive techniques (1987), SIG-
GRAPH ’87, ACM, pp. 205–214. 4

[TPBF87b] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER K.:
Elastically deformable models. In Computer Graphics (Proceedings of
SIGGRAPH 87) (1987), vol. 21, ACM, pp. 205–214. 4

[USS14] UMETANI N., SCHMIDT R., STAM J.: Position-based Elastic
Rods. In Eurographics/ ACM SIGGRAPH Symposium on Computer An-
imation (2014), The Eurographics Association. 28

[vFTS06] VON FUNCK W., THEISEL H., SEIDEL H.-P.: Vector field
based shape deformations. ACM Trans. on Graphics 25, 3 (July 2006),
1118–1125. 11

[WBS∗13] WEBER D., BENDER J., SCHNOES M., STORK A., FELL-
NER D.: Efficient GPU data structures and methods to solve sparse lin-
ear systems in dynamics applications. Computer Graphics Forum 32, 1
(2013), 16–26. 26

[WGW90] WITKIN A., GLEICHER M., WELCH W.: Interactive dynam-
ics. In SI3D ’90: Proceedings of the 1990 symposium on Interactive 3D
graphics (New York, NY, USA, 1990), ACM Press, pp. 11–21. 18

[Wit97] WITKIN A.: An introduction to physically based modeling: Con-
strained dynamics, 1997. 5

[WOR10] WANG H., O’BRIEN J., RAMAMOORTHI R.: Multi-resolution
isotropic strain limiting. ACM Trans. Graph. 29, 6 (Dec. 2010), 156:1–
156:10. 27

[WXX∗06] WANG Y., XIONG Y., XU K., TAN K., GUO G.: A mass-
spring model for surface mesh deformation based on shape matching.
In Proceedings of the 4th international conference on Computer graph-
ics and interactive techniques in Australasia and Southeast Asia (2006),
GRAPHITE ’06, ACM, pp. 375–380. 28

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.


