
Volume xx (200y), Number z, pp. 1–11

Compressed Neighbor Lists for SPH

Stefan Band1 , Christoph Gissler1,2 and Matthias Teschner1

1University of Freiburg, Georges-Köhler-Allee 52, 79110 Freiburg im Breisgau, Germany
2FIFTY2 Technology GmbH, Tullastraße 80, 79108 Freiburg im Breisgau, Germany

{bands,gisslerc,teschner}@informatik.uni-freiburg.de

Abstract
We propose a novel compression scheme to store neighbor lists for iterative solvers that employ Smoothed Particle Hydrodynamics
(SPH). The compression scheme is inspired by Stream VByte, but uses a non-linear mapping from data to data bytes, yielding
memory savings of up to 87 %. It is part of a novel variant of the Cell-Linked-List (CLL) concept that is inspired by compact
hashing with an improved processing of the cell-particle relations. We show that the resulting neighbor search outperforms
compact hashing in terms of speed and memory consumption. Divergence-Free SPH (DFSPH) scenarios with up to 1.3 billion
SPH particles can be processed on a 24-core PC using 172 GB of memory. Scenes with more than 7 billion SPH particles can
be processed in an MPI environment with 112 cores and 880 GB of RAM. The neighbor search is also useful for interactive
applications. A DFSPH simulation step for up to 0.2 million particles can be computed in less than 40 ms on a 12-core PC.

CCS Concepts
• Computing methodologies → Physical simulation; Massively parallel and high-performance simulations;

This is the author’s version of a work that was accepted for
publication in Computer Graphics Forum. Changes resulting from
the publishing process, such as peer review, editing, corrections,
structural formatting, and other quality control mechanisms may not
be reflected in this document. Changes may have been made to this
work since it was submitted for publication. A definitive version
was subsequently published in Computer Graphics Forum (2019)
DOI: 10.1111/cgf.13890.

1. Introduction

Approaches for the SPH neighbor search rarely discuss the stor-
age of the computed neighbor lists. This is due to the fact that the
storage of neighbor lists had not necessarily been required in state-
equation solvers with very few iterations over particle neighbors
per simulation step. Also, storing neighbors can constitute a signif-
icant memory overhead which is particularly prohibitive for GPU
implementations.

Current SPH approaches, however, employ an increasing num-
ber of neighbor iterations. State-of-the-art incompressibility solvers
such as PCISPH [SP09], IISPH [ICS∗14], DFSPH [BK17] and
PBF [MM13] are iterative. Boundary handling can be iterative
as proposed in, e.g., Pressure Boundaries [BGI∗18] or for strong
solid-fluid coupling [GPB∗19]. And there exist a growing num-
ber of implicit formulations for, e.g., viscous [PT17, WKBB18],
elastic [PGBT18] or ferromagnetic materials [HHM19] that em-
ploy iterative solvers. In such iterative solvers, storing and re-using
neighbor lists is a natural choice.

This paper focuses on the storage of compressed neighbor lists in
iterative SPH solvers. We propose a novel compressed representation
of neighbor lists that is inspired by Stream VByte [LKR17]. Further,
the compression scheme is embedded into a novel variant of the Cell-
Linked-List (CLL) approach, e.g. [HGE74, DCGGM11, IABT11].
We show that the proposed neighbor search and query outperform
state-of-the-art methods such as compact hashing [IABT11] in terms
of memory consumption and computing time. Using our neighbor
processing, fluid scenes with up to 200 million SPH particles can be
computed on a single PC with 32 GB memory.

The proposed compression scheme works on a particle list that is
sorted with respect to the index of a space-filling curve computed
for a virtual uniform grid. Figure 1 illustrates the setting and Fig. 2
indicates the sorted particle list where particles in the same space
cell are adjacent. This array is queried to find the neighbor list
for each particle. Figure 3 shows the same array with highlighted
particles that constitute the neighbor list of an exemplary particle.
The fact that all neighbor lists are represented by a smaller number
of clusters in the sorted array is the starting point for the proposed
compression.

1.1. Our contribution

• We propose to store compressed neighbor lists in SPH. We show
that this concept enables fluid scenarios with 1.3 billion particles
on a single PC and more than 7 billion particles on six connected
PCs.
• We propose a novel scheme for the compressed storage of

submitted to COMPUTER GRAPHICS Forum (11/2019).

https://orcid.org/0000-0002-6850-9319
https://orcid.org/0000-0002-2723-3248
https://orcid.org/0000-0002-4214-3996
https://doi.org/10.1111/cgf.13890

2 S. Band & C. Gissler & M. Teschner / Compressed Neighbor Lists for SPH

(a) SPH approximations at a particle
(blue) require neighboring particles
(black).

(b) Virtual space cells. The dotted line
illustrates the order of the cells.

Figure 1: In order to accelerate the neighbor search within the blue-
shaded area in (a), ordered virtual cells shown in (b) are considered.
Each particle stores the index of its cell illustrated by the particle
shading. Particles in the same cell have the same cell index.

...

Figure 2: Particles sorted with respect to the cell index. Particles
that share the same cell are adjacent in this list.

...

+2 +...
+1 +2 +1+1 +2 +2

Figure 3: A typical set of neighbors computed on the sorted particles.
The numbers indicate index differences in the sorted array. We
propose a novel compression scheme to store the index differences.

integer-valued index differences. In contrast to, e.g. Stream VByte
[LKR17], small values are directly encoded in the control bits
without using any data byte. On the other hand, values of interme-
diate size (encoded with two or three data bytes in Stream VByte)
require four bytes in our approach. We show that the pro-
posed non-linear mapping of values to data bytes outperforms
Stream VByte in SPH scenarios due to the clustered representa-
tion of neighbors in the sorted particle list.
• Our compressed representation is integrated in a novel CLL

approach. We propose a novel compact and memory-efficient
representation of the cell-particle relation in combination with
an adapted neighbor query using the BigMin-LitMax algorithm
[TH81]. In contrast to [DCGG13], infinite domains can be han-
dled by not representing empty cells. In contrast to compact
hashing [IABT11], only one particle reference is stored per used
cell. We show that our CLL approach is faster than compact hash-
ing. In particular, 0.2 million SPH particles can be interactively
simulated on a 12-core PC with our approach.
• We present various analyses. We show performance comparisons

to compact hashing and memory comparisons to Stream VByte.
We show that differences in computing times are negligible when
using compressed instead of uncompressed neighbor lists. We
further show that compressed neighbor lists are particularly ad-
vantageous for larger kernel supports with an increasing number
of neighbors where memory savings of up to 87 % can be ob-
tained. Finally, we illustrate the parallelizability and scalability

of the neighbor search and storage by presenting scenarios on a
12- and 24-core PC and in an MPI environment with 112 cores.

2. Related Work

2.1. Compression

Our work focuses on integer-valued compression techniques. In
the sorted array of a CLL approach, SPH particles are identified
by indices represented with 32-bit unsigned integers. Also, index
differences are integer values. There exist a large variety of suitable
compression methods and recent surveys can be found, e.g., in
[ZZL∗15] and [LB15].

We consider methods that encode a block of integer values with
control and data bytes. In binary packing a fixed number of data
bits is used for each value within the same block of, e.g., 128 in-
tegers [NAM10]. The decreasing efficiency of this fixed pattern in
case of outliers in a block has been addressed, e.g., by the patched
frame of reference (PFOR) [ZHNB06]. Recent PFOR implemen-
tations identify outliers in a sequence and process them separately,
e.g., NewPFD [YDS09], OptPFD [YDS09], FastPFOR [LB15].

As the SPH neighbor lists are represented in a smaller number of
clusters in the sorted array of our CLL approach, we prefer compres-
sion schemes that handle small index differences within a cluster
and few large index differences between clusters with an adaptive
number of data bits. E.g., VByte [TH72] is a popular choice to com-
press sequences of integers with variable data patterns, e.g. [PKL15].
VByte is byte-oriented, but its implementation involves a branch
and potential branch mispredictions may impair the performance.

VarIntGB [Dea09] alleviates the performance problems of VByte.
It is also well suited to make use of modern hardware acceleration
(SIMD) [SGR∗11,LB15,ZZL∗15]. However, in VarIntGB there is a
strong data dependency in the decoding procedure, as the location
of the next control byte depends on the current control byte. This
increases the risk that the processor remains underutilized, as it
cannot load and start processing upcoming control bytes.

Stream VByte [LKR17] overcomes this data dependency by stor-
ing the control bytes in a stream that is separate from the data bytes.
In their experiments, [LKR17] reported Stream VByte to be the
fastest of the above-mentioned algorithms. Therefore, we base our
compression scheme on Stream VByte. In contrast to Stream VByte,
however, we propose a non-linear mapping from integer values to
the number of data bytes. In particular, the values one and two are
represented in the control byte without the usage of any data byte.
We show that this variant outperforms Stream VByte in the specific
context of the CLL-based neighbor search in SPH simulations.

2.2. Neighbor Search

SPH requires information of neighboring particles to compute the
particle interactions. Using a naive approach, in which each particle
is a potential neighbor of all other particles, is unfeasible for a large
number of particles N due to a computational complexity of O(N2)
and is also unnecessary since particle pairs that are farther than the
SPH support length have a kernel function value of zero and can
thus be discarded.

submitted to COMPUTER GRAPHICS Forum (11/2019).

S. Band & C. Gissler & M. Teschner / Compressed Neighbor Lists for SPH 3

To accelerate the neighborhood query, hierarchical tree data
structures that can be built in O(N logN) and queried in O(logN)
have been applied, e.g. [WS95, KAG∗05, HCM06, APKG07], how-
ever, mostly in astrophysical problems with long-range interac-
tions [Spr05,GR11,HBMW11]. In contrast, researchers in computer
graphics seem to prefer uniform grids, e.g. [Gon07, Gre10, PH10,
DCGGM11, DCVB∗13, IOS∗14, WMRR17, WSG∗18] that can be
built in O(N) and queried in O(1).

In addition to uniform grids, Verlet-Lists (VL) [Ver67, VBC08,
WMRR17] have been proposed to alleviate the performance is-
sue of re-computing the neighbor lists in each simulation step.
As the neighbor lists are created from a larger support, they can
be retained for several steps. Due to memory restrictions on low
memory systems like GPUs, using the VL approach might not
always be an option. In this case, a CLL approach is preferred,
e.g. [HGE74, HKK07, GSSP10, DCGG13].

CLL approaches require the construction of a data structure
to link a cell of the underlying uniform grid with a list of par-
ticles. In GPU implementations, e.g. [Gre10, DCVB∗13, GEF15,
MRSD15, WRR18], all grid cells are typically represented, includ-
ing empty ones. For sparsely filled domains, where the number
of grid cells is much larger than the number of particles, this ap-
proach is not memory-efficient. In order to represent only non-empty
cells, [Gre10, IABT11, TLTM18] propose to use an approach based
on spatial hashing. However, hash tables are designed to scatter data
according to spatially close cells in order to minimize hash colli-
sions. This leads to low cache-hit rates for the insertion and query.
Further, race conditions while inserting, e.g., due to hash collisions,
have to be handled appropriately.

In contrast to previous works, we address the neighbor search
problem by a novel compact and memory-efficient representation of
the CLL in combination with an adapted neighbor query. Thereby,
we avoid the issues associated with hashing while infinite domains
can be handled with low memory consumption.

3. Method

This section describes the concept of our novel CLL variant. We
start with the proposed compression scheme for neighbor lists in
Section 3.1. Afterwards, the embedding of the compressed neigh-
bor lists into the novel CLL variant is explained in Section 3.2.
Implementation details are given in the following Section 4.

3.1. Compression

We want to compress neighbor lists that are represented in the sorted
array of our CLL approach (see Fig. 3). If ni is a particle index in the
sorted array and a neighbor list consists of N particles, we are inter-
ested in a lossless compression of N strictly increasing non-negative
integers n1,n2, . . . ,nN . As motivated in Section 2, our compression
scheme is inspired by Stream VByte [LKR17]. Stream VByte en-
codes the number of non-zero data bytes required to represent an
integer in a 2-bit binary mask (see Table 1). Four of these binary
masks build one control byte. As the number N of integers is known,
the first d2N/8e bytes in the output sequence are used to store the
control bytes. The control bytes are followed by the data bytes

Stream VByte Our approach

mask integer data bytes integer data bytes

0b00 [0,28) 1 0 -
0b01 [28,216) 2 1 -
0b10 [216,224) 3 [2,28) 1
0b11 [224,232) 4 [28,232) 4

Table 1: Control bits and encoded value ranges for Stream VByte
[LKR17] and our compression approach.

which are made up of the non-zero bytes of the input integers. For
efficiency, integers are encoded and decoded in blocks of four by
utilizing SIMD hardware instructions. To encode such a block, 5 to
17 bytes are required.

To minimize the range of the considered data, deltas or gaps
with ∆ni = ni− ni−1 are useful. In our context, many deltas are
small and thus well compressible [PKL15]. To recover the original
data from the deltas, the first value n1 of a sequence has to be
stored together with the deltas. Then, a prefix sum ni = ni−1 +∆ni
is used to reconstruct the rest of a sequence [LF80]. The value
of each recovered integer, however, can only be calculated after
the preceding value is known. To alleviate this problem, deltas
could be computed on a four-by-four basis, i.e., ∆ni = ni− ni−4
as proposed in [LB15]. Another approach is to compute the deltas
according to the minimal value, i.e., the first value in our application:
∆i = ni− n1. This approach is commonly referred to as frame of
reference (FOR) [GRS98]. Although both approaches are faster than
the original differential coding, they tend to generate larger deltas
and inferior compression ratios.

In our specific application of SPH neighbor lists, the deltas are al-
ways greater or equal to one. Subtracting one from each delta makes
them even smaller, but still non-negative, i.e., ∆ni = ni−ni−1−1≥
0. As discussed in Section 5.1 and illustrated in Fig. 7 for an exem-
plary scenario, many deltas are either zero or one. In consequence,
we propose to improve the compression rate of Stream VByte by
introducing a non-linear mapping from deltas to data bytes. Instead
of using 1, 2, 3 or 4 data bytes, we encode the values 0 or 1 with
control bits only, and use 1 or 4 data bytes for all other values (see
Table 1). No data bytes are required for the values 0 and 1. Values in
the interval [2,28) are represented with one data byte. Values larger
or equal to 28 are represented with four data bytes.

The compression algorithm for a list of neighbors works as fol-
lows. The first neighbor n1 is stored uncompressed. Then, deltas are
computed with ∆ni = ni−ni−1−1 for all other neighbors in the list.
From the deltas, we gather the control bits as specified in Table 1
and store the final control byte sequence. For deltas not equal to
zero or one, we encode ∆ni with one or four data bytes and store the
final data byte sequence.

For decoding, these steps are reversed. We read a control byte,
extract the control bits, read the specified number of data bytes
and compute a prefix sum using the first uncompressed value n1 to
finally restore the original values n2, . . . ,nN . Figure 4 illustrates an
exemplary setting.

submitted to COMPUTER GRAPHICS Forum (11/2019).

4 S. Band & C. Gissler & M. Teschner / Compressed Neighbor Lists for SPH

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26
27

28

29

30

31

32 33 34
35

(a) Particle configuration. The num-
bers indicate the particle index in the
sorted array.

6 8

+2

16

+8

17

+1

19

+2

20

+1

21

+1

23

+2

25

+2

(b) Neighbor set of particle 18. The
numbers at the arrows correspond
to index differences of the particle
indices. Storing the uncompressed
neighbor list would require 9 ×
4B = 36B.

6 1 7 0 1 0 0 1 1

(c) The delta encoded neighbor list
considering unique particle indices.
The first neighbor (yellow) is not
delta encoded.

4 bytes

0x00 0x00 0x00 0x06︸ ︷︷ ︸
first neighbor 6

1 byte

01|10|00|01︸ ︷︷ ︸
control byte

1 byte

00|00|01|01︸ ︷︷ ︸
control byte

1 byte

0x07︸︷︷︸
7

(d)Compressed neighbor list with our proposed compression scheme. Stor-
ing this list requires 4B for the first neighbor (yellow), 2×1B for the control
bytes (red) and 1B for the data segment (blue), i.e., a total of 7B.

4 bytes

0x00 0x00 0x00 0x06︸ ︷︷ ︸
first neighbor 6

1 byte

00|00|00|00︸ ︷︷ ︸
control byte

1 byte

00|00|00|00︸ ︷︷ ︸
control byte

1 byte

0x01︸︷︷︸
1

1 byte

0x07︸︷︷︸
7

1 byte

0x00︸︷︷︸
0

1 byte

0x01︸︷︷︸
1

1 byte

0x00︸︷︷︸
0

1 byte

0x00︸︷︷︸
0

1 byte

0x01︸︷︷︸
1

1 byte

0x01︸︷︷︸
1

(e) With Stream VByte [LKR17], the neighbor list can be compressed to
4B+2×1B+8×1B = 14B.

Figure 4: Compression concept for a neighbor list and comparison
to Stream VByte.

3.2. Neighbor Search

Our compression scheme bases on a novel CLL variant for the neigh-
bor search. In particular, the CLL query has to compute neighbors
with sorted indices to guarantee non-negative deltas for the compres-
sion. Further, our CLL variant is motivated by memory efficiency in
support of the compressed neighbor lists.

We consider a 3D grid that consists of equally sized cube cells,
e.g. [KS09, Gre10]. A particle with position ri = (x,y,z) is mapped
to a 3D coordinate of a grid cell with

(k, l,m) =
⌊

ri−rmin

~

⌋
(1)

where we subtract the minimum position rmin = (minx,miny,minz)
to ensure that all grid coordinates (k, l,m) are positive. The grid is
only implicitly represented by the edge length of a cell, i.e., the SPH
kernel support ~ in our application. Each 3D coordinate (k, l,m) is
then mapped to a unique 1D cell index c≡ c(k, l,m), e.g [PDC∗03,
KS09, IABT11] (see Fig. 5a).

In order to improve spatial locality and in turn reduce memory
transfer by improving the cache-hit rate, we compute the cell index
based on Morton codes [Mor66]. If k, l and m are represented by B
bits, i.e., k = k1 · · ·kB, l = l1 · · · lB and m = 1 · · ·mB, the cell index c
is computed by bit interleaving, i.e., c(k, l,m) = k1l1m1 · · ·kBlBmB
[PF01, LSY01]. After that, the particle list is sorted according to
this index. Although parallel radix sort is often used for sorting,
e.g. [OD08, Gre10, GSSP10], we employ a parallel stable merge
sort [MRR12] as it outperforms our radix sort implementation even

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

32 33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

60 61

62 63

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26
27

28

29

30

31

32 33 34
35

(a) Each particle is mapped to a vir-
tual grid cell with a unique cell in-
dex c. The particles are ordered in
memory according to c.

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

32 33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

60 61

62 63

(b) The neighbor search can be sim-
plified by range queries. The red
lines represent ranges of contiguous
cell indices that can be computed
with the BigMin-LitMax algorithm
[TH81]. In this example, the query
rectangle [3,15] is split into the four
sub-ranges 3, [6,7], 9 and [11,15].

particle
cell

1
2

2
3

3
3

4
3

5
5

6
6

7
6

8
6

9
7

10
7

11
9

12
9

13
9

14
10

15
11

16
12

17
12

18
12

19
13

20
13

21
13

22
14

23
14

24
14

25
14

...

(c) Particles and their corresponding cells after sorting with respect to the
cell index for the setting shown in (a).

first particle in cell
cell

1
2

2
3

5
5

6
6

9
7

11
9

14
10

15
11

16
12

19
13

22
14

26
15

29
16

...

particle
cell

marker
scan

1
2
1
1

2
3
1
2

3
3
0
2

4
3
0
2

5
5
1
3

6
6
1
4

7
6
0
4

8
6
0
4

9
7
1
5

10
7
0
5

11
9
1
6

12
9
0
6

13
9
0
6

14
10
1
7

15
11
1
8

16
12
1
9

17
12
0
9

18
12
0
9

19
13
1
10

20
13
0
10

21
13
0
10

22
14
1

11

23
14
0
11

24
14
0
11

25
14
0
11

...

(d) Compact representation of the cell-particle relationships in (c). Due to
the ordering of the particles, it is sufficient to only store a reference to the
first particle inside each non-empty cell. For instance, cell 9 contains the
particles [11,14) whereas cell 12 contains the particles [16,19). Querying
all particles in the cell range [11,15] would yield the particle range [15,29).
Marker and scan values are just computed in order to generate the compact
cell list. They are not stored.

Figure 5: CLL approach with the proposed cell-particle relations
and the BigMin-LitMax algorithm to estimate relevant cells for a
neighbor query.

for a large number of particles. In the sorted array, particles that
belong to the same grid cell are stored contiguously in memory (see
Fig. 5c).

In our novel CLL variant, we propose to build a compact list
of all non-empty cells from the sorted particle list. For each non-
empty grid cell, we store its cell index and a reference to its first
particle in the sorted particle list. This is in contrast to compact
hashing [IABT11], where references to all particles in a cell are
stored. It is also in contrast to [DCGG13], where all empty and
non-empty cells are represented and store references to their first
and last particle in the sorted particle list. We can infer the number
of particles inside a cell by computing the difference between the
particle reference of the current to the particle reference of the next
grid cell in the compact list. To create the compact cell array, first,
a marker is computed from the sorted particle list (see Fig. 5d). A
particle is marked with one if its cell value differs from the preceding

submitted to COMPUTER GRAPHICS Forum (11/2019).

S. Band & C. Gissler & M. Teschner / Compressed Neighbor Lists for SPH 5

particle in the sorted list, or with zero otherwise. A parallel scan
(prefix sum) over the markers provides the offsets for the compacted
cell array. Note that the marker and scan value are only computed,
but not stored. Finally, the particle index is written to the compact
cell array at the scan location if the particle’s marker value is one.

For the neighborhood query, particles inside a given bounding box
must be found. We define a bounding box as a range between a mini-
mum and a maximum cell index and adopt an idea of [DCGG13]. As
the grid cells follow the order of the underlying curve, consecutive
cells can be queried together (see Fig. 5b). However, not all cells in
a given range contain potential particle neighbors. In order to maxi-
mize query performance, the range is split into smaller sub-ranges.
To compute the sub-ranges, we propose to use the BigMin-LitMax
algorithm [TH81, OM84]. Finally, to compute the lower and upper
particle index bound for a sub-range, we perform a ternary search
on the cell array with logarithmic complexity in the number of non-
empty grid cells. Due to an ordered processing of the sub-ranges,
the indices of the estimated neighbors in a set are ordered which is
a prerequisite for our proposed compressed neighbor lists. This also
results in an optimized caching and hardware pre-fetching behavior
for the SPH computations.

4. Implementation

The implementation of our CLL approach is summarized in Algo-
rithm 1. First, the particle array is sorted with respect to the cell
index. Then, marker and scan values as indicated in Fig. 5d are com-
puted on the particle array to enable the generation of the compact
cell array. After that, the BigMin-LitMax algorithm is performed
for all cells in the compact cell array. The particles in the resulting
sub-ranges of cells are potential neighbors. Found neighbors are
compressed and stored per particle. All loops are well suited for
parallelization as there are no data dependencies.

Most relevant indices and references are simply computed or
directly looked up in the two arrays. The minimum and maximum
cell indices computed by the BigMin-LitMax algorithm, however,
have to be searched in the compact cell array. Here, we employ a
ternary search algorithm with a fallback to linear search [SGL09].
The search interval is recursively cut in three parts until the remain-
ing search interval contains less than 16 elements. For the remaining
elements, we fall back to a linear search algorithm. Linear search
has a worse theoretical run-time complexity compared to ternary
search. In practice, however, it can be more efficient for searching
small intervals as it is suitable for modern SIMD-hardware. Thus,
it can be implemented in a conditional-free way while testing mul-
tiple elements at once. For further performance improvements, we
cache the last 1024 results of the search algorithm. If a previously
processed value is found in the cache, it can be re-used without
search.

5. Results

SPH setting: We have integrated our novel CLL variant and the
compressed neighbor representation into a DFSPH framework
[BK17, BGPT18]. If not stated otherwise, we use the Wendland C6

kernel [Wen95] with a support ~ of two times the particle spacing h

1: For each particle i
2: Compute grid cell coordinate (ki, li,mi) with Eq. (1)
3: Compute and store grid cell index ci ≡ ci(ki, li,mi)

4: Sort the particles based on their cell index ci. Now, the particles
configuration is as illustrated in Figs. 5a and 5c

5: Generate and fill the compact cell array. The size of the compact
cell array is given by the maximum scan value as depicted in
Fig. 5d

6: For each cell in the compact cell array
7: For each particle i in the current cell
8: Create an empty local neighbor setNi

9: Determine the query box range for the neighbor search and
use the BigMin-LitMax algorithm to split the query box into
smaller sub-ranges as indicated in Fig. 5b

10: For each sub-range
11: Use a ternary search on the compact cell array on the

sub-range boundaries to get a particle range. This range
is made of a lower and upper particle index bound. All
particles within this range are potential neighbors

12: For each particle j in the computed particle range
13: For each particle i in the current cell
14: If particles i and j interact, i.e.,

∣∣∣∣ri− r j
∣∣∣∣< ~

15: add j to i’s local neighbor setNi

16: For each particle i in the current cell
17: Compress the local neighbor setNi with our algorithm

specified in Section 3.1 and store it to global memory

Algorithm 1: Query and compression of particle neighbors.

for all SPH interpolations. We follow [BL99, Gan15] and use linear-
exact gradient estimates for computing the pressure acceleration and
divergence of the velocity.

Simulation features: In free-surface scenarios, we apply a drag
force to the fluid-air interface as described in [GBP∗17] and model
surface tension as proposed in [AAT13]. Viscosity is modeled as
proposed by [MFZ97]. Solid boundaries are represented with a sin-
gle particle layer of non-uniform size [AIA∗12]. Pressure forces at
solid boundaries are computed with extrapolated pressure according
to [BGPT18].

Hardware and software: The presented scenarios have been com-
puted on three different systems. 1. One workstation with 12 cores
and 32 GB of RAM (2.6 GHz Intel Xeon E5-2690). 2. One worksta-
tion with 2×12 cores and 256 GB of RAM (2×2.7 GHz Intel Xeon
E5-2697). 3. Six workstations with 112 cores and 880 GB of RAM
(two 2×12-core 2.7 GHz Intel Xeon E5-2697 and four 2×8-core
3.1 GHz Intel Xeon E5-2687W). The six workstations are connected
via Gigabit Ethernet. All computations are fully parallelized with
Intel Threading Building Blocks [Phe08]. For the six connected
workstations, an MPI environment is realized. Like [TSG14], we
use Orthogonal Recursive Bisection (ORB) [Fox88] for spatial do-
main decomposition to distribute the particles to the computation

submitted to COMPUTER GRAPHICS Forum (11/2019).

6 S. Band & C. Gissler & M. Teschner / Compressed Neighbor Lists for SPH

nodes. The load balancing is done with a proportional integral con-
troller [FE08, OLTG∗16]. The ray-traced images are rendered with
PreonLab [FIF19]. The accompanying video is generated with 50
frames per second.

Scenarios: We use a dam break (Fig. 6) and a wind tunnel (Fig. 10)
for our analyses. For the dam break, we follow [KFV∗05] and sim-
ulate a fluid of size 1m× 0.55m× 1.228m inside a box-shaped
domain of size 1m×1m×3.22m. Furthermore, there is an obstacle
of size 0.403m×0.161m×0.161m in the scene. If not stated oth-
erwise, we use a particle spacing of 4 mm, resulting in 10.5 million
fluid and 0.8 million boundary particles. The rest density of the fluid
is 1000 kgm−3. Furthermore, we use a fixed time step size of 0.1 ms
and a fixed number of two divergence-free and two density-invariant
iterations of the DFSPH solver.

The wind tunnel scene consists of 1272 million fluid particles
and 30.1 million boundary particles with a spacing of h = 4mm
and a support length of 2h. The size of the simulation domain is
4m× 4m× 10m. We use a fixed time step of 0.5 ms and set the
density of the fluid to 1.2041 kgm−3 which corresponds to the
density of dry air at 20 ◦C. The inlet flow velocity of the fluid is
4 ms−1.

5.1. Space Filling Curves

The space filling curve is an important degree-of-freedom in our
CLL approach that affects the performance of the index computation
and neighbor list creation. It also influences the compression rate
of the stored neighbor lists. Therefore, we compare XYZ (also
used in [PDC∗03, DCGG13]), Morton (also used in [IABT11]) and
Hilbert curves (also used in [GRLS18]) with respect to performance
and compressibility using the dam break scenario. All considered
curves are discussed, e.g. in [Bad12] .

In a first experiment, we measure the wall-clock time to compute
the curve index, i.e., the cell index for the particles (Lines 1 to 3
in Algorithm 1). Furthermore, we measure the time required to
search and store the (compressed) neighbor lists for the particles
(Lines 6 to 17 in Algorithm 1). This is an indicator of the spatial
locality that is obtained by a space filling curve. As spatial locality
also influences all SPH computations, we also measure the total
computation time required per simulation step including neighbor
search and storage, pressure computation and particle advection.
The results of our timing experiments are summarized in Table 2.

The measurements in Table 2 indicate that the curves have vary-
ing performance in the cell index computation, the neighbor list
creation and the SPH computations. E.g., the index computation of
a Hilbert curve is rather expensive and the neighbor list creation is
comparatively slow. Interestingly, the SPH computations seem to
benefit from the Hilbert curve which results in an improved over-
all performance compared to the XYZ curve. The Morton curve
resulted in the best performance for creating the neighbor lists and
also in the best overall performance.

In a second experiment, we measure how well the tested space fill-
ing curves are suited for the compression of the neighbor lists. After
finding all particle neighbors and storing them in ascending sorted
order, we compute deltas ∆ni = ni−ni−1−1 for all particles and

average computation time per time step [s]

curve cell index neighbor list creation total

Hilbert 0.017 0.404 2.846
Morton 0.004 0.287 2.747
XYZ 0.004 0.331 3.077

Table 2: Performance comparison of three space filling curves for
the dam break scenario using a 12-core PC.

their neighbors (see Fig. 7). All tested curves result in similar distri-
butions. For the Morton [Mor66] and Hilbert curve [Hil91], however,
approximately 93 % of the differences lie in the range [0,256). As
these values are higher than the 86 % for the XYZ curve, the Morton
and Hilbert curve should lead to improved compression rates. As
the Morton curve has an improved overall performance compared
to the Hilbert curve, we propose to sort space cells, i.e., particles,
according to the Morton curve.

5.2. Compression Scheme

We compare the compression ratio of our scheme to existing variants
within our CLL approach. We also measure the time to search and
store all particle neighbors and we measure the total time to compute
a simulation step. We particularly compare to the uncompressed case
to illustrate the memory saving, but also the computing overhead
for encoding and decoding of the neighbor lists. The measurements
in Table 3 show that the memory requirement for a neighbor index
can be reduced from 4 B in the uncompressed case to 0.851 B using
our compression scheme. This corresponds to an average memory
saving of 79 %. In particular, our variant requires less memory than
Stream VByte. The encoding and decoding overhead for all compu-
tations within a simulation step is approximately 1 % compared to
the uncompressed case. Figure 8 illustrates that the average size of
a neighbor set can be reduced from 120 B in the uncompressed case
to 25 B using the proposed scheme.

Our compression scheme yields the best compression rate. This
is due to the proposed handling of small differences between two
consecutive neighbor indices. On the other hand, the cost for storing
larger differences is higher with our compression scheme compared
to Stream VByte. As large differences are only an exceptional case
in our SPH fluid setting, our proposed compression method outper-
forms Stream VByte. Although fewer bytes are read from memory,
our experiments indicate that decoding the neighbor list is associated
with a small performance overhead.

5.3. CLL Approach

In Table 4, we compare the performance and memory consumption
of our CLL variant with compact hashing as proposed in [IABT11].
Our CLL approach requires significantly less memory than compact
hashing. Building and querying the respective data structures to
estimate and store the neighbor lists is also faster with the proposed
compacted cell array and search algorithm.

submitted to COMPUTER GRAPHICS Forum (11/2019).

S. Band & C. Gissler & M. Teschner / Compressed Neighbor Lists for SPH 7

Figure 6: The dam break scenario at t = 0s (left), t = 1.5s (middle) and t = 3s (right).

Uncompressible

0

1

[2, ...,28)

[28, ...,216)

[216, ...,224)

3.369%

46.718%

15.588%

30.7%

3.16%

0.465%

3.369%

45.169%

14.821%

33.055%

3.081%

0.505%

3.369%

48.64%

14.711%

23.222%

9.994%

0.063%

Hilbert
Morton
XYZ

Figure 7: Particle neighbor delta distribution for the dam break
scenario. The first neighbor is not compressible since it is required
to restore the original values.

average per time step

computation time [s] memory [B]

method neighbor list creation total per neighbor

Uncompressed 0.274 2.721 4.000
Stream VByte 0.285 2.730 1.445
Our approach 0.287 2.745 0.851

Table 3: Comparison of different compression methods for the break-
ing dam scenario using a 12-core PC.

0 20 40 60 80 100 120 140 160

Our approach

Stream VByte

Uncompressed

25

43

120

neighbor list size [B]

Figure 8: Distribution of the memory requirements for the neighbor
lists of the breaking dam scenario. The central mark indicates the
median. The left and right box edges indicate the lower and upper
quartiles. The whiskers extend to the most extreme data points which
are no more than 1.5 times the interquartile range from the box.

average per time step

computation time [s] memory [MB]

method build n. l. creation total total

Compact hashing 0.043 0.374 2.868 136.3
Our approach 0.004 0.287 2.747 15.1

Table 4: Comparison of two CLL variants for the dam break sce-
nario using a 12-core PC. The memory requirement is significantly
reduced with our approach due to the compact cell array.

average per time step

neighbors
computation time [s] memory [B]

support per particle n. list creation total per neighbor

2.0h 29.88 0.287 2.746 0.851
2.5h 67.50 0.558 5.856 0.726
3.0h 104.64 0.740 8.366 0.662
3.5h 183.92 1.114 14.335 0.609
4.0h 255.52 1.485 19.690 0.579
4.5h 396.69 2.189 30.092 0.552
5.0h 483.93 2.909 36.980 0.536

Table 5: Larger supports result in larger numbers of neighbors and in
improved compression ratios. Numbers are given for the dam break
scenario using a 12-core PC.

5.4. Scaling with the Number of Neighbors

The support length ~ = sh with s ∈ R+ governs the number of
particle neighbors. E.g., increasing the support length from 2h to 3h
results in an increase from approximately 30 to 105 neighbors per
particle. While larger supports are interesting in terms of simulation
accuracy, their usage is typically limited by the significant increase
in memory consumption. Our compressed neighbor lists alleviate
this issue.

Table 5 shows performance and memory measurements for vary-
ing supports. It can be seen that the compression ratio gets better
for a growing support. These measurement illustrate that our com-
pressed neighbor lists and the entire CLL approach are particularly
useful for SPH simulations with larger supports. This is also empha-
sized in Fig. 9 where memory requirements for neighbor lists are
shown for varying supports. It can be seen that, e.g., compressed
neighbor lists for a support of 3.5h with 184 neighbors require less
memory than uncompressed neighbor lists for a support of 2h with
30 neighbors as indicated in Fig. 8.

submitted to COMPUTER GRAPHICS Forum (11/2019).

8 S. Band & C. Gissler & M. Teschner / Compressed Neighbor Lists for SPH

0 50 100 150 200 250 300 350

2.0h

2.5h

3.0h

3.5h

4.0h

4.5h

5.0h

25

48

69

112

149

221

258

neighbor list size [B]

su
pp

or
tl

en
gt

h

Figure 9: Memory requirements of the neighbor lists for the dam
break scenario for various support lengths. The central mark and
box margins are used in the same manner as in Fig. 8.

5.5. Scaling with the Number of Particles

Table 6 shows how our CLL approach scales with the number of
particles. Therefore, we use the dam break scenario with varying
resolutions resulting in 0.2, 11.6, 206.2 and 7440.9 million particles.
We also use the wind tunnel scenario with 1302.1 million particles.
Memory consumption and computation times for the neighbor lists
and for entire simulation steps are given for three different hardware
settings. We discuss three special settings.

Interactive SPH simulation on a 12-core PC: We are able to
compute 25 simulation steps per real-time second for 0.2 million
particles. DFSPH is used with two divergence-free iterations and
two density-invariance iterations.

Large-scale SPH simulations on a single workstation: Our neigh-
bor search and storage enables the simulation of 206.2 million SPH
particles on a 12-core PC using only 28 GB of memory. Even more
remarkable, 1302.1 million SPH particles can be processed on a
24-core PC using 172 GB of memory. Such particle number have
previously been computed on, e.g., 64 GPUs [DCVB∗13] or CPU
clusters with 2560 cores [BKB16].

Large-scale on multiple workstations: By connecting multiple
workstations, we are able to simulate the dam break scenario with
a resolution that results in 7440.9 million particles. This setting
requires 872 GB of memory without linear-exact kernel gradients.
The performance is limited by the speed of our network and the
unequally distributed amount of available memory per workstation.
Nevertheless, we can simulate one step of the 200 million dam break
scene in 15.254 s in this setting rather than 55.857 s using one 12-
core PC.

Compressing the neighbor lists is particularly appropriate for
scenes with a large particle numbers to capture small-scale details.
This is illustrated in the wind tunnel scenario in Fig. 10 which is
simulated on our 112-core setup. The total computation time per
simulation step is 80.17 s on average whereof the computation time

Figure 10: Large-scale wind tunnel scene with 1272 million fluid
particles simulated on six workstations using the standard message
passing interface (MPI). The bottom image shows a closeup, visual-
izing the particles with color-coded velocities.

for searching and storing the neighbor lists is 8.95 s. A maximum of
210.8 GB of memory is required for the simulation.

6. Conclusion and Future Work

Neighbor computation and storage is often considered a critical
aspect in SPH simulations. This paper contributes to improved data
structures and algorithms in that topic with a specific focus on
memory consumption. As neighbor lists are responsible for a large
portion of the overall memory consumption, we propose to com-
press these lists with a novel scheme. Accompanied by a novel
memory-efficient CLL variant, the overall memory consumption
can be significantly reduced, e.g., by a factor of nine compared
to the state-of-the-art as indicated in Table 4. The lean data struc-
ture of our CLL enables a straightforward implementation that is
fully parallelized. While all scenarios generally require less memory
with marginal computational overhead, it is particularly remarkable

submitted to COMPUTER GRAPHICS Forum (11/2019).

S. Band & C. Gissler & M. Teschner / Compressed Neighbor Lists for SPH 9

average computation time
particles [million] per time step [s] memory [GB]

workstation scene particle size [mm] fluid boundary neighbor list creation total maximum

12 core dam break 15.50 0.15 0.05 0.005 0.039 0.12
12 core dam break 4.00 10.5 0.8 0.287 2.747 1.87
12 core dam break 1.50 200 6.2 5.378 55.857 28.13

112 core dam break 1.50 200 6.2 2.022 15.254 32.52
112 core dam break 0.45 7373 67.9 66.341 527.671 872.70

24 core wind tunnel 4.00 1272 30.1 32.771 355.168 171.97
112 core wind tunnel 4.00 1272 30.1 8.950 80.170 210.80

Table 6: Memory consumption and performance for two scenes with varying resolutions using three hardware settings. Our compression
scheme and CLL scheme is used in all settings.

that SPH fluid simulations with about one billion particles can now
be processed on a single 24-core PC using only 172 GB of mem-
ory. Such scenarios have been rarely computed previously, as they
required larger GPU or CPU clusters.

GPU implementations are beyond the scope of the paper, but
might be an interesting direction for future research. Since we are
able to process 0.2 million particles with 25 simulation steps per
real-time second on a 12-core CPU, it is certainly interesting to
investigate the respective GPU capabilities. Another interesting
research direction might be the re-consideration of Verlet lists. Such
lists are updated only every few simulation steps, but are much larger
than the lists of actual neighbors. As our compression scheme is
particularly useful for larger lists, it can be interesting to investigate
the potential of compressed Verlet lists.

Acknowledgments

We thank FIFTY2 Technology for providing an academic license
of PreonLab [FIF19]. The car model is courtesy of primero-tag
at https://www.cgtrader.com and is licensed under Royalty Free
License.

References
[AAT13] AKINCI N., AKINCI G., TESCHNER M.: Versatile surface

tension and adhesion for sph fluids. ACM Transactions on Graphics 32, 6
(2013), 182:1–182:8. 5

[AIA∗12] AKINCI N., IHMSEN M., AKINCI G., SOLENTHALER B.,
TESCHNER M.: Versatile rigid-fluid coupling for incompressible sph.
ACM Transactions on Graphics 31, 4 (2012), 62:1–62:8. 5

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.: Adaptively
sampled particle fluids. ACM Transactions on Graphics 26, 3 (2007). 3

[Bad12] BADER M.: Space-Filling Curves: An Introduction with Applica-
tions in Scientific Computing. Springer, 2012. 6

[BGI∗18] BAND S., GISSLER C., IHMSEN M., CORNELIS J., PEER A.,
TESCHNER M.: Pressure boundaries for implicit incompressible sph.
ACM Transactions on Graphics 37, 2 (2018), 14:1–14:11. 1

[BGPT18] BAND S., GISSLER C., PEER A., TESCHNER M.: Mls pres-
sure boundaries for divergence-free and viscous sph fluids. Computers &
Graphics 76 (2018), 37–46. 5

[BK17] BENDER J., KOSCHIER D.: Divergence-free sph for incompress-
ible and viscous fluids. IEEE Transactions on Visualization and Computer
Graphics 23, 3 (2017), 1193–1206. 1, 5

[BKB16] BRAUN S., KOCH R., BAUER H.-J.: Smoothed particle hy-
drodynamics for numerical predictions of primary atomization. In High
Performance Computing in Science and Engineering ’16 (2016), Springer,
pp. 321–336. 8

[BL99] BONET J., LOK T.-S. L.: Variational and momentum preserva-
tion aspects of smooth particle hydrodynamic formulations. Computer
Methods in Applied Mechanics and Engineering 180, 1 (1999), 97–115. 5

[DCGG13] DOMÍNGUEZ J. M., CRESPO A. J. C., GÓMEZ-GESTEIRA
M.: Optimization strategies for cpu and gpu implementations of a
smoothed particle hydrodynamics method. Computer Physics Communi-
cations 184, 3 (2013), 617–627. 2, 3, 4, 5, 6

[DCGGM11] DOMÍNGUEZ J. M., CRESPO A. J. C., GÓMEZ-GESTEIRA
M., MARONGIU J. C.: Neighbour lists in smoothed particle hydrody-
namics. International Journal for Numerical Methods in Fluids 67, 12
(2011), 2026–2042. 1, 3

[DCVB∗13] DOMÍNGUEZ J. M., CRESPO A. J. C., VALDEZ-BALDERAS
D., ROGERS B. D., GÓMEZ-GESTEIRA M.: New multi-gpu implemen-
tation for smoothed particle hydrodynamics on heterogeneous clusters.
Computer Physics Communications 184, 8 (2013), 1848–1860. 3, 8

[Dea09] DEAN J.: Challenges in building large-scale information retrieval
systems: Invited talk. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining (2009), ACM, pp. 1–1. 2

[FE08] FLEISSNER F., EBERHARD P.: Parallel load-balanced simulation
for short-range interaction particle methods with hierarchical particle
grouping based on orthogonal recursive bisection. International Journal
for Numerical Methods in Engineering 74, 4 (2008), 531–553. 6

[FIF19] FIFTY2 TECHNOLOGY: PreonLab. www.fifty2.eu, 2019.
6, 9

[Fox88] FOX G. C.: A graphical approach to load balancing and sparse
matrix vector multiplication on the hypercube. In Numerical Algorithms
for Modern Parallel Computer Architectures (1988), Springer, pp. 37–61.
5

[Gan15] GANZENMÜLLER G. C.: An hourglass control algorithm for La-
grangian smooth particle hydrodynamics. Computer Methods in Applied
Mechanics and Engineering 286 (2015), 87–106. 5

[GBP∗17] GISSLER C., BAND S., PEER A., IHMSEN M., TESCHNER
M.: Generalized drag force for particle-based simulations. Computers &
Graphics 69 (2017), 1–11. 5

[GEF15] GOSWAMI P., ELIASSON A., FRANZÉN P.: Implicit incom-
pressible sph on the gpu. In Virtual Reality Interactions and Physical
Simulations (2015), Eurographics Association. 3

[Gon07] GONNET P.: A simple algorithm to accelerate the computation
of non-bonded interactions in cell-based molecular dynamics simulations.
Journal of Computational Chemistry 28, 2 (2007), 570–573. 3

submitted to COMPUTER GRAPHICS Forum (11/2019).

https://www.cgtrader.com/free-3d-models/car/concept/chimera-one-porsche-918-street-race-concept
www.fifty2.eu

10 S. Band & C. Gissler & M. Teschner / Compressed Neighbor Lists for SPH

[GPB∗19] GISSLER C., PEER A., BAND S., BENDER J., TESCHNER
M.: Interlinked sph pressure solvers for strong fluid-rigid coupling. ACM
Transactions on Graphics 38, 1 (2019), 5:1–5:13. 1

[GR11] GAFTON E., ROSSWOG S.: A fast recursive coordinate bisection
tree for neighbour search and gravity. Monthly Notices of the Royal
Astronomical Society 418, 2 (2011), 770–781. 3

[Gre10] GREEN S.: Particle simulation using cuda. NVIDIA whitepaper 6
(2010), 121–128. 3, 4

[GRLS18] GUO X., ROGERS B. D., LIND S., STANSBY P. K.: New
massively parallel scheme for incompressible smoothed particle hydrody-
namics (isph) for highly nonlinear and distorted flow. Computer Physics
Communications 233 (2018), 16–28. 6

[GRS98] GOLDSTEIN J., RAMAKRISHNAN R., SHAFT U.: Compressing
relations and indexes. In Proceedings of the Fourteenth International
Conference on Data Engineering (1998), IEEE Computer Society, pp. 370–
379. 3

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B., PAJAROLA
R.: Interactive sph simulation and rendering on the gpu. In ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (2010), Euro-
graphics Association, pp. 55–64. 3, 4

[HBMW11] HUBBER D. A., BATTY C. P., MCLEOD A., WHITWORTH
A. P.: SEREN – a new sph code for star and planet formation simulations
- algorithms and tests. Astronomy & Astrophysics 529 (2011), A27. 3

[HCM06] HEGEMAN K., CARR N. A., MILLER G. S. P.: Particle-based
fluid simulation on the gpu. In Computational Science – ICCS 2006
(2006), Springer, pp. 228–235. 3

[HGE74] HOCKNEY R. W., GOEL S. P., EASTWOOD J. W.: Quiet high-
resolution computer models of a plasma. Journal of Computational
Physics 14, 2 (1974), 148–158. 1, 3

[HHM19] HUANG L., HÄDRICH T., MICHELS D. L.: On the accurate
large-scale simulation of ferrofluids. ACM Transactions on Graphics
(2019). 1

[Hil91] HILBERT D.: Über die stetige abbildung einer line auf ein flächen-
stück. Mathematische Annalen 38, 3 (1891), 459–460. 6

[HKK07] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.: Smoothed
particle hydrodynamics on gpus. Computer Graphics International 40
(2007). 3

[IABT11] IHMSEN M., AKINCI N., BECKER M., TESCHNER M.: A
parallel sph implementation on multi-core cpus. In Computer Graphics
Forum (2011), vol. 30, Wiley Online Library, pp. 99–112. 1, 2, 3, 4, 6

[ICS∗14] IHMSEN M., CORNELIS J., SOLENTHALER B., HORVATH C.,
TESCHNER M.: Implicit incompressible sph. IEEE Transactions on
Visualization and Computer Graphics 20, 3 (2014), 426–435. 1

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B., KOLB A.,
TESCHNER M.: Sph fluids in computer graphics. In Eurographics (State
of the Art Reports) (2014). 3

[KAG∗05] KEISER R., ADAMS B., GASSER D., BAZZI P., DUTRE P.,
GROSS M.: A unified lagrangian approach to solid–fluid animation. In
Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics
(2005), pp. 125–148. 3

[KFV∗05] KLEEFSMAN K. M. T., FEKKEN G., VELDMAN A. E. P.,
IWANOWSKI B., BUCHNER B.: A volume-of-fluid based simulation
method for wave impact problems. Journal of Computational Physics
206, 1 (2005), 363–393. 6

[KS09] KALOJANOV J., SLUSALLEK P.: A parallel algorithm for con-
struction of uniform grids. In Proceedings of the Conference on High
Performance Graphics 2009 (2009), ACM, pp. 23–28. 4

[LB15] LEMIRE D., BOYTSOV L.: Decoding billions of integers per
second through vectorization. Software – Practice & Experience 45, 1
(2015), 1–29. 2, 3

[LF80] LADNER R. E., FISCHER M. J.: Parallel prefix computation.
Journal of the ACM 27, 4 (1980), 831–838. 3

[LKR17] LEMIRE D., KURZ N., RUPP C.: Stream vbyte: Faster byte-
oriented integer compression. Information Processing Letters 130 (2017),
1–6. 1, 2, 3, 4

[LSY01] LEE R., SHI Z., YANG X.: Efficient permutation instructions
for fast software cryptography. IEEE Micro 2 (2001). 4

[MFZ97] MORRIS J. P., FOX P. J., ZHU Y.: Modeling low reynolds num-
ber incompressible flows using sph. Journal of Computational Physics
136, 1 (1997), 214–226. 5

[MM13] MACKLIN M., MÜLLER M.: Position based fluids. ACM Trans-
actions on Graphics 32, 4 (2013), 104:1–104:12. 1

[Mor66] MORTON G. M.: A computer oriented geodetic data base and
a new technique in file sequencing. International Business Machines
Company New York, 1966. 4, 6

[MRR12] MCCOOL M., ROBISON A. D., REINDERS J.: Chapter 13 -
merge sort. In Structured Parallel Programming. Morgan Kaufmann,
2012, pp. 299–305. 4

[MRSD15] MOKOS A., ROGERS B. D., STANSBY P. K., DOMÍNGUEZ
J. M.: Multi-phase sph modelling of violent hydrodynamics on gpus.
Computer Physics Communications 196 (2015), 304–316. 3

[NAM10] NGOC ANH V., MOFFAT A.: Index compression using 64-bit
words. Software, Practice and Experience 40 (2010), 131–147. 2

[OD08] ONDERIK J., DURIKOVIC R.: Efficient neighbor search for
particle-based fluids. Journal of the Applied Mathematics, Statistics
and Informatics 4, 1 (2008), 29–43. 4

[OLTG∗16] OGER G., LE TOUZÉ D., GUIBERT D., DE LEFFE M., BID-
DISCOMBE J., SOUMAGNE J., PICCINALI J.-G.: On distributed memory
mpi-based parallelization of sph codes in massive hpc context. Computer
Physics Communications 200 (2016), 1–14. 6

[OM84] ORENSTEIN J. A., MERRETT T. H.: A class of data structures for
associative searching. In Proceedings of the 3rd ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems (1984), ACM, pp. 181–190.
5

[PDC∗03] PURCELL T. J., DONNER C., CAMMARANO M., JENSEN
H. W., HANRAHAN P.: Photon mapping on programmable graphics
hardware. In ACM SIGGRAPH/Eurographics Conference on Graphics
Hardware (2003), Eurographics Association, pp. 41–50. 4, 6

[PF01] PASCUCCI V., FRANK R. J.: Global static indexing for real-
time exploration of very large regular grids. In Proceedings of the 2001
ACM/IEEE Conference on Supercomputing (2001), ACM, pp. 2–2. 4

[PGBT18] PEER A., GISSLER C., BAND S., TESCHNER M.: An implicit
sph formulation for incompressible linearly elastic solids. Computer
Graphics Forum 37, 6 (2018), 135–148. 1

[PH10] PELFREY B., HOUSE D.: Adaptive neighbor pairing for smoothed
particle hydrodynamics. In Advances in Visual Computing (2010),
Springer, pp. 192–201. 3

[Phe08] PHEATT C.: Intel R© threading building blocks. Journal of Com-
puting Sciences in Colleges 23, 4 (2008), 298–298. 5

[PKL15] PLAISANCE J., KURZ N., LEMIRE D.: Vectorized vbyte decod-
ing. arXiv (2015). 2, 3

[PT17] PEER A., TESCHNER M.: Prescribed velocity gradients for highly
viscous sph fluids with vorticity diffusion. IEEE Transactions on Visual-
ization and Computer Graphics 23, 12 (2017), 2656–2662. 1

[SGL09] SCHLEGEL B., GEMULLA R., LEHNER W.: K-ary search on
modern processors. In Proceedings of the Fifth International Workshop
on Data Management on New Hardware (2009), ACM, pp. 52–60. 5

[SGR∗11] STEPANOV A. A., GANGOLLI A. R., ROSE D. E., ERNST
R. J., OBEROI P. S.: Simd-based decoding of posting lists. In Proceedings
of the 20th ACM International Conference on Information and Knowledge
Management (2011), ACM, pp. 317–326. 2

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective incom-
pressible sph. ACM Transactions on Graphics 28, 3 (2009), 40:1–40:6.
1

submitted to COMPUTER GRAPHICS Forum (11/2019).

S. Band & C. Gissler & M. Teschner / Compressed Neighbor Lists for SPH 11

[Spr05] SPRINGEL V.: The cosmological simulation code gadget-2.
Monthly notices of the royal astronomical society 364, 4 (2005), 1105–
1134. 3

[TH72] THIEL L. H., HEAPS H. S.: Program design for retrospective
searches on large data bases. Information Storage and Retrieval 8, 1
(1972), 1–20. 2

[TH81] TROPF H., HERZOG H.: Multimensional range search in dynam-
ically balanced trees. Angewandte Informatik 23 (1981), 71–77. 2, 4,
5

[TLTM18] TANG M., LIU Z., TONG R., MANOCHA D.: Pscc: Parallel
self-collision culling with spatial hashing on gpus. Proceedings of the
ACM on Computer Graphics and Interactive Techniques 1, 1 (2018),
18:1–18:18. 3

[TSG14] THALER F., SOLENTHALER B., GROSS M.: A parallel ar-
chitecture for iisph fluids. In Virtual Reality Interactions and Physical
Simulations (2014), pp. 119–124. 5

[VBC08] VICCIONE G., BOVOLIN V., CARRATELLI E. P.: Defining and
optimizing algorithms for neighbouring particle identification in sph fluid
simulations. International Journal for Numerical Methods in Fluids 58, 6
(2008), 625–638. 3

[Ver67] VERLET L.: Computer "experiments" on classical fluids. i. ther-
modynamical properties of lennard-jones molecules. Physical Review
159 (1967), 98–103. 3

[Wen95] WENDLAND H.: Piecewise polynomial, positive definite and
compactly supported radial functions of minimal degree. Advances in
Computational Mathematics 4, 1 (1995), 389–396. 5

[WKBB18] WEILER M., KOSCHIER D., BRAND M., BENDER J.: A
physically consistent implicit viscosity solver for sph fluids. Computer
Graphics Forum 37, 2 (2018). 1

[WMRR17] WINKLER D., MEISTER M., REZAVAND M., RAUCH W.:
gpusphase – a shared memory caching implementation for 2d sph using
cuda. Computer Physics Communications 213 (2017), 165–180. 3

[WRR18] WINKLER D., REZAVAND M., RAUCH W.: Neighbour lists for
smoothed particle hydrodynamics on gpus. Computer Physics Communi-
cations 225 (2018), 140–148. 3

[WS95] WARREN M. S., SALMON J. K.: A portable parallel particle
program. Computer Physics Communications 87, 1 (1995), 266–290.
Particle Simulation Methods. 3

[WSG∗18] WILLIS J. S., SCHALLER M., GONNET P., BOWER R. G.,
DRAPER P. W.: An efficient SIMD implementation of pseudo-verlet lists
for neighbour interactions in particle-based codes. arXiv (2018). 3

[YDS09] YAN H., DING S., SUEL T.: Inverted index compression and
query processing with optimized document ordering. In Proceedings
of the 18th International Conference on World Wide Web (2009), ACM,
pp. 401–410. 2

[ZHNB06] ZUKOWSKI M., HEMAN S., NES N., BONCZ P.: Super-scalar
ram-cpu cache compression. In Proceedings of the 22Nd International
Conference on Data Engineering (2006), IEEE Computer Society, pp. 59–.
2

[ZZL∗15] ZHAO W. X., ZHANG X., LEMIRE D., SHAN D., NIE J.-Y.,
YAN H., WEN J.-R.: A general simd-based approach to accelerating
compression algorithms. ACM Transactions on Information Systems 33,
3 (2015), 15:1–15:28. 2

submitted to COMPUTER GRAPHICS Forum (11/2019).

