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Abstract

In this review the theory and application of Smoothed particle hydrodynamics (SPH) since
its inception in 1977 are discussed. Emphasis is placed on the strengths and weaknesses, the
analogy with particle dynamics and the numerous areas where SPH has been successfully
applied.
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1. Introduction

Smoothed particle hydrodynamics (SPH) is a method for obtaining approximate numerical
solutions of the equations of fluid dynamics by replacing the fluid with a set of particles. For
the mathematician, the particles are just interpolation points from which properties of the fluid
can be calculated. For the physicist, the SPH particles are material particles which can be treated
like any other particle system. Either way, the method has a number of attractive features. The
first of these is that pure advection is treated exactly. For example, if the particles are given
a colour, and the velocity is specified, the transport of colour by the particle system is exact.
Modern finite difference methods give reasonable results for advection but the algorithms are
not Galilean invariant so that, when a large constant velocity is superposed, the results can be
badly corrupted. The second advantage is that with more than one material, each described
by its own set of particles, interface problems are often trivial for SPH but difficult for finite
difference schemes. The third advantage is that particle methods bridge the gap between the
continuum and fragmentation in a natural way. As a consequence, the best current method for
the study of brittle fracture and subsequent fragmentation in damaged solids is SPH (see, e.g.
Benz and Asphaug (1994, 1995)). A fourth advantage is that the resolution can be made to
depend on position and time, which makes the method very attractive for most astrophysical
and many geophysical problems. Fifth, SPH has the computational advantage, particularly in
problems involving fragments, drops or stars, that the computation is only where the matter is,
with a consequent reduction in storage and calculation. Finally, because of the close similarity
between SPH and molecular dynamics, it is often possible to include complex physics easily.

Although the idea of using particles is natural, it is not obvious which interactions
between the particles will faithfully reproduce the equations of fluid dynamics or continuum
mechanics. One way of doing this was proposed by Bob Gingold and myself (Gingold and
Monaghan (1977) where the term SPH was coined) and independently by Lucy (1977). Gingold
and Monaghan derived the equations of motion using a kernel estimation technique, pioneered
by statisticians, to estimate probability densities from sample values (Rosenblatt (1956),
Parzen (1962) and, for a general discussion, see Boneva et al (1971)). When applied to
interpolation, this yielded an estimate of a function at any point using the values of the function
at the particles. This estimate of the function could be differentiated exactly provided the kernel
was differentiable. In this way, the gradient terms required for the equations of fluid dynamics
could be written in terms of the properties of the particles. Because of its close relation to the
statistical ideas, Gingold and Monaghan (1977) described the method as a Monte Carlo method,
as did Lucy (1977) who had, in effect, re-discovered the statistical technique. However, in
subsequent papers (e.g. Gingold and Monaghan (1978)), it was discovered that the errors were
much smaller than the predicted probability estimates. Gingold and Monaghan realized that
the particle number density was not equivalent to a probability density because the fluctuations
predicted by probability theory require energy, which is not available from the equations of
motion. This is particularly easy to see in the case of static equilibrium as the system moves to
a minimum energy state in which large voids do not occur, since they require higher energy. In
a dynamical problem more disorder can occur but only to the extent allowed by the dynamical
equations.

The original papers (Gingold and Monaghan 1977, Lucy 1977) proposed numerical
schemes which did not conserve linear and angular momentum exactly, but gave good results
for a class of astrophysical problems that were considered too difficult for the techniques
available at the time. The basic SPH algorithm was improved to conserve linear and angular
momentum exactly using the particle equivalent of the Lagrangian for a compressible non-
dissipative fluid (Gingold and Monaghan 1982). In this way, the similarities between SPH and
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molecular dynamics were made clearer. Recent studies by Hoover (1998) and Hoover et al
(2004) explore the correspondence between SPH and molecular dynamics.

Since SPH models a fluid as a mechanical and thermodynamical particle system, it
is natural to derive the SPH equations for non-dissipative flow from a Lagrangian. The
equations for the early SPH simulations of binary fission and instabilities were derived from
Lagrangians (Gingold and Monaghan 1978, 1979, 1980). These Lagrangians took into account
the smoothing length (the same for each particle) which was a function of the coordinates.
More recent examples include Lagrangians which incorporate a resolution length for each
particle (Springel and Hernquist 2002, Monaghan 2002), a relativistic Lagrangian (Monaghan
and Price 2001), a Lagrangian for MHD problems (Price and Monaghan 2004a, 2004b) and a
Lagrangian for SPH compressible turbulence (Monaghan 2002). In addition, Bonet and his
colleagues (Bonet and Lok 1999, Bonet and Kulasegaram 2000, 2001) have used Lagrangians
for the SPH simulation of elastic materials. The advantage of a Lagrangian is that it not only
guarantees conservation of momentum and energy, but also ensures that the particle system
retains much of the geometric structure of the continuum system in the phase space of the
particles. This includes Liouville’s theorem and the Poincare invariants. In addition, as noted
by Dirac, basing the equations of motion on a Lagrangian allows new physical interactions to
be included consistently.

The comments made by Von Neumann in 1944 (see Von Neumann (1944)), in connection
with the use of the particle methods to model shocks, are relevant to SPH. To paraphrase his
remarks:

The particle method is not only an approximation of the continuum fluid equations,
but also gives the rigorous equations for a particle system which approximates the
molecular system underlying, and more fundamental than the continuum equations.

When combined with a simple but effective viscosity, and a form of the thermal energy
equation that guarantees that the viscous dissipation increases both the thermal energy and
the entropy, a variety of shock problems have been studied (Monaghan and Gingold 1983,
Monaghan 1997, Price and Monaghan 2004a). The SPH algorithm gives very satisfactory
results for shocks though they are not as accurate as those obtained from well-designed
Riemann solvers and other modern techniques—although these have their own set of problems,
especially when approximate Riemann solvers are used (Quirk 1994). Sharpness is often
overated as a measure of the fidelity of simulations. Real shocks are only a few mean free
paths thick so that, in a typical shock tube of 2 m length, ∼107 finite difference cells, in each
direction, would be required in a finite difference code to resolve the shock. However, most
codes can afford only 103 cells along each coordinate so that their numerical shock widths
are 104 times greater than the actual shock width. Therefore, the discussion about which
code gives the sharpest shocks is irrelevant; they are all outstandingly bad. What are relevant
are the pre- and post-shock values of the physical variables. SPH is able to obtain these as
accurately as desired in one dimension, but in two and three dimensions SPH shocks, using
current algorithms, can be noisy. In astrophysical problems, this should not be a cause for
concern because the flows are invariably turbulent and the noise created in an SPH shock is
small relative to that owing to turbulence.

In problems involving very small perturbations, the lower accuracy of SPH makes finite
difference methods preferable. However, it has advantages which show up in those fluid
problems where the perturbations are large. The first of these is that complex physics can often
be included with little effort and effective codes produced in days, whereas finite difference
codes would take many months or years to write. The second is that the SPH method can be
easily extended to include a resolution which varies in space and time. That is, each particle has
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its own resolution length (Gingold and Monaghan (1982), see their section 4). It is, therefore,
ideal for astrophysical problems where enormous variations in the relevant length scales are
common (see, e.g. the simulation of the formation of the Moon (Benz et al (1986), or the
star formation studies of Bate et al (1995) and Bate et al (2003) or the binary neutron star
collisions of Rosswog and Davies (2002)). Furthermore, the SPH method combines easily with
the particle methods used for star systems and is a natural tool for cosmological simulations,
in particular (see, e.g. Hernquist and Katz (1989), Couchman et al (1995), Springel and
Hernquist (2002) and Marri and White (2003)).

Because SPH is essentially a technique for approximating the continuum equations, it can
be used for a wide range of fluid dynamical problems. Although the initial applications were to
gas dynamic problems, it has also been applied to problems in incompressible flow by treating
that flow as slightly compressible with an appropriate equation of state (Monaghan 1994).
Using the same idea waves, breaking on arbitrary structures (Monaghan et al 2004, Colagrossi
and Landrini 2003) as well as the more classical problems of waves on beaches (Monaghan and
Kos 1999) could be simulated. Colagrossi (2004) has made a detailed study of the application
of SPH to breaking waves, where an accurate boundary element method could be used up to the
point where the wave curls over to touch the water surface in the front. The SPH calculations
agree with the boundary element method up to the point that it can be used, and thereafter the
SPH method gives good agreement with the experiment. Colagrossi (2004) also shows that
the SPH simulation of sloshing tanks and the bow waves produced by certain ship hulls are
in good agreement with the experiment. Simulations of liquid metal moulding (Cleary and
Ha 2002) also show good agreement with the experiment.

Another class of problems suitable for the SPH algorithm arise in elasticity and fracture.
Libersky and Petschek (1991) derived and applied the SPH equations for elasticity. Benz
and Asphaug (1994, 1995) showed how SPH could be applied to the fracture of brittle solids,
where it gives much better results than the finite element or the finite difference methods.
These methods have been applied to the breakup of planetesimals and the formation of asteroid
families (Michel et al 2004). In these simulations, the ease with which the SPH particles can
describe the transition from a continuum to a set of fragments gives it a computational edge
over other numerical methods. Commerical software packages (e.g. Dyna3D and Autodyn)
for simulating impact now incorporate SPH. Elastic SPH also provides a simple and robust
technique for simulating complex fracture in geological rock formations and in brittle materials
(Gray et al 2001, Gray and Monaghan 2004). SPH is also being used in virtual reality
surgery (see, e.g. the work of M Mueller, S Schirm and M Teschner at the Computer Graphics
Laboratory ETH, Zurich).

In many of these problems a priori estimates of the accuracy of SPH interpolation suggest
that the simulations would give results which would be too inaccurate for most problems.
As a consequence, a technique called Moving Least Squares (Dilts 1999) was developed to
produce a particle code with perfect linear interpolation. However, the disadvantages are that
conservation is lost and the method is considerably slower than the standard SPH. Furthermore,
in practice, as noted earlier, the low accuracy predicted from interpolation errors usually does
not occur. For example, Colagrossi (2004) shows that, for the complex evolution of a patch of
fluid, the SPH results are as good as those from the level set method, and often surpass them.
Part of the reason may be that, for non-dissipative problems, the equations follow directly from
a Lagrangian, which retains many of the properties of the original continuum Lagrangian.

In problems involving heat conduction, Cleary and Monaghan (1999) showed that the SPH
simulations, which conserve thermal energy and guarantee that the entropy increased, were
very accurate even though the particles’ positions were disordered and the thermal conductivity
discontinuous. These results together with those mentioned earlier show that if SPH equations
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are set up such that they satisfy the fundamental conservation laws, the results are much better
than would be deduced from consideration of the interpolation alone.

The reader may find the early reviews of SPH (Monaghan 1992, Benz 1990) useful. A
different aspect of SPH is detailed in the website www.nextlimit.com, which shows a wide
variety of SPH simulations of fluids for both scientific problems and for video and film special
effects (In the third film of the trilogy ‘Lord of the Rings’, Nextlimit used SPH to simulate
Gollum falling into the lava.)

2. Interpolation

The equations of fluid dynamics have the form
dA

dt
= f (A, ∇A, r), (2.1)

where
d

dt
= ∂

∂t
+ v · ∇ (2.2)

is the Lagrangian derivative, or the derivative following the motion. It is worth noting that the
characteristics of this differential operator are the particle trajectories.

In the equations of fluid dynamics, the rates of change of physical quantities require spatial
derivatives of physical quantities. The key step in any computational fluid dynamics algorithm
is to approximate these derivatives using information from a finite number of points. In finite
difference methods, the points are the vertices of a mesh. In the SPH method, the interpolating
points are particles which move with the flow, and the interpolation of any quantity, at any
point in space, is based on kernel estimation.

2.1. Integral and summation interpolants and their kernels

SPH interpolation of a quantity A, which is a function of the spatial coordinates, is based on
the integral interpolant

AI(r) =
∫

A(r′)W(r − r′, h) dr′, (2.3)

where the function W is the kernel and dr′ is a differential volume element . The interpolant
reproduces A exactly if the kernel is a delta function. In practice, the kernels are functions
which tend to the delta function as the length scale h tends to zero. They are normalized
to 1 so that the constants are interpolated exactly. An example in one dimension x is
the Gaussian kernel W(x, h) = exp(−x2/h2)/(h

√
π). The Gaussian kernel was used by

Gingold and Monaghan (1977) and a kernel with continuous second derivatives of the form
W(r, h) = (105/(16πh3)(1 − r/h)3(1 + 3r/h) in 0 � r � h, and zero otherwise, was used
by Lucy (1977) for his three-dimensional calculations. The most commonly used kernels
are based on Schoenberg (1946) Mn splines, which are piece-wise continuous functions with
compact support having the derivatives up to (n − 2) continuous. They can be defined by the
Fourier transform

Mn(x, h) = 1

2π

∫ ∞

−∞

(
sin kh/2

kh/2

)n

cos (kx) dk (2.4)

and algebraic forms are given by Schoenberg (1946) and Monaghan (1985b). The M2 spline
with q = |x|/h, is

M2(x) =
{

1 − q, for 0 � q � 1,

0, for q � 1.
(2.5)

http://http://www.nextlimit.com
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M2 gives linear interpolation but its first derivative is discontinuous. In its product form
it gives what is called equal area interpolation (Hockney and Eastwood 1988). A commonly
used kernel is the M4 kernel (called the cubic spline because it is a piecewise cubic polynomial).
It has the form,

M4(x) =




1
6 [(2 − q)3 − 4(1 − q)3], for 0 � q � 1,

1
6 (2 − q)3, for 1 � q � 2,

0, for q > 2.

(2.6)

The SPH kernel associated with Mn(x) in one dimension is W(x, h) = Mn(x)/h. In d̂

dimensions the same functional forms are used but they are multiplied by 1/hd̂ and by a
constant to ensure they are normalized in the new space. For example, the factor 1/6 in
the cubic spline (2.6) is replaced by 15/(14π) in two dimensions and by 1/(4π), in three
dimensions. Higher order interpolation using splines was studied by Monaghan (1985a). The
higher order kernels perform very well for equi-spaced particles, but they require a cancellation
of positive and negative contributions which is less likely when the particles are disordered.
Furthermore, many of the desirable features of SPH involving positive definite dissipation
terms are lost when higher order kernels are used because the gradient of the kernel changes
sign. Schoenberg (1946) also discusses a class of smoothing kernels with Fourier transforms
which have a Gaussian decay with increasing k. These have not been used in simulations.

Alternative kernels have been studied by Fulk and Quinn (1996) in one dimension.
According to their measures, no kernel is significantly better than the cubic spline.
Price (2004a) has studied the effect of changing the joining points in one dimension without
finding a kernel significantly better than the cubic spline. In higher dimensions it is not clear
whether optimum interpolation is obtained with equi-spaced joining points for the piece-wise
polynomials of the Mn functions. It would be interesting to study either the functions, or their
Fourier transforms, when the joining points are allowed to be arbitrary. It may be that equal
volumes should be cut by the slices between the joining points.

To apply this interpolation to a fluid, we divide it into a set of small mass elements. The
element a will have a mass ma , density ρa and position ra . The value of A at particle a is
denoted by Aa . The interpolation integral can be written as∫

A(r′)
ρ(r′)

ρ(r′) dr′, (2.7)

where an element of mass is ρ dr′. The integral can then be approximated by a summation
over the mass elements. This gives the summation interpolant

As(r) =
∑

b

mb

Ab

ρb

W(r − rb, h), (2.8)

where the summation is over all the particles but, in practice, it is only over near neighbours
because W falls off rapidly with distance. Typically, h is close to the particle spacing and the
kernel W is effectively zero beyond a distance 2h (as in the case of the kernel based on the
cubic spline M4). In practice, we choose kernels which have compact support, i.e. they vanish
at a finite distance.

As an example of the use of kernel estimation, suppose A is the density ρ. The interpolation
formula then gives the following estimate for the density at a point r

ρ(r) =
∑

b

mbW(r − rb, h), (2.9)

which shows how the mass of a set of particles is smoothed to produce the estimated density.
The reader who is familiar with the technique of estimating probability densities from sample
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points (Rosenblatt 1956, Parzen 1962) will see that our formula for the density is the same as
their formulae for the probability density but with mb replaced by 1/N , where N is the number
of sample points.

If h is constant, we can integrate the density estimate to give∫
ρ(r) dτ =

∑
b

mb = M, (2.10)

which shows that mass is conserved exactly. If we allow h to vary, the integral is no longer
exactly M , but the total mass is conserved because it is carried by the particles.

2.2. First derivatives

The SPH formulation allows derivatives to be estimated easily. If W is a differentiable function
then (2.8) can be differentiated exactly to give

∂As

∂x
=

∑
b

mb

Ab

ρb

∂W

∂x
. (2.11)

In SPH the derivative is, therefore, found by an exact derivative of an approximate function.
However, this form of the derivative does not vanish if A is constant. A simple way to ensure
that it does vanish if A is constant is to write

∂A

∂x
= 1

�

(
∂(�A)

∂x
− A

∂�

∂x

)
, (2.12)

where � is any differentiable function. The SPH form of (2.12) is(
∂A

∂x

)
a

= 1

�a

∑
b

mb

�b

ρb

(Ab − Aa)
∂Wab

∂xa

, (2.13)

which vanishes if A is constant. In this expression, and elsewhere, Wab denotes W(ra − rb, h).
Different choices of � give all the versions of derivatives in the literature. For example,
choosing � = 1 gives

∂Aa

∂xa

=
∑

b

mb

ρb

(Ab − Aa)
∂Wab

∂xa

(2.14)

and choosing � = ρ,

∂Aa

∂xa

= 1

ρa

∑
b

mb(Ab − Aa)
∂Wab

∂xa

. (2.15)

These results have immediate application to the convergence equation (often called the
continuity equation, but in this review it will be called the convergence equation since −∇ · v
is the opposite of divergence)

dρ

dt
= −ρ∇ · v. (2.16)

Generalizing the previous expressions for derivatives to approximate ∇ · v we find

dρa

dt
= ρa

∑
b

mb

ρb

vab · ∇aWab (2.17)

and
dρa

dt
=

∑
b

mbvab · ∇aWab, (2.18)
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where vab denotes va − vb and ∇a denotes the gradient taken with respect to the coordinates
of particle a. This equation is the time derivative of the summation form of the density (2.9).

If (2.17) is compared with (2.18) it will be seen that the former involves ρ explicitly in
the summation, whereas the latter does not. Both expressions vanish, as they should, when
the velocity is constant. However, when the system involves two or more fluids with large
density ratios in contact, the expression (2.17) with ρ in the summation is more accurate
(Colagrossi 2004). The reason is that near an interface the summation for ∇ · v for one type
of fluid SPH particle involves contributions from the other fluid. If we imagine the other fluid
being changed for a fluid with exactly the same velocity field, and exactly the same particle
positions but different density, we would still want the same estimate of ∇ · v. However,
with (2.18) the mass elements will be changed and the estimate will be different, but if (2.17)
is used the ratio of mass to density will be constant and ∇ · v will not change. In practice, it
turns out that either (2.17) or (2.18) can be used for density ratios �2, but for larger density
ratios it is better to use (2.17). The Lagrangian approach, which we consider later, requires
that these equations for the rate of change of density with time be included as constraints. As a
result, the form of the pressure forces changes with the form chosen for the density convergence
equation.

Although the focus in the previous analysis has been on designing interpolation formula
to achieve satisfactory accuracy it is natural with particle methods to interpret the formula in
terms of interactions between SPH particles. In the present case we expect that as particles
get closer their density will increase. In particular, any two particles moving closer together
should give a positive contribution to their density. In either form of the convergence equation,
we can write

∇aWab = rabFab, (2.19)

where Fab � 0 is a function of |rab|. The contribution of particle b to the density of particle a

in (2.18) is then

ρa

mb

ρb

vab · rabFab (2.20)

and if the particles a and b are approaching each other (so that vab · rab � 0) the contribution
to the density change is positive definite as expected. The same is true for (2.17).

2.3. Second derivatives

As in the case of first derivatives, second derivatives can be estimated by differentiating an SPH
interpolant twice. For example, in a heat conduction problem in one dimension, the second
derivative of the temperature T at the position of particle a can be estimated by(

d2T

dx2

)
a

=
∑

b

mbTb

d2W(xa − xb, h)

dx2
a

. (2.21)

However, this expression has a number of disadvantages. First, it is very sensitive to particle
disorder. Second, the transfer of heat to particle a from particle b may be positive or negative
depending on their separation because the second derivative of the kernel can change sign.
Physics tells us that a hot particle should transfer heat to a cold particle no matter what the
separation. Another disadvantage is that this expression will not result in conservation of
thermal energy in an adiabatic enclosure.

A much better approach (Brookshaw 1985, Cleary and Monaghan 1999) is to begin with
an integral approximation to the second derivative. For example, starting with

I =
∫

(κ(r) + κ(r′))(T (r) − T (r′))F (|r − r′|) dr′, (2.22)
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where qF(|q|) = ∇W(q, h), expanding κ(r′) and T (r′) in a Taylor series about r, and keeping
up to second order terms, we find

I = ∇ · (κ∇T ) + O(h2). (2.23)

The SPH form of I for particle a is

I =
∑

b

mb

ρb

(κa + κb)(Ta − Tb)Fab. (2.24)

Because F � 0 this expression has the property that if Ta > Tb, then heat will flow from
particle a to b (that is the contribution to dTa/dt < 0) and vice versa. Other second derivatives
can be calculated using similar integral expressions.

2.3.1. Second derivatives in two dimensions. To obtain second derivatives integrals of
the form

Jxx =
∫

�x�x

�r2
(κ(r) + κ(r′))(T (r) − T (r′))F dr′ (2.25)

are used (Español and Revenga 2003). Here �x = x − x ′ and �r = |r − r′|. Expanding the
κ and T terms in a Taylor series gives, to O(h2),

Jxx = κ
(

3
4Txx + 1

4Tyy

)
+ 3

4κxTx + 1
4κyTy (2.26)

and

Jyy = κ
(

3
4Tyy + 1

4Txx

)
+ 3

4κyTy + 1
4κxTx, (2.27)

such that

Jxx + Jyy = ∇ · (κ∇T ). (2.28)

Furthermore,

Jxy = 1
4 (2κTxy + Txκy + Tyκx). (2.29)

If we construct theJ integrals takingκ = 1, we get estimates for the second derivatives ofT
in the form (now using tensor notation for the coordinates denoted by xi and �xi = (xi −x ′i ))

∂2T

∂xi∂xj
=

∫ [
4
�xi�xj

�r2
− δij

]
(T (r) − T (r′))F dr′ (2.30)

or, in SPH form(
∂2T

∂xi∂xj

)
a

=
∑

b

mb

ρb

(
4
�xi�xj

�r2
− δij

)
(Ta − Tb)Fab. (2.31)

2.3.2. Second derivatives in three dimensions. With the same definition of Jxx as before, but
now integrating over three dimensions we find

Jxx = 1
5κ(3Txx + Tyy + Tzz) + 1

5 (3κxTx + κyTy + κzTz), (2.32)

with similar expressions for Jyy and Jzz. The integral Jxy becomes

Jxy = 1
5 (2κTxy + Txκy + Tyκx). (2.33)

These results show that

Jxx + Jyy + Jzz = ∇ · (κ∇T ) + O(h2). (2.34)
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Figure 1. The frame on the left shows SPH particles placed at random according to a constant
probability density within a unit circle. Note the large voids. The middle frame shows the positions
of equal mass particles settled down in a Toy star potential starting with the particle positions in
the left frame. The right-hand frame shows variable mass SPH particles also settled down in a Toy
star potential. These latter particles were initially placed on a cubic lattice with cell length �p and
given a mass ρ(�p)2 using the theoretical static density. The cubic spline kernel was used and
h was calculated selfconsistently (see section 4).

A similar expression to (2.30) with the factor 4 replaced with 5 in the integral, gives
the second derivatives of T . These results generalize those of Español and Revenga (2003)
who work out the case where κ is a constant. The application of these derivatives to problems
involving viscous effects and thermal conduction will be considered later.

2.4. Errors in the integral interpolant

It is not easy to estimate the errors in the SPH equations from first principles because the
particles get disordered during motion. The errors depend on the type of disorder which, in
turn, depends on the dynamics. One approach to estimating the errors is to begin with particles
on a regular lattice, then give each particle a random shift in position (Colagrossi 2004).
However, this kind of short wavelength disorder does not usually occur if the particle spacing
is much smaller than the dominant length scales of the motion. For example, if the particles
are damped to an equilibrium, they fall into a nearly regular cell structure which depends, in
general, on the kernel being used and the masses of the particles (see, e.g. figure 1). If the
particles are in motion, for example, in a breaking wave, most of the particles are in a type of
nearly ordered array associated with shearing a regular array of particles. The end result is that
SPH simulations are much more accurate than the interpolation of quantities from randomly
disordered particle arrays would suggest. For that reason, it is better to run carefully designed
test cases to assess the accuracy of an SPH simulation. However, it is still interesting to study
the kernel interpolation on a regular array of points.

Starting with the integral interpolant in one dimension

AI(x) =
∫

A(x ′)W(x − x ′, h) dx ′ = A(x) +
∫

(A(x ′) − A(x))W(x − x ′, h) dx ′. (2.35)

The error can be estimated by a Taylor series expansion of A(x ′). Assuming W(q, h) is an
even function of q, the interpolant gives

AI(x) = A(x) +
σh2

2

d2A(x)

dx2
· · · , (2.36)

where σ is a constant dependent on the kernel. The integral interpolant, therefore, gives at
least a second order interpolation. The interpolation is better if σ is zero, in which case higher



Smoothed particle hydrodynamics 1715

order terms in the Taylor series expansion must be included. The third order term vanishes
because of symmetry leaving a possible fourth order term. All these results assume that the
integrals can be extended to the entire volume within the support of the kernel. If this is not
possible, for example, near a boundary, the error is larger.

Monaghan (1985a) gave a technique for constructing higher order kernels from lower
order kernels using a variant of Richardson extrapolation. An example is the kernel

W(x, h) = 1

h
√

π

(
3

2
− x2

h2

)
e−x2/h2

, (2.37)

which is based on the Gaussian. For this kernel, the integral interpolant is accurate to O(h4).
This kernel changes sign; a necessary feature of higher order interpolation. Unfortunately
this may have unwanted side effects, including the possibility that the density might become
negative near a strong shock. It would, however, be possible to use a high order kernel using
a switch from high to low order kernels near shocks. Such a technique has been used but not
fully explored.

2.5. Errors in the summation interpolant

If the particles are equi-spaced in one dimension, we can easily estimate the errors in the
summation interpolant using the Poisson summation formula

∞∑
j=−∞

f (j) =
∫ ∞

−∞
f (j) dj + 2

∞∑
r=1

∫ ∞

−∞
cos (2πrj)f (j) dj, (2.38)

where, on the right-hand side, j is treated as a continuous quantity.
Consider the interpolation of the function g(x) = α + βx with the particles equi-spaced

with spacing � along an infinite line so that ρ = 1 and m = �. The SPH interpolation formula
gives, at xa = a�, the following expression for g at the point x = a�.

�

∞∑
j=−∞

(α + βj�)W(a� − j�, h). (2.39)

If the origin is shifted to the point a� and the Poisson summation formula is used together
with the assumption that the kernel is an even function, (2.39) becomes

(α + βa�)

(∫ ∞

−∞
W(q, h) dq + 2

∫ ∞

−∞
cos

(
2πq

�

)
W(q, h) dq + · · ·

)
. (2.40)

This formula shows how the error depends on the Fourier transform of the kernel
(Schoenberg 1946). If the kernel is a Gaussian, the previous expression becomes

(α + βa�)(1 + 2e−π2h2/�2
+ · · ·) (2.41)

In this simple case, we conclude that the SPH summation interpolant does not even interpolate
a constant exactly, but the error is exponentially small and is negligible if h > �. If we have
any sufficiently smooth kernel the Fourier transform decreases rapidly and the error can be
made negligible. The frequently used cubic spline kernel gives the following expression for
the previous interpolation:

(α + βa�)

(
1 + 2

(
sin πh/�

πh/�

)4

+ · · ·
)

. (2.42)

In this case the dominant error terms vanish if h = � and are small if h > �.
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Of greater interest are the errors in the derivative. For the previous case, and using (2.13)
we find dg/dx is estimated by

β�

∞∑
j=−�∞

j�
∂W(a� − j�, h)

∂xa

. (2.43)

Using the Poisson summation formula again and shifting the origin of the summation to a,
we find the derivative is given by

β

(
1 −

∫ ∞

∞
q

∂W

∂q
cos

(
2πq

�

)
dq + · · ·

)
. (2.44)

The error now involves the Fourier transform of the gradient of the kernel and is larger than in the
case of the function interpolation. In the case of the Gaussian, the errors are again exponentially
small and are negligible if h > �. We conclude from these results (which may be easily
extended to 2 or more dimensions) that the SPH interpolation is as accurate as desired provided
the particles are equi-spaced in an infinite space. This has led some researchers (Chaniotis et al
2002) to use re-meshing strategies for SPH, and their simulations of homogeneous fluids give
very good results. At fixed boundaries they use one-sided interpolation which works well.
However, boundaries, such as free surface liquid problems, then require special care as do
multi-phase and multi-material problems.

2.6. Errors when the particles are disordered

During the course of an SPH calculation the particles become disordered. The exact form of
this disorder depends on the dynamics. When Bob Gingold and I first ran the SPH calculations,
we thought that the disorder could be described by a probability distribution proportional to the
mass density and that the errors could be estimated in the same way as a Monte Carlo estimate.
In particular, we expected that the errors arising from fluctuations would be ∼1/

√
N , where

N is the number of particles. However, the errors were much smaller than this estimate would
suggest. The reason for the smaller errors, as mentioned earlier, is that the probability estimates
allow fluctuations which are inconsistent with the dynamics. The result is that the SPH particles
are disordered, but in an orderly way.

For example, the left frame of figure 1 shows the positions of 971 particles with equal
mass placed at random within a unit circle. The middle frame shows the same particles after
they have been allowed to evolve in a simple linear force field, where the equation of motion is

dva

dt
= −νva −

∑
b

mb

(
Pa

ρ2
a

+
Pb

ρ2
b

)
∇aWab − ra, (2.45)

where the term −νv damps the motion, the terms involving the pressure P approximate the
pressure gradient (discussed in detail in section 3) and the last term is the body force. In this
force field the exact density varies with radius r according to (1 − r2). The particles are still
disordered but the large voids and concentrations appearing in the left frame of figure 1 have
disappeared, and the disorder is far from random. The set of particles gives a density field
shown in figure 2. Because the density is accurate, we can deduce that the gradients of the
pressure field are accurately computed in spite of the disorder in the particles.

The simulation can be set up differently by choosing particle positions for particles which
begin on a lattice of square cells with sides of length �p. The particles have mass ρ�p2, which
varies over the domain. Only the particles that have a radius r < (1−0.5�p) are kept such that
no particle has zero mass. In the previous case the particles had equal mass and their spacing
varied. Now the particles have different masses but equal initial spacing. After evolving the
particles with the same damping as before, the particle positions settle into the state shown in
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Figure 2. The density radius relation for an SPH simulation of a gas in a linear force field. The
exact results are shown by the curved lines and the SPH results by the filled circles. The left-hand
curve is for the equal mass particle case and the right-hand curve (shifted for clarity) is for the
variable mass particles with nearly equal separation.

the right-hand frame of figure 1. As expected, by analogy with atomic systems, the difference
in the force between pairs produces a different particle equilibrium configuration.

Since the disorder depends on the dynamics, it is not possible to make traditional error
estimates like those used for finite differences or finite elements. In fact, the previous examples
show that, at least for equilibrium configurations, the SPH particles seek the best positions
for a given interpolation formula. This is a profoundly different picture from that for finite
differences, where the best interpolation formula is sought for a given grid. For this reason,
estimates of SPH calculations have had to depend on comparisons with known solutions,
comparisons with experiments or by studying how the error varies with particle number (see,
e.g. Cleary and Monaghan (1999)). These comparisons show that it is possible to achieve very
accurate results with SPH. An example is given in figure 3, where the function r2 exp (−6r2)

is interpolated using the cubic spline and the interpolation formula (2.8) with the particle
positions shown in the central frame of figure 1.

The calculation of derivatives is less accurate except for the calculation of the density
derivatives from the pressure force term in the equation of motion. That derivative is accurate
because the particles are forced to move to an equilibrium position where the density gradient
is determined accurately to balance the applied force which is ∝ r. If the derivative with respect
to x of (r2 − 1) is calculated using (2.14), the results are shown in figure 4. The lower curve
is for the case of equal mass particles and the upper curve for variable mass (the graphs are
shifted by one for clarity). Only the particles within 0.9 of the outer radius were used for these
plots. These particles comprise 96% of the mass. The mean square error in the gradient is 0.02.

One reason for the accuracy of SPH despite the disorder in dynamical problems is that it is
possible to devise SPH algorithms so that they conserve important quantities like momentum
and energy. The importance of this conservation shows up in simple problems involving the
integration of ordinary differential equations. Suppose, for example, that we wish to integrate
the equations for a binary star system with the stars treated as points and we are offered
either a Verlet symplectic integrator (since the system is Hamiltonian) or a standard fourth
order Runge–Kutta integrator. The Runge–Kutta scheme is of higher order so that, if we
use the same time step in each case, a numerical analyst might argue that the Runge–Kutta
will give more accurate results than the Verlet integrator. However, the Runge–Kutta scheme
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Figure 3. The function r2 exp (−6r2) interpolated using a cubic spline and the particle distribution
shown in figure 2. The continuous line is the exact result. The dots show the SPH results.

Figure 4. The SPH derivative with respect to x of (r2 − 1) using (2.14). The upper points are
for the particles with initially equal spacing. They have been shifted by 1.0 for clarity. The lower
points are for the case of equal mass particles. The points included have r < 0.9 and contain 96%
of the mass.

produces a less accurate orbit. The effect is more extreme as the eccentricity gets closer
to 1. The problem arises because the standard fourth order Runge–Kutta does not conserve
angular momentum (it is also not reversible, whereas the system is). On the other hand, the
symplectic integrator, which is a lower order integrator, gives much better results because it
conserves angular momentum and is reversible. In this example the order of the integrator is
less important than the conservation. It turns out that in SPH simulations, and in molecular
dynamics, integrators which give very good conservation are to be preferred over higher order
integrators which do not have good conservation properties. For these reasons it is preferable
to write the gradient terms of SPH algorithms so that conservation is very accurate.

An example of the accuracy of SPH in a complex evolution of a liquid is due to
Colagrossi (2004) and shown in figure 5. The liquid is initially in the shape of a square.
The initial velocity field for a square with initial side length L is

(vx, vy) = (V (e−(4y/L)2 − e−4), −V (e−(4x/L)2 − e−4)), (2.46)
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Figure 5. The evolution of an initial square of liquid (- - - -) computed using SPH and a combination
of level set and finite difference methods (— · —, Colagrossi (2004)).

(This figure is in colour only in the electronic version)

has spatially varying vorticity and produces severe distortion of the original square. The
vertices initially have zero velocity and three of the vortices remain at rest. The dash–dot lines
show the position of the outer boundary calculated using a combination of level set and finite
difference techniques. The agreement between the two methods is remarkably good and shows
that SPH is capable of simulating complex flows very satisfactorily.

An alternative approach to accuracy is taken by Vila and Lanson and their colleagues
(Ben Moussa et al 1999) who extend the idea of Johnson and Beissel (1996) to use normalized
kernels, but do so within the framework of an estimate of error bounds. This approach is
more mathematical than the applied mathematical approach described in this review. As a
result, these authors can get rigorous bounds on errors but with coefficients which cannot
be determined accurately. Kahan (1980), in a witty discussion of the problems of estimating
errors, comments on the pessimistic nature of error bounds and the options for estimating them
accurately, in the following terms:

‘Both options are often so pessimistic and so costly that most people prefer to take their
chances with computations carried out with precisions believed, rightly or wrongly,
to exceed by far what is necessary. Their attitude makes sense; they would rather
believe the error to be negligible than know how big it isn’t’.

However, the analysis of Villa and Lanson has led them to a re-appraisal of the SPH
normalization of Johnson and Beissel with promising results.

3. SPH Euler equations

The Euler equations are the equations for the rates of change of velocity, density and position,
namely,

dv

dt
= − 1

ρ
∇P + g, (3.1)

dρ

dt
= − ρ∇ · v, (3.2)

dr
dt

= v, (3.3)
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where v is the velocity, ρ the density, P the pressure and g is the body force per unit mass.
In this equation the time derivative is the derivative following the motion. In general, P is
a function of ρ and the thermal energy but in the present case where there is no dissipation,
the pressure can be taken as a function of ρ and the entropy per unit mass s, which remains
unchanged during the motion. In some cases we will assume the entropy is the same for all
particles, but, in general, each particle could have a different entropy.

The equation for the rate of change of density and its SPH equivalent have been discussed
earlier. The SPH acceleration equation is discussed in the following sections.

3.1. The SPH acceleration equation

The original forms of SPH (Gingold and Monaghan 1977, Lucy 1977) converted the
acceleration equation into SPH by writing

(∇P)a =
∑

b

mb

Pb

ρb

∇aWab, (3.4)

such that
dva

dt
= − 1

ρa

∑
b

mb

Pb

ρb

∇aWab. (3.5)

However, (3.5) does not conserve linear or angular momentum exactly, since the force on
particle a owing to b is not equal and opposite to the force on b owing to a or

mambPb

ρaρb

∇aWab �= −mambPa

ρaρb

∇bWab, (3.6)

because Pa �= Pb. Note that ∇aWab = −∇bWab.
To write the acceleration equation in a form which conserves linear and angular momentum

the original approach was to make use of a Lagrangian (Gingold and Monaghan (1978, 1979)
and in more detail Gingold and Monaghan (1982)). However, the same result is obtained by
noting that

∇P

ρ
= ∇

(
P

ρ

)
+

P

ρ2
∇ρ. (3.7)

Using the SPH interpolation rules, (3.7) becomes

dva

dt
= −

∑
b

mb

(
Pb

ρ2
b

+
Pa

ρ2
a

)
∇aWab. (3.8)

Writing

∇aWab = rabFab, (3.9)

where Fab is a scalar function of |ra − rb|, the force on a owing to b is then

mamb

(
Pb

ρ2
b

+
Pa

ρ2
a

)
rabFab, (3.10)

which is equal and opposite to the force on b owing to a. As a consequence, linear and angular
momentum are conserved exactly if h is constant or a symmetric function of a and b. It is
possible to maintain this conservation even when h is allowed to vary (see later).

This pair force is actually a disguised many-body force because the pressure and density
depend on the distribution of the particles and, in general, the resolution length also depends
on the particle number density. The result is that, in general, the dynamics of an SPH
system differs from an atomic or molecular system which can be approximated by pure pair
forces.
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3.2. The energy equations

The assumptions of the Euler equation do not require the time rate of change of thermal energy
to be calculated. However, it is convenient to convert the non-dissipative rate of change of
thermal energy to its SPH form. From the first law of thermodynamics

T ds = du + P dV, (3.11)

= du − P

ρ2
dρ, (3.12)

where s is the entropy and all quantities are per unit mass the time rate of change of thermal
energy is

du

dt
= P

ρ2

dρ

dt
= − P

ρ2
∇ · v. (3.13)

Using the SPH form for ∇ · v given earlier, the previous equation can be written either as

dua

dt
= Pa

ρ2
a

∑
b

mbvab · ∇aWab (3.14)

or

dua

dt
= Pa

ρa

∑
b

mb

ρb

vab · ∇aWab. (3.15)

A good general principle when writing SPH equations is to approximate the same quantity
is the same way in all the equations. For example, in the equation for the rate of change of
thermal energy, the particular expression for ∇ · v should be the same as that used in the time
rate of change of the density.

In addition to an equation for the thermal energy, it is useful to consider the equation for
the thermokinetic energy per unit mass defined by

ê = 1
2v2 + u. (3.16)

The rate of change of ê with time can be deduced from equations for the acceleration and the
rate of change of u. The continuum equation derived in this way is

dê

dt
= − 1

ρ
∇ · (Pv). (3.17)

Following the same procedure, but now using the SPH equations we find

dêa

dt
= −

∑
b

mb

(
Pavb

ρ2
a

+
Pbva

ρ2
b

)
· ∇aWab. (3.18)

The continuum limit of this SPH equation is

dê

dt
= − P

ρ2
∇ · (ρv) − v · ∇

(
P

ρ

)
= − 1

ρ
∇ · (Pv). (3.19)

Calculations of shock phenomena with finite difference methods often use the thermokinetic
energy equation rather than the thermal energy equation because it ensures conservation
of the energy. Furthermore, in relativistic problems, it is natural to work with momentum
and energy equations which guarantee conservation of momentum and thermokinetic energy.
Because of the symmetry of the SPH equation, the rate of change with time of the total
thermokinetic energy

∑
a maêa is zero.
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4. Resolution varying in space and time

In the original calculations of Gingold and Monaghan (1977), each particle had the same h

proportional to (〈r2〉 − 〈r〉2)1/2 where, for example, 〈r2〉 denotes the mass average

〈r2〉 =
∑

b mbr2
b∑

b mb

. (4.1)

During a simulation, h is then automatically increased as the particle system expands and
decreased as it contracts. In their binary fission calculations, Gingold and Monaghan (1978)
used an h proportional to the inverse of the gravitational energy of the system. These two
choices were crude attempts to automatically match the resolution length h to the scale of the
system. Gingold and Monaghan (1982) suggested that it would be preferable to allow ha for
any particle a to be related to the density according to

ha = σ

(
ma

ρa

)1/d

, (4.2)

where d is the number of dimensions and σ is a constant ∼1.3. This has proved to be a powerful
and robust way of specifying the resolution length h. It automatically gives SPH a resolution
which varies in time and space and, if used consistently, leads to SPH equations which can be
derived from a Lagrangian.

If the density is determined by summation, the density for particle a can be written as

ρa =
∑

b

mbWab(ha). (4.3)

The usual approach in the literature is either to calculate ha at any time using the current value
of ρa (estimated from the SPH summation), or to calculate ha from the rate of change of density
according to

d ln h

dt
= −1

d

d ln ρ

dt
. (4.4)

Various techniques may then be used to adjust the ha . For example, Steinmetz and
Mueller (1993) average the local density and use this to change h. Another often used
alternative is to adjust h so that each particle has a constant number of neighbours (Hernquist
and Katz 1989).

Ideally, h should be determined from the summation equations so that it is consistent
with the density obtained from the summation (Monaghan 2002). Equation (4.3) is a non-
linear equation for the single variable ρa , which can be solved rapidly by point iteration
possibly combined with a Newton–Raphson scheme. For example, in the case of a Toy star
potential, starting with random positions in the left frame of figure 1, the mean square error in
solving (4.3) is reduced by a factor 10 each point iteration, and one iteration is often sufficient.
Further iterations are only required for a sub-set of the particles and the time required for extra
iterations is not much (Price 2004b).

In some problems it might be necessary to replace (4.2) by a formula that limits how large
or small h can become. For example, an upper bound on ha when ρa becomes very small is
desirable to prevent strong interactions between a very low and a very high density region.
This can be achieved if (4.2) is replaced by

ha = σ

(
ma

A + ρa

)1/d

, (4.5)

where A is a suitable constant. A lower bound can be, similarly, included. In all cases (4.3)
can be solved consistently.
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5. Lagrangian equations

The Lagrangian L for the non-dissipative motion of a fluid in a potential �(r) per unit mass is
(Eckart 1960)

L =
∫

ρ

(
1

2
v2 − u(ρ, s) − �

)
dr, (5.1)

where v is the velocity, u the thermal energy per unit mass, ρ the density and s is the entropy.
We assume that the entropy of each element of fluid remains constant, though each particle
can have a different entropy. SPH Lagrangian equations of motion have been obtained by
Springel and Hernquist (2002) using a constraint on the mass within a sphere of radius ha

about particle a and by Monaghan (2002) assuming a functional relation between h and ρ. In
this review we use the latter approach.

The SPH form of Eckart’s Lagrangian is

L =
∑

b

mb

(
1

2
v2

b − u(ρb, sb) − �b

)
. (5.2)

From Lagrange’s equations for particle a

d

dt

(
∂L

∂va

)
− ∂L

∂ra

= 0, (5.3)

we find
dva

dt
= −

∑
b

mb

(
∂u

∂ρ

)
s

∂ρb

∂ra

− ∂�a

∂ra

. (5.4)

From the first law of thermodynamics(
∂u

∂ρ

)
= P

ρ2
. (5.5)

From the SPH summation for the density (2.9) (assuming h is a function of ρ as in (4.2)),


b

∂ρb

∂ra

=
∑

c

mc∇aWac(ha)δab − ma∇bWab(hb), (5.6)

where the gradient of Wab is taken keeping h constant, δab is the Kronecker delta, and


b = 1 − Hb

∑
c

mc

∂Wbc(hb)

∂hb

. (5.7)

Here Hb denotes ∂hb/∂ρb.
Using these results (5.4) becomes

dva

dt
= −

∑
b

mb

(
Pa


aρ2
a

∇aWab(ha) +
Pb


bρ
2
b

∇aWab(hb)

)
+ ga, (5.8)

where δab is a Kronecker delta, ga is the force/mass owing to the potential � and ∇a denotes
the gradient taken with respect to the coordinates of particle a.

In the case of equi-spaced particles in one dimension, 
 can be estimated using the Poisson
summation formula. We find


 = 1 + 2h
∂W̃

∂h
, (5.9)

where W̃ is the Fourier transform of W . For the case of a Gaussian kernel


 = 1 −
(

2πh

�

)2

e−(πh/�)2
. (5.10)
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Figure 6. The function S for the cubic spline with equi-spaced particles. The values of h are scaled
to the particle spacing.

Since πh/� ∼ 4 this result shows that for the Gaussian kernel and equi-spaced particles 
 is
very close to 1. The cubic spline estimate of

S = h

ρ

∑
c

mc

∂Wbc(hb)

∂hb

(5.11)

in one dimension is shown in figure 6. The value of S for the cubic spline is larger than for the
Gaussian.

However, when ρ varies significantly, 
 can vary significantly and it must be
included to give accurate wave propagation. Finally we note (see Monaghan (2002),
Price and Monaghan (2004a)) that the rate of change of density with time (2.18),
when h is a function of ρ, becomes

dρa

dt
= 1


a

∑
b

mbvab · ∇aWab(ha), (5.12)

where the gradient is taken with ha constant. Similarly, the rate of change of thermal energy
per unit mass is

dua

dt
= Pa


aρ2
a

∑
b

mbvab · ∇aWab(ha). (5.13)

5.1. Conservation laws

The conservation laws can be deduced either from the equations of motion or from the
invariance of the Lagrangian to infinitesimal transformations.

5.1.1. Momentum conservation. Linear and angular momentum will be conserved,
provided the Lagrangian (5.2) is invariant to translations and rotations. Because the SPH
density and therefore the thermal energy term (with constant entropy) is invariant to these
transformations, so the Lagrangian, the fluid dynamical terms, therefore, conserve linear
and angular momentum. If the force terms owing to the potential are also invariant to the
transformations (this is true of self-gravity), the entire system will conserve momentum.
The same result follows from (5.8), using

∇aWab(ha) = rabFab(ha), (5.14)
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where Fab(ha) = F(|rab|, ha). From the symmetry of the interaction terms the linear and
angular momentum are exactly conserved. In addition, because there is no explicit time
dependence in L, the energy is conserved. The SPH system, therefore, mimics a system of
molecules with forces between their line of centres, but with the difference that the strength of
the interaction, through P and ρ, and its geometric dependence through the kernel, depends
on the positions of other particles.

5.1.2. Circulation. Kelvin (see, e.g. Lamb (1932)) showed that for an inviscid fluid with
P = P(ρ), and conservative body forces, the integral of the velocity around any closed path

CK =
∮

v · dr (5.15)

is constant. This conservation law is really infinitely many conservation laws since there are
infinitely many closed curves. The constancy of circulation has been found useful in many
hydrodynamic and atmospheric problems, and it is also applicable in astrophysical problems
involving the dynamics of isothermal or adiabatic gas.

We can recover the circulation conservation directly from our SPH system. Consider a
fluid where all the particles have the same mass and imagine a necklace of particles. If the
particles have the same entropy (so that the necklace lies in a constant entropy surface) then
nothing will change if each particle is shifted to its neighbour’s positions always moving in the
same sense around the necklace. With a proviso to be considered below, the dynamics should
be unchanged. We can interpret this as requiring the change in the Lagrangian to be zero.

In this case, if a particle label on the necklace is �, the change in position and velocity of
the �th particle will be δr� = (r�+1 − r�) and δv� = (v�+1 − v�), respectively. The change in
the Lagrangian to first order is then

δL =
∑

�

(
∂L

∂r�

· δr� +
∂L

∂v�

· δv�

)
, (5.16)

where now the summation only applies to the particles around the necklace. Using the
previous expressions for δr� and δv� together with Lagrange’s equations to replace ∂L/∂r� by
d(∂L/∂v�)/dt , and assuming the particle masses are equal, results in

δL = m
d

dt

∑
�

v� · (r�+1 − r�) = 0, (5.17)

which must be zero if there is no change in the dynamics. We conclude that

C =
∑

�

v� · (r�+1 − r�) (5.18)

is constant and this is true regardless of the necklace in the constant entropy surface. This
result is a discrete version of Kelvin’s theorem. We can get the same result, but with opposite
sign, by going around the necklace in the opposite sense. If we combine the two (changing
the sign of the second because the integral is in the reverse sense) we get

C = 1

2

∑
�

v� · (r�+1 − r�−1), (5.19)

which is a more accurate estimate of the circulation.
This result is, in general, only approximate because the changes in position and velocity

to get from one place in the necklace to its neighbour are discrete, whereas exact conservation
is only true when the transformations are infinitesimal. However, as Frank and Reich (2003)
show for the case P = Kρ2, where K is a constant, the SPH equations lead to very accurate
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conservation of circulation, provided the necklace is defined by a large set of tracer particles.
These tracer particles have negligible mass and interact only with the real SPH particles. The
pressure force can, therefore, be written as the derivative of a potential and it follows (with
� denoting a tracer label and noting that the sum over v� · (v�+1 − v�−1) vanishes) that

dC

dt
= −

∑
�

(r�+1 − r�−1) · ∇���, (5.20)

where

�� = K
∑

b

mbW(r� − rb, h). (5.21)

If the number of tracer particles is made sufficiently large, the summation over � becomes
arbitrarily close to a line integral of a potential function around a closed loop and this vanishes.
An interesting conclusion from this result is that the tracer particles have enough information
from the real SPH particles to define their velocity and position so that the circulation is
constant to high accuracy. The same argument can be extended to more complicated barotropic
equations of state and applied to molecules or to clusters of stars.

The circulation of a fluid also appears in the work of Feynman on vortices in liquid
helium and the necklace transformation was used by him to determine the quantization of
circulation. For our present purposes we follow Feynman’s review article (Feynman 1957).
In that review he suggests a simple form of the wave function for a set of N identical
helium atoms. If the entire system moves as a rigid body then the wave function � is
given by

� = eik·∑j rj �, (5.22)

where rj is the position vector of particle j and Nh̄k is the momentum of the system. The
function � is the ground state wave function. Feynman then argues that if the velocity is
varying slowly then the wave function in a region must be close to the wave function of the
atoms moving at a uniform velocity. As a result, the wave function for the entire fluid is
expected to be similar to

� = ei
∑

j mvj ·rj �, (5.23)

where m is the mass of a helium atom. Feynman argues that the wave function must be invariant
to the necklace transformation. When the particles are shifted around the necklace he finds
that the change in the phase is given by

1

h̄

∑
j

mv · �rj . (5.24)

The wave function will be invariant if this phase is a multiple of 2π . Accordingly, we can
write ∑

j

vj · �rj = 2πh̄n

m
, (5.25)

where n is an integer. Thus, circulation is quantized.
Finally we note that the circulation invariant contains a topological quantity, the loop

around which the circulation is calculated and a dynamical quantity, the velocity. Many
numerical codes in astrophysics can guarantee satisfactory accuracy for the velocity, but few
can guarantee the same accuracy for the circulation because the numerical codes cannot follow
the tangling of the loop.
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5.2. The Lagrangian with constraints

In the simplest form of the SPH equations, ρ is defined by a summation over kernels. However,
as suggested in section 2, there may be advantages in working with other forms of the density
convergence equation; for example,

dρa

dt
= ρa

∑
b

mb

ρb

vab · ∇aWab. (5.26)

The action principle requires that

S =
∫

L dt (5.27)

is stationary for arbitrary and infinitesimal variations δr in the coordinates and corresponding
variations δv in the velocities. These variations are related by

dδr
dt

= δv. (5.28)

Suppose that the only non-zero variation is δra . The first order change in S is

δS =
∫ (

mava · δva −
∑

b

mb

∂u(ρb, s)

∂ρb

δρb

δra

· δra

)
dt, (5.29)

where δρb/δra denotes the Lagrangian change in ρb when the position of particle a changes
by δra at time t . From (5.12) the change in ρb (assuming the variation in h can be neglected) is

δρb = ρb

∑
c

mc

ρc

(δrb − δrc) · ∇bWbc(hb) (5.30)

and, therefore,
δρb

δra

= ρb

∑
c

mc

ρc

(δab − δac)∇bWbc(hb). (5.31)

If this expression is substituted into the integral for δS, and the velocity term is integrated
by parts (recalling that dδr/dt = δv), the variational principle gives

dva

dt
= −

∑
b

mb

ρaρb

(Pa∇aWab(ha) + Pb∇aWab(hb)) . (5.32)

This is the acceleration equation that is consistent with the convergence equation (5.21).
This procedure can be generalized (for details see Price (2004a)) by writing the convergence
equation as

dρ

dt
=

( ρ

�

)
�∇ · v, (5.33)

where � is an arbitrary function. We can write (5.28) as
dρ

dt
= ρ

�
(∇ · (�v) − v · ∇�). (5.34)

If the SPH form of (5.29) is used as a constraint, the action principle gives

dva

dt
= −

∑
b

mb

ρaρb

(
Pa�b

�a

∇aWab(ha) +
Pb�a

�b

∇aWab(hb)

)
. (5.35)

If � = ρ, then the first form of the acceleration equation is recovered. If � = 1, the second
form is recovered. If we choose � = √

P , then the acceleration equation becomes

dva

dt
= −

∑
b

mb

√
PaPb

ρaρb

(∇aWab(ha) + ∇aWab(hb)) . (5.36)
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The advantages of choosing this last form consistently with � = √
P in the convergence

equation have not been analysed. These various forms of the acceleration equation have the
same conservation properties.

5.3. Time integration in the absence of dissipation

Because the SPH algorithm reduces the original continuum partial differential equations to sets
of ordinary differential equations, any stable time stepping algorithm for ordinary differential
equations can be used. However, when there is no dissipation, the properties of the Lagrangian
description can be preserved using a symplectic integrator (see, e.g. Leimkuhler et al (1997)).
A simple example is the Verlet second order integrator which, for the one-dimensional system

dq

dt
= v, (5.37)

dv

dt
= f (q), (5.38)

takes the form (for constant time step δt)

q1/2 = q0 + 1
2δtv0, (5.39)

v1 = v0 + δtf (q1/2), (5.40)

q1 = q1/2 + 1
2δtv1, (5.41)

where a0, a1/2 and a1 denote the values of a at the start of a step, halfway and at the end of
the step, respectively.

In the case where there are n coordinates q1, q2, q3, . . . , qn with velocities
v1, v2, v3, . . . , vn we get

q
1/2
i = q0

i + 1
2δtv0

i , (5.42)

v1
i = v0 + δtf (q

1/2
1 , q

1/2
1 , q

1/2
1 , . . .), (5.43)

q1
i = q

1/2
i + 1

2δtv1
i . (5.44)

In an SPH calculation, δt will depend on the speed of sound which, for a non-dissipative
system depends on the density and, therefore, on the coordinates. In this case (5.39)–(5.41)
are replaced with the following steps where the first half step has a different time step from
the second half step.

q
1/2
i = q0

i + 1
2δt0v0

i , (5.45)

v
1/2
i = v0

i + 1
2δt0f (q

1/2
1 , q

1/2
2 , q

1/2
3 , . . .), (5.46)

v1
i = v

1/2
i + δt1f (q1/2), (5.47)

q1
i = q

1/2
i + 1

2δt1v1
i , (5.48)

where, for example,

δt1/2 = 1
2 (δt0 + δt1), (5.49)

or, the frequently used

2

δt1/2
= 1

δt0
+

1

δt1
, (5.50)

so that, with δt1/2 calculated from the mid-point coordinate values, δt1 can be calculated for
the second half of the time stepping. This algorithm is reversible in time. The time stepping
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for the n coordinate system (5.42)–(5.44) can be replaced in the same way. An alternative
form with the same accuracy is

v1/2 = v0 + 1
2δtf 0, (5.51)

q1 = q0 + δtv1/2, (5.52)

v1 = v1/2 + 1
2δtf 1, (5.53)

which can be compared with (5.39)–(5.41). The latter is often referred to as the drift–kick–drift
form, whereas the steps (5.51)–(5.53) are referred to as the kick–drift–kick form. The kick is
the change in the velocity by the force. The drift is the change in the coordinate moving with
the initial velocity. In some cases it may be useful to have the forces evaluated at the end of the
step as in the kick–drift–kick form.

It is possible to show that the symplectic integrator equations (5.42)–(5.44) are equivalent
to using the Lagrangian

L =
∑

i

1

2
miv

2
i − � − δt2

12


∑

j

mjf
2
j +

1

2

∑
j

∑
k

mj q̇j q̇k

∂fj

∂qk


 + O(δt4), (5.54)

or, equivalently, the Hamiltonian

H =
∑

i

1

2
miv

2
i + � +

δt2

12


∑

j

mjf
2
j +

1

2

∑
j

∑
k

mj q̇j q̇k

∂fj

∂qk


 + O(δt4), (5.55)

where � is the potential energy such that fi = ∂�/∂qi . In an SPH calculation, � is given by

� =
∑

j

mjuj + �, (5.56)

where � is the potential of any body force. As a consequence, the Hamiltonian, and therefore
the energy, will not show a secular increase or decrease with time. Note that the double
summation term can be written∑

j

∑
k

q̇j q̇k

∂fj

∂qk

=
∑

j

vj

dfj

dt
. (5.57)

Since dfj/dt can be estimated from fj at two time steps, the contribution of this double
summation can be computed at little cost.

The advantages of using symplectic integrators for molecular dynamics has been discussed
by many authors (see, e.g. Leimkuhler et al (1997)).

6. Applications of the Euler equations

The most common application of the SPH equations without dissipation is to small oscillations.
The simplest of these is the oscillation of an infinite, one-dimensional gas with constant initial
density. The analysis in the case of constant h has been given by Monaghan (1989) and
Morris (1996). However, we will give the dispersion relation appropriate for h a function of ρ.
A more complicated example is the oscillation of a Toy star in one dimension. This case is
important because it mimics the oscillations of a star and is more difficult because the eigen
functions vary sharply near the surface where the density goes to zero.
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6.1. Dispersion relation for an infinite one-dimensional gas

Consider an SPH system that consists of an infinite set of particles in one dimension with initial
spacing �. They are perturbed by a velocity much less than the speed of sound cs. Let the
unperturbed quantities (shown by an over bar) and the space and time variation of all perturbed
quantities be proportional to

exp i(kx̄a − ωt), (6.1)

where x̄a = a� is the unperturbed position of particle a. In an unpublished work, I have shown
that the linearized one-dimensional SPH equations of motion, with h ∝ 1/ρ and P = Kργ ,
give the dispersion relation

ω2 = c2
s

γ 
̄

[
(γ − 2)�2

ω
+ 2� − h


̄

∂�2

∂h
− ��2


̄2

]
. (6.2)

The functions �, � and � are defined by

� = �
∑

c

sin (kx̄c)
∂W(x̄c, h)

∂x̄c

, (6.3)

� = �
∑

c

[1 − cos (kx̄c)]
∂2W(x̄c, h)

∂h2
(6.4)

and

� = −2h�
∑

c

∂W(x̄c, h)

∂h
− h2�

∑
c

∂2W(x̄c, h)

∂h2
(6.5)

and cs is the adiabatic sound speed.
If the wavelength is much larger than � (as in many simulations, where the wave length

is typically 100�), the summation can be replaced by an integration. We find

� =
∫ ∞

∞
sin (kx)

dW

dx
dx = −kW̃ (k, h), (6.6)

where W̃ (k, h) is the Fourier Transform of the kernel, and

� =
∫ ∞

∞
(1 − cos (kx))

d2W

dx2
dx = k2W̃ (k, h). (6.7)

In this limit the dispersion relation becomes

ω2 = c2
s k

2

γ


[
(γ − 2)W̃ 2(k, h)



+ 2W̃ (k, h) − h




∂W̃ 2

∂h
− �W̃ 2


2

]
. (6.8)

The Fourier transform of the one-dimensional Gaussian kernel and the spline kernels are

e−(hk/2)2
(6.9)

and (
sin (hk/2)

hk/2

)n

, (6.10)

respectively, where the latter is obtained from (2.4) (note that the cubic spline has n = 4).
If kh < 1, we can approximate each of these by

1 − βh2k2, (6.11)
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Figure 7. The SPH dispersion relation for sound waves in one dimension using the cubic spline
and taking γ = 5/3 with full account of the variation of h with ρ. The black dots show the results
when the variation of h with density is included. The open circles show the results when h is fixed.

with β = 1/4 for the Gaussian and β = 1/6 for the cubic spline. Using this approximation,
and the further approximation 
 = 1 and � ∼ 0, the dispersion relation when h varies with ρ

becomes

ω2 = k2c2
s

[
1 +

2βh2k2(3 − γ )

γ

]
. (6.12)

If the contributions from the variation of h with ρ are neglected, the dispersion relation becomes

ω2 = k2c2
s

[
1 +

2βh2k2(1 − γ )

γ

]
. (6.13)

This shows that, if h is constant, and γ lies in the normal range 1 � γ � 3, the dispersion
curve lies below the exact line ω = csk, whereas if the variation of h is included the dispersion
curve is above the exact line. The dispersion relation for the cubic spline in the case where,
initially, h = 1.2 and γ = 5/3 is shown in figure 7. The variation of the dispersion relation is
in agreement with the previous results when k is sufficiently small. In addition, we note that
the dispersion relation for the case of varying h always lies above that for the case where h

is constant. Both dispersion curves have the same limit when k = π/� because, for this k,
� = 0 and � = 8�(∂2W/∂x2) evaluated at x = �. More accurate dispersion relations can
be obtained if kernels which interpolate at a higher order are used. However, as mentioned
earlier, these kernels are not satisfactory for shocks unless, in a dynamical calculation, there is
a switch from lower order interpolation near shocks (e.g. where the cubic spline could be used)
to a higher order interpolating kernel, elsewhere. An alternative is to use velocity smoothing
(see later) with a suitable coefficient to cancel the error terms.

Figure 8 shows a velocity field after 4000 steps, for a one-dimensional gas with γ = 1.4,
which was begun with density constant and velocity 0.05cs sin(2πx). The velocity was
reversed after 2000 steps. The total time of the simulation is equivalent to 13.7 periods.
The SPH results were calculated using 100 particles with constant h = 0.013. The exact result
(the reversed initial velocity) is shown by the continuous line, which is difficult to see because
it passes through the points from the SPH simulation shown by filled symbols. Figure 9 shows
the results for an initial velocity 0.05cs sin(10πx). In this case the integration time is equivalent
to 68.5 periods. The agreement between the SPH results and the exact values is excellent.
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Figure 8. The velocity field for an oscillation in a one-dimensional gas at step 4000. The integration
was performed using a Verlet symplectic integrator with 100 SPH points and the motion was reversed
at step 2000. The SPH results are shown by filled symbols and the exact results by a continuous
line (which is difficult to see because it passes through the SPH points).

Figure 9. The velocity field for the conditions of the previous figure except that the initial velocity
is 0.05cs sin(10πx).

6.2. Toy star oscillations

The usual tests in computational gas dynamics involve systems with rigid or periodic boundaries
as in the previous test. These boundaries are quite useful for testing algorithms for industrial
fluid dynamics. However, in astrophysics a more realistic test case is a finite mass of gas pulled
together by gravity or a force which mimics gravity. The region outside the gas then has zero
density. When finite difference methods are used for the dynamics of such a system they often
give poor results because they do not handle the outer region of the gas moving into a vacuum.
However, they do not present difficulties for particle methods such as SPH.

A useful class of such test problems are the Toy stars considered by Monaghan and
Price (2004). The self-gravity is replaced by an attractive force proportional to the distance
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and along the line of centres of any two particles. This force is the simplest many-body force.
It was discovered by Newton, who pointed out that if two particles attract each other with a linear
force then they move as if attracted to the centre of mass of the pair (see Chandrasekhar (1995)
for a modern interpretation of Newton’s Principia and, in particular, Newton’s proposition
LXIV, which discusses this force).

If there are N particles attracting each other with a force proportional to the separation,
and directed along the line joining pairs of particles, then each particle moves as if it is
independent of the others. The force appears as a linear force towards the centre of mass of the
N particles (the particles, therefore, move in a common oscillator potential). In the case of two
particles in three dimensions, the trajectories are closed Liassajous figures. A gaseous system
with this force has a number of attractive features for testing algorithms for fluid dynamics.
The linear modes of oscillation can be calculated easily and there is an exact non-linear solution
where the velocity is a linear function of the coordinates but a non-linear function of time.
This solution can be calculated very accurately by integrating a small number of ordinary
differential equations and the results provide an excellent test of any computational fluid
dynamics algorithm.

The simplest version of the Toy star assumes that pressure P is given in terms of the
density ρ by P = Kρ2, where K is a constant. This makes the problem analogous to the
problem of shallow water motion in paraboloidal basins. There is extensive literature on this
problem including the seminal papers of Ball (1963) and the general analysis by Holm (1991).

6.3. Toy stars in one dimension

Suppose that we have an isolated group of N particles in one dimension interacting with linear
forces such that the force on particle j owing to particle k is νmjmk(xk − xj ). The potential
energy is

� = 1

4
ν

∑
j

∑
k

mjmk(xj − xk)
2, (6.14)

The equation of motion of the j th particle is then

mj

d2xj

dt2
= −νmj

∑
k

mk(xj − xk). (6.15)

However, the centre of mass can be chosen as the origin, so the equation of motion becomes

d2xj

dt2
= −νMxj , (6.16)

where M is the total mass. The motion of the N -body system is therefore identical to the
independent motion of each particle in a harmonic potential. In the following, we replace
Mν by 
2. The acceleration equation for a one-dimensional gaseous toy star with velocity v,
density ρ and pressure P is

dv

dt
= − 1

ρ

∂P

∂x
− 
2x. (6.17)

Solutions can be found for P = Kργ with K constant and any γ � 1. If γ = 2, the
equations are identical in form to those for the shallow water equations with density replacing
the water depth. The equilibrium quantities can be easily calculated and, when the equilibrium
is disturbed by velocities that are small compared with the speed of sound, the equations can
be linearized. The errors in the linearization may, however, be large near the surface where
the speed of sound and the pressure fall to zero. The velocity eigenfunctions are Gegenbauer
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Figure 10. The velocity field for the Toy star oscillating with the velocity field in mode 3. The
SPH results are shown by the filled symbols and the exact result by the circles.

Figure 11. The SPH frequencies for Toy star eigenfunctions shown by filled circles compared with
the exact results shown by open circles.

polynomials and the density eigenfunctions are Legendre polynomials. To simulate high order
oscillations a large number of particles must be used to ensure that the resolution length is
much smaller than the separation of the modes. If 400 particles are used then modes up to the
twentieth can be simulated with high accuracy. The frequencies are always very accurate but
the errors in the eigenfunctions are less accurate especially near the boundary. The velocity
field for mode 3 is shown in figure 10 after 4 oscillation periods. The agreement with the
perturbation solution is very good. A comparison between the SPH and the exact frequencies
are shown in figure 11 for the first 20 modes. The agreement between theory and computation
is excellent. These results show that the SPH method is able to accurately reproduce rather
delicate and small oscillations in one dimension.

An attractive feature of the Toy stars is that exact non-linear solutions can be found.
For the one-dimensional case with P = Kργ the solution has the form

v = A(t)x, (6.18)
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with

ρ(γ−1) = H(t) − C(t)x2, (6.19)

so that the time-dependent radius of the toy star is
√

H/C. Substitution into the equations of
motion and equating powers of x gives a set of ordinary differential equations for A, H and C.
These can be integrated with high accuracy and compared with direct simulations by SPH.
The agreement between the SPH results and the exact solution is again excellent.

The generalization of Toy stars to 2 and 3 dimensions is straightforward although
the details become more complicated. Solutions can also be found with magnetic fields
(see Monaghan and Price (2004)) who solve the one-dimensional MHD case).

7. Heat conduction and matter diffusion

The efficient solution of the heat conduction equation is fundamental for dissipative processes
since similar techniques can be used for viscous dissipation or matter diffusion. An advantage
of the SPH equations for these dissipative problems, as in the purely mechanical case, is that
they can be written in such a way that they mimic fundamental properties of the system and
allow complicated physics to be handled in a straightforward way. Appropriate forms of these
equations have been derived (Brookshaw 1985, Cleary and Monaghan 1999, Monaghan et al
2005) and applied to a wide variety of heat conduction problems, including the Stefan problem
and the freezing of alloy solutions (Monaghan et al 2005) and problems involving radiative
transfer in the diffusion approximation (Whitehouse and Bate 2004).

7.1. The SPH heat conduction equation

A convenient form of the heat conduction equation without heat sources or sinks is

cp

dT

dt
= 1

ρ
∇(κ∇T ), (7.1)

where T is the absolute temperature, cp the heat capacity per unit mass at constant pressure,
ρ the density, κ the coefficient of thermal conductivity and d/dt the derivative following the
motion. The spatial derivatives can be determined using the results of section 2.3, and the SPH
form of (7.1) is

cp,a

dTa

dt
=

∑
b

mb

ρaρb

(κa + κb)(Ta − Tb)Fab. (7.2)

This equation shows that the contribution of particle b to the rate of change of Ta is positive
if Tb > Ta because Fab � 0, i.e. the heat flows from the hotter element of the fluid to the
cooler element as expected. As mentioned in section 2.3, this fundamental requirement could
not be guaranteed if the second derivatives of the interpolation formula for T were calculated
directly.

Equation (7.2) does not guarantee that the heat flux will be continuous when κ is
discontinuous. Cleary and Monaghan (1999) show from an analysis of the finite difference
case that this problem can be solved by replacing (κa + κb) in (7.2) with

4κaκb

(κa + κb)
. (7.3)

The heat flux is then continuous even with jumps by a factor 103 in κ across 3 particle spacings.
A slightly different κ term, based on similar ideas, gives satisfactory results for jumps in κ by
a factor 109 (Parshikov and Medin 2002). However, because the very simple form (7.3) gives
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excellent results for the normal range of material properties, the final SPH heat conduction
equation is, therefore,

cp,a

dTa

dt
=

∑
b

mb

ρaρb

4κaκb

(κa + κb)
(Ta − Tb)Fab. (7.4)

Cleary and Monaghan (1999) showed that this SPH form of the heat conduction equation had
similar accuracy to finite difference methods and was not sensitive to the particle disorder that
occurs in some SPH calculations. In addition, heat conduction problems with discontinuous κ ,
and with κ varying with T , were accurately integrated. Whitehouse and Bate (2004) studied
heat conduction by radiation in the diffusion approximation obtaining accurate results for test
problems.

If the particles are thermally isolated (so they can only exchange heat amongst themselves)
then (7.2) shows (noting Fab = Fba), that the total heat content∑

a

macp,aTa (7.5)

is constant.

7.2. Heat conduction with sources or sinks

When the system contains point sources or sinks, (7.1) becomes

ρcp

dT

dt
= ∇(κ∇T ) +

∑
k

Qkδ(r − Rk), (7.6)

where Qk denotes the strength of the source or sink and is negative for a sink. Rk denotes the
position of source/sink k and δ denotes a Dirac delta function. The SPH equation corresponding
to (7.6) becomes

cp,a

dTa

dt
=

∑
b

mb

ρaρb

4κaκb

(κa + κb)
(Ta − Tb)Fab +

1

ρa

∑
k

QkζkW(ra − Rk), (7.7)

where the delta function has been replaced by a smoothing kernel, which is consistent with the
smoothing of the original continuum equation and, to ensure that the rate of change of thermal
energy owing to the source is correct, a normalizing factor ζk for source k defined by

1

ζk

=
∑

b

mb

ρb

W(rb − Rk, h), (7.8)

has been introduced. The right-hand side is an SPH estimate of the constant 1 at the position
of the source. From (7.7) the rate of change of thermal energy is

d

dt

( ∑
a

macp,aTa

)
=

∑
k

Qk, (7.9)

as expected.

7.3. Salt diffusion

Denoting the mass fraction of salt by C so that the mass of salt in a mass M of liquid is CM ,
the diffusion of the salt is given by an equation similar in form to the heat conduction equation,
namely,

dC

dt
= 1

ρ
∇(D∇C), (7.10)
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where D is the coefficient of diffusion with dimensions of ML−1T−1. The SPH form of this
equation follows in the same way as for the heat conduction equation. The SPH equation for
the rate of change of the concentration Ca of particle a is given by

dCa

dt
=

∑
b

mb

ρaρb

4DaDb

(Da + Db)
(Ca − Cb)Fab. (7.11)

The combination of D in the SPH equation ensures that the flux of material across an interface
between two materials with different diffusion coefficients is constant. The total mass of salt
is conserved by the SPH equation.

7.4. The increase of entropy

The SPH conduction equation results in entropy increasing in the absence of heat sinks.
If S is the total entropy of the system then

dS

dt
=

∑
a

ma

dsa

dt
=

∑
a

ma

Ta

dqa

dt
, (7.12)

where sa is the entropy/mass of particle a, qa is the heat content/mass of particle a and T is
the absolute temperature. From equations (7.4) and (7.12), with an interchange of labels the
change of entropy with time can be written as

dS

dt
= 1

2

∑
a

∑
b

mamb

ρaρb

4κaκb

(κa + κb)

(
1

Ta

− 1

Tb

)
(Ta − Tb)Fab. (7.13)

Since Fab � 0 we deduce that dS/dt � 0.
When the composition changes there is a further contribution to the entropy. To deduce

this we first divide (7.11) by Ca . If the resulting equation is summed over a, and added to
the same expression with the labels interchanged, the following positive definite quantity is
obtained.

d

dt

∑
a

ma ln Ca =
∑

a

∑
b

mamb

4DaDb

(Da + Db)

(
1

Ca

− 1

Cb

)
(Ca − Cb)

ρaρb

Fab � 0. (7.14)

This quantity is the increase in entropy resulting from composition changes.

7.5. Boundary and interface conditions

There is no need to place a special condition on the gradient of the temperature at the boundary
to satisfy these conditions if SPH is used. If all the boundaries are adiabatic, then the particles
interact amongst themselves and the symmetry of the SPH conduction equation ensures that
the system conserves its thermal energy as shown earlier. If one or more boundary curves have
fixed temperatures, the SPH particles on the boundaries are included in the heat conduction
equation so that the heat transferred to the boundary during a time step can be calculated. After
this is done the temperatures of the boundary particles are set back to the specified boundary
temperatures for the next time step. The heat transferred to the boundary particle can be
calculated from the temperature change. Cleary and Monaghan (1999) noted that near the
boundaries, the SPH interpolation can give errors of a few per cent, and they made corrections
to the density near the boundary to compensate for this. As noted earlier, SPH calculations
do not need special interface conditions. The SPH particles exchange heat and material with
neighbouring particles whether they are of the same or different phases.
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Figure 12. The temperature against the distance from the cooling boundary for a two-dimensional
Stefan problem. The system is periodic in the x direction. The exact results are shown by the solid
line and the SPH results by the solid diamonds. The change of slope shows the interface between
solid and liquid.

7.6. The Stefan problem

An interesting application of SPH is to the Stefan problem where a pure substance is cooled
sufficiently for it to freeze. In the standard treatment of this problem the following condition
is required at the interface:

κ1

(
dT

dy

)
1

− κ2

(
dT

dy

)
2

= ρL
dY

dt
, (7.15)

where L is the latent heat/mass and dY/dt is the rate of change of the position of the interface
(Carslaw and Jaeger 1990). The condition expresses the fact that the difference in the heat
flux on each side of the interface supplies the heat to change the phase. In this formulation the
position of the interface is one of the unknowns.

The SPH treatment of the freezing is very simple. Initially, the SPH particles are assumed
to be liquid and tagged with an integer to denote liquid particles and given the material pro-
perties of the liquid. As heat is conducted from the liquid some liquid SPH particles reach the
solidification temperature Tm. The heat per unit mass q, lost by these particles after this time, is
then stored and their temperatures are kept at Tm. If particle a is in this condition then, when qa

reaches L, the integer tag is changed to that for the solid phase, and the properties of this phase
(thermal conductivity and heat capacity) are assigned to this particle. Between the solid parti-
cles and the liquid particles there is a region where the particles have reached the solidification
temperature but have, not yet had their latent heat fully extracted. An example of the SPH
solution of a one-dimensional Stefan problem is shown in figure 12, and for an axisymmetric
Stefan problem with a heat sink in figure 13 (both taken from Monaghan et al (2005)). The
agreement between the SPH results and the exact result (Carslaw and Jaeger 1990) is excellent.

8. Viscosity

The first use of viscosity in SPH equations was by Lucy (1977) who introduced an artificial
bulk viscosity to prevent a slow build-up of acoustic energy from integration errors in an SPH
simulation. A different, and more effective viscosity, which conserves linear and angular
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Figure 13. The temperature against the radius for the case of freezing is induced by a line
sink in an axisymmetric system. The exact results are shown by the continuous line and the
SPH results by symbols. Despite the particles being on a rectangular grid, the variation of
the temperature is close to radial. Note that the small group of particles which have reached
the freezing temperature but have not yet become ice particles, form a small horizontal line at
a radius of approximately 0.22.

momentum was suggested and tested by Monaghan and Gingold (1983). The results obtained
using this viscosity in a wide variety of shock problems involving gases, liquids and solids
(Libersky and Petschek 1991) and, with a different version for a relativistic gas (Chow and
Monaghan 1997) in one dimension, is in good agreement with the theory. With reference to
shock problems, SPH does not give the widths of shock fronts as accurately as the methods
based on Riemann solvers with similar resolution; however, no current method gives the width
of a shock front accurately, since the width of real shock fronts is only a few molecular mean-
free paths. Typical resolutions in numerical simulations are a factor 104 greater. The key is to
get the pre- and post-shock values correct and SPH is capable of producing these to any degree
of desired accuracy.

In two and more dimensions it is more difficult for SPH to match the accuracy of modern
finite difference codes, but its advantage is that it is independant of the special properties of
the ideal gas equation, which are built into the finite difference codes. Consequently, SPH
can be used when the equation of state is complicated and Riemann solutions are unavailable
(approximate linear solutions could be used but they are unreliable (Quirk (1994))).

The viscosity of real fluids can be implemented using ideas similar to those used for the
artificial viscosity and for heat conduction (Cleary 1998, Cleary and Ha 2002). Applications
have been made to a low Reynolds number flow (Morris et al 1997) and to systems involving
more than one fluid in contact. An alternative approach is to calculate the velocity derivatives
in the viscous term using SPH methods (Takeda et al 1994, Watkins et al 1996, Chaniotis et al
2002). These forms of the viscous stress tensor conserve linear momentum but not angular
momentum. In many industrial fluid dynamics problems, the exact conservation of angular
momentum is not an issue and the work of Chaniotis et al (2002) shows that SPH (together
with a re-meshing strategy) gives excellent results.

8.1. Artificial viscosity

As its name suggests, artificial viscosity bears no relation to real viscosities, but is designed to
allow shock phenomena to be simulated, or simply to stabilize a numerical algorithm. Artificial
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viscosities are often constructed analogously to real gas viscosities, replacing the mean free
path with the resolution length. The Navier–Stokes acceleration equation for viscous flow has
the form

dvi

dt
= − 1

ρ

∂P

∂xi

+
1

ρ

[
∂

∂xk

(
η

(
∂vi

∂xk

+
∂vk

∂xi

− 2

3
δik∇ · v

))
+

∂

∂xi

(ζ∇ · v)

]
, (8.1)

where η is the shear viscosity coefficient and ζ is the bulk viscosity, which is required when
the internal degrees of freedom of the molecules of the fluid are activated during the flow.
These viscosity coefficients are, in general, functions of temperature and density. For a
monatomic gas η ∼ 1

3ρλcs, where λ is the mean free path and cs is the speed of sound.
The viscous terms could be estimated directly using the SPH interpolation formula but,

as in the case of heat conduction, this leads to equations, which do not conserve linear and
angular momentum, and do not guarantee that the viscous dissipation will increase the entropy.
Monaghan and Gingold (1983) devised a viscosity by simple arguments about its form and its
relation to gas viscosity. The viscous term, denoted by �ab is added to the pressure terms in
SPH equations to give

dva

dt
= −

∑
b

mb

(
Pa

ρ2
a

+
Pb

ρ2
b

+ �ab

)
∇aWab, (8.2)

where

�ab = −ν

(
vab · rab

r2
ab + εh̄2

ab

)
(8.3)

and ε ∼ 0.01 is introduced to prevent a singularity when rab = 0 and ν is defined by

ν = αh̄abc̄ab

ρ̄ab

, (8.4)

where, for example, h̄ab = (ha +hb)/2. A further generalization, which has not been explored,
but which gives a higher order viscosity, is to multiply the previous viscosity by any power of∣∣∣∣vab · rab

c̄ab

∣∣∣∣ . (8.5)

The artificial viscosity term �ab is a Galilean invariant and vanishes for rigid rotation. When
two particles approach each other, the artificial viscosity produces a repulsive force between
the particles. When they recede from each other the force is attractive.

The SPH viscosity can be related to a continuum viscosity by converting the summation
to integrals. The x component of the acceleration equation has the viscous contribution

fx =
∑

b

mb

αc̄abh̄ab

ρ̄ab

vab · rab

r2
ab + εh̄2

ab

(xa − xb)Fab. (8.6)

If the εh̄2
ab in the denominator is dropped this integral can be written as a sum of terms similar in

form to those considered in section 2.3. If α, c, h and ρ are constant the continuum equivalent
of fx in two dimensions is

fx = αhc
(

3
8vx

xx + 1
8vx

yy + 1
4vy

xy

)
, (8.7)

where v
y
xy denotes ∂2vx/∂x∂y and vx denotes the x component of the velocity with a similar

notation for the other terms. This shows that the shear viscosity coefficient η = ραhc/8
and the bulk viscosity coefficient ζ = 5η/3. Similar analysis in three dimensions shows that
η = ραhc/10 and ζ = 5η/3.
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If there are rapid changes in the parameters then the same argument used for the case of
heat conduction with discontinuous thermal conductivity can be used. If we define (for two
dimensions)

µa = 1
8αahacaρa (8.8)

and define a new �ab according to

�ab = − 16µaµb

ρaρb(µa + µb)

(
vab · rab

r2
ab + εh̄2

ab

)
, (8.9)

we produce a viscosity term which can be used for real viscosities and maintains the continuity
of viscous stress accurately. This SPH viscosity was proposed by Cleary (1998) and applied
to the simulation of viscous liquids in flow modelling for casting processes (see, e.g. Cleary
and Ha (2002) and the references therein). Cleary determined the coefficient by numerical
experiment and found that coefficient 16 should be replaced by 19.8. In three dimensions
(where the factor 1/8 in (8.8) is replaced by 1/10) the analysis suggests a coefficient of 20.

In the case of shock tube problems, it is usual to turn the viscosity on for approaching
particles and turn it off for receding particles. In this way, the viscosity is used for shocks and
not rarefactions. Unfortunately, in astrophysical calculations, this rule means that the viscosity
is turned on when the density increases in the shock-free regions, for example, when gravity
pulls gas together.

When the viscosity term �ab was first used (Monaghan and Gingold 1983) it was found to
work well for shocks of moderate strength. However, in astrophysical calculations involving
colliding gas clouds, where the Mach number can be very high, it was found that particles from
one cloud could stream between the particles of the other cloud. Generally, this streaming is
limited to a few particle spacings, and is, therefore, not a severe problem; however, it should
not occur at all. To prevent it, an extra term was added to ν which then took the form
(Monaghan 1992)

ν = h̄ab

ρ̄ab

(
αc̄ab − β

h̄abvab · rab

r2
ab + εh̄2

ab

)
. (8.10)

This form of ν, and hence �ab, evolved through various forms starting with the work of
Lattanzio et al (1985) on interstellar cloud collisions. Good results have been obtained with
the choice α = 1 and β = 2. This form of the viscosity, though changed in details, is found
naturally by considering aspects of the dissipative term in shock solutions based on Riemann
solvers (Monaghan 1997). In this case

�ab = −Kvsig(vab · rab)

ρ̄ab|rab| , (8.11)

where K ∼ 0.5. The signal velocity vsig is defined by

vsig = ca + cb − βvab · r̂ (8.12)

where r̂ = rab/|rab| and β ∼ 4. The signal velocity can be interpreted as follows. If the fluid
is at rest we estimate the speed at which a sound wave from a approaches a sound wave from
b as (ca + cb). The extra term represents the change in speed if the fluids at a and b are moving
relative to each other. The fact that this must be a Galilean invariant, and would vanish if they
have the same velocity or rotate rigidly, leads directly to the form shown. This is discussed
further by Monaghan (1997).
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8.2. Viscous heating and the energy equations

Viscosity dissipates the flow and transfers energy from kinetic to thermal. The contribution
to the thermal energy is always positive. Owing to the way in which the SPH viscosity was
derived, viscous dissipation is best obtained directly from the SPH equations. By taking the
scalar product of va and the acceleration equation, multiplying by ma and summing over a,
the viscous contribution to the rate of change of thermal energy can be identified (Monaghan
and Gingold 1983, Monaghan 1997). The final result is the thermal energy equation

dua

dt
= Pa


aρ2
a

∑
b

mbvab · ∇aWab +
1

2

∑
a

ma

∑
b

mb�abvab · ∇aWab. (8.13)

Referring now to the definition of �ab, for example to (8.3), the contribution to the viscous
dissipation of particle a from b can be written as (using the same definition of Fab � 0 as
before)

−
(

αh̄abc̄ab

ρ̄ab

)
Fab(vab · rab)

2

r2
ab + η2

, (8.14)

which is �0. This confirms that the SPH dissipation increases the thermal energy as it should.
In addition to increasing the thermal energy, the viscous dissipation should increase the total
entropy of the system. From the first law of thermodynamics

T
ds

dt
= du − P

ρ2
dρ. (8.15)

In SPH form this becomes

Ta

dsa

dt
= 1

2

∑
b

mb�abvab · ∇aWab (8.16)

and from the previous results the change in the entropy of any particle owing to viscous
dissipation is positive.

8.3. Dissipation and the thermokinetic energy equation

It was shown earlier (section 3) that the thermokinetic equation takes the form

dêa

dt
= −

∑
b

mb

(
Pavb

ρ2
a

+
Pbva

ρ2
b

)
· ∇aWab, (8.17)

where êa = 1
2v2

a + ua . In order to use this equation for shock phenomena it is necessary to
add dissipative terms. Although these could be deduced by beginning with the definition of
ê and SPH equations for the derivatives, it is more convenient to be guided by ideas from
Riemann solvers (Monaghan 1997). Hence, we need to add a dissipative term ϒab to the
pressure–velocity terms in (8.17) where

ϒab = −Kvsig(a, b)(e∗
a − e∗

b)r̂
ρ̄ab

(8.18)

and

e∗
a = 1

2 (va · r̂)2 + ua, (8.19)

where r̂ = rab/|rab|. Replacing the actual kinetic energy with the kinetic term using the
velocity along the line joining the particles a and b guarantees that the contribution to the
thermal energy from viscous dissipation will be positive, and that the entropy will increase
with time (Monaghan 1997). It is often assumed that the constant K and the signal velocity



Smoothed particle hydrodynamics 1743

vsig are the same as in the dissipative term (8.11) in the acceleration equation but that is not
necessary. Starting with the equation for the rate of change of ê

dêa

dt
= −

∑
b

mb

(
Pavb

ρ2
a

+
Pbva

ρ2
b

+ ϒab

)
· ∇aWab, (8.20)

it is possible to deduce the rate of change of thermal energy (Monaghan 1997). This takes the
following form

dua

dt
= Pa

ρ2
a

∑
b

mbvab · ∇aWab + dissipative term, (8.21)

where the dissipative term is∑
b

mb

Kvsig(a, b)

ρ̄ab

(
ua − ub − 1

2
(v · r̂)2

)
|rab|Fab. (8.22)

The terms involving u, namely,∑
b

mb

Kvsig(a, b)

ρ̄ab

(ua − ub)|rab|Fab (8.23)

give heat diffusion. This expression, is a variant on the heat diffusion term described
in section 7.1 and has similar properties. The diffusion coefficient is proportional to
vsig(a, b)|rab|. A heat diffusion conduction term was used in the thermal energy by Lattanzio
and Monaghan (1991) in their discussion of fragmenting molecular gas clouds.

8.4. Reducing artificial dissipation

Artificial dissipation is very successful for handling shocks but it can be too large in other parts
of the flow. For example, artificial viscous dissipation increases the Reynolds number of a
flow, artificially, with the result that, for example, the Kelvin–Helmoltz shear instabilities are
heavily diffused. Balsara (1995) suggested reducing viscous dissipation by multiplying �ab

by the factor

|∇ · v|
|∇ · v| + |∇ × v| , (8.24)

made symmetric, for example, by replacing ∇ · v by the average for the interacting pair of
particles. Colagrossi (2004) found that it is preferable to replace the previous factor by

|∇ · v|ab

|∇ · v|ab +
√

EijEij + 10−4c̄ab/h
, (8.25)

where c is the speed of sound and the rate of strain tensor Eij is defined by

Eij = 1

2

(
∂vi

∂xj
+

∂vj

∂xi

)
. (8.26)

The indices denote cartesian tensors and the summation convention is used in evaluating
EijEij . Colagrossi (2004) found that the replacement of ∇ × v with the term involving Eij

gave improved results for problems involving slightly compressible fluids. A particularly
impressive example being the rotation in two dimensions of a rotating square of water in an
otherwise empty space.

Another very useful approach is to note that the dissipation terms have the same coefficients
K and vsig in both �ab and ϒab. In general, different coefficients, or signal speeds could be
used for the viscous and the thermal energy terms. Furthermore, each particle can have its own
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coefficient determined by the conditions it encounters. Morris and Monaghan (1997) explored
this idea for the artificial viscous terms in gas dynamics where it is desirable to reduce the
viscosity away from shocks. In finite difference calculations this is achieved by switches
based on the first and second spatial derivatives of physical variables such as the momentum
flux. However, spatial derivatives sit uncomfortably with particle methods for which time
derivatives are more natural. The basic problem is like trying to predict the onset of a stock
market crash from the time variation of the market. For shock simulation the coefficient α

in (8.4) or equivalently K in (8.11) should be different for each particle and should change
with time according to the conditions the particle is in, becoming large at shocks, but relaxing
back to a small value when the flow is calmer. A simple way to do this for a typical particle a

is to determine its αa from the equation

dαa

dt
= − (αa − α0)

τ
+ Sa, (8.27)

where τ is a suitable time scale ∝ h/cs, α0 ∼ 0.1 is the ambient value of α, and Sa is a source
term. S should increase as the particle approaches a shock in such a way that α increases to
approximately 1. Morris and Monaghan (1997) discuss a choice of S ∝ ∇ · v and show that
it gives good results. Rosswog et al (2000) take

S = Max(−∇ · v, 0)(2 − α). (8.28)

Not only are the good results for the shocks retained, but elsewhere in the flow the viscosity
is also reduced by approximately a factor of 10. However, in many astrophysical problems,
where a collapse of gas clouds occurs, −∇ ·v can increase without the occurrence of shocks. It
would, therefore, be desirable to relate S to some other quantity related to the change of entropy.

Price (2004a) suggested that the artificial thermal conductivity should also vary with each
particle and proposed a similar equation to that for α but using a source term proportional
to |∇√

u|. In terms of (8.18) it means splitting the dissipative term into a viscous part and
a heat conduction part and using a different K for each. Price obtains improved results for
shock tube phenomena especially near contact discontinuities. In the same way he tested a
dissipation term for the magnetic fields in MHD simulations and found it improved his SPH
simulations. Whether or not the onset of a shock could be predicted more satisfactorily with
higher derivatives is an open question.

9. Applications to shock and rarefaction problems

There have been widespread applications of SPH to shocks in gases, liquids and metals (see,
e.g. Libersky and Petschek (1991), Johnson et al (1996), Monaghan (1997)). There is only
space here to describe some elementary examples from gas dynamics.

The first case we consider is the rarefaction wave. This can be set up by placing SPH
particles in the region −0.5 � x � 0.5 with uniform separation �x and the density ρ = 1.
For this example, we use 200 particles and set γ = 1.4, the initial h = 1.5�x, and the
thermal energy/mass is 2. The SPH acceleration, continuity and thermal energy equation were
integrated. In figure 14 the velocity field for x � 0 is shown. The exact velocity field is shown
by the solid line and the SPH results are shown by solid diamonds. The agreement between
the two is excellent.

We now consider the shock tube used by Sod (1978) as a test for numerical techniques.
The system is one-dimensional with uniform conditions on each side of a diaphragm which
breaks at t = 0. To the left of the diaphragm (x < 0) the conditions are ρ, P, v, γ = 1.0,
1.0, 0.0, 1.4 and to the right (0.125, 0.1, 0.0, 1.4). The evolved system consists of (from the
left), the undisturbed original conditions, a rarefaction, a contact discontinuity and a shock.
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Figure 14. The velocity field for the one-dimensional rarefaction waves from the expansion of
uniform gas initially in the region −0.5 � x � 0.5 is shown. The results for the right half x � 0 of
the domain are also shown. The exact velocity field is shown by the solid line and the SPH results
by the solid diamonds.

Figure 15. The thermal energy for a shock tube where the initial density ratio is 8 : 1. The particles
have equal mass but the spacing is a factor of 8 smaller to the left of the initial diaphragm.
The simulation uses 100 particles to the right of the initial diaphragm and 800 particles to the
left. The exact results are shown by the continuous line and the SPH results by solid diamonds.

Between the shock and the rarefaction the pressure and velocity are constant. The density
and thermal energy change discontinuously at the contact discontinuity. In this simulation the
viscosity (8.3) with (8.10) was used with the coefficients: α = 1 and β = 2. The particles
have equal mass. Since there is an initial discontinuity in all the properties other than the initial
velocity, the density and thermal energy are smoothed at the interface (as in Monaghan (1997)).
Hence to be consistent with the particles having constant mass and the density being smooth,
we must smooth the spacing. Price (2004a) finds that using h, calculated consistently with
the density, according to (4.2) and (4.3) gives better results. The thermal energy is shown
in figure 15 and the velocity field in figure 16. The solid lines show the exact results. The
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Figure 16. The velocity field for a shock tube. The exact results are shown by the continuous line
and the SPH results by solid diamonds. The value of h and the particle spacing becomes smaller
as the gas passes through the shock. The width is, therefore, ∼3 initial particle spacings. Note the
variation in the velocity owing to a slight jump in the pressure at the contact discontinuity.

post-shock values are accurate to within 1%, though the shock fronts are broader than the
comparable Riemann solver shocks. The actual broadening is smaller than the number of
particles across the shock would suggest because, on entering the shock, the particles move
closer together, and h becomes smaller.

10. Applications of SPH to liquids

A liquid such as water is slightly compressible but, for many fluid dynamical problems, it
can be approximated by an artificial incompressible fluid, and this is the basis of most of the
finite difference numerical algorithms for liquids. An alternative approach, better suited to
SPH, is to approximate the liquid by an artificial fluid which is slightly compressible. All
that is required is that the speed of sound be large enough for the density fluctuations to be
negligible (Monaghan 1994). The equation of state most frequently used is due to Cole (1948),
(see also Batchelor (1974)) which, when atmospheric pressure is negligible, has the form

P = B

((
ρ

ρ0

)γ

− 1

)
, (10.1)

where ρ0 is a reference density, γ ∼ 7 and B is chosen so that the speed of sound is large
enough to keep the relative density fluctuation |δρ|/ρ small. Since

|δρ|
ρ

∼ v2

c2
s

, (10.2)

where v is the maximum speed of the fluid we can ensure |δρ|/ρ ∼ 0.01 if v/cs < 0.1.
The speed of sound at the reference density is

c2
s = γB

ρ0
. (10.3)

Therefore, if B = 100ρ0v
2/γ , the relative density fluctuations should be ∼0.01. This requires

an estimate of the maximum speed to be found which is often very easy to do. An example
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of the results that can be achieved with SPH is shown in figure 5, in section 2, where the SPH
calculations of Colagrossi (2004) are compared with those from a combination of level set and
finite difference methods. This figure shows the evolution of liquid which is initially in the
shape of a square and is distorted by a velocity field with spatially varying viscosity.

10.1. Boundaries

Most problems involving liquids also involve boundaries which may be fixed or moving or
they might represent the surfaces of rigid bodies, wholly or partially, within the fluid. These
boundaries may be handled easily by replacing the boundary with particles which interact with
the fluid with prescribed forces. In this way, complicated problems involving fluids interacting
with rigid bodies (which may float) and contained within an arbitrarily moving rigid body
can be treated easily. An example would be the dynamics of a damaged car ferry with water
pouring into the decks containing the cars.

Let fka be the force per unit mass on boundary particle k due to fluid particle a. To ensure
that linear and angular momentum of the entire system is conserved in the absence of external
forces, the force on a due to k must be equal and opposite to the force on k due to a. The
most obvious way to specify the forces would be to use a Lennard–Jones force acting between
the centres of the particles (Monaghan 1994). However, the large variation in the force on
a particle moving parallel to the boundary causes large disturbance to flow near a boundary.
A better procedure is the following (Monaghan et al 2004).

Consider the interaction between a fluid particle a and a boundary particle k where the
local unit normal to the boundary is nk . If the distance measured normal to the boundary, from
the boundary particle to the fluid particle, is denoted by y and the tangential distance by x,
then a suitable form for the force per unit mass on boundary particle k due to fluid particle a is

fka = − ma

ma + mk

B(x, y)nk, (10.4)

where B(x, y) is chosen to ensure that B rapidly increases as y decreases towards zero
(to prevent penetration of the walls) and the variation with x ensures that the force on a
particle moving parallel to the wall is constant. The total force/unit mass on boundary particle
k due to all fluid particles is then fk = ∑

a fka . The force per unit mass on fluid particle a due
to boundary particle k is

fak = mk

ma + mk

B(x, y)nk, (10.5)

so that the forces mk fka = −ma fak are equal and opposite. The total force per unit mass on
fluid particle a from all boundary particles is fa = ∑

k fak .
The equation of motion of a fluid particle a is then

dva

dt
= −

∑
b

mb

(
Pa

ρ2
a

+
Pb

ρ2
b

+ �ab

)
∇aWab + fa. (10.6)

10.2. Motion of a rigid body interacting with a liquid

If the system consists of a liquid containing a rigid body with centre of mass R and centre of
mass velocity V, the equations of motion of this body are first, the equation for the motion of
the centre of mass

M
dV
dt

=
∑

k

mk fk, (10.7)
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where the summation over k only refers to the boundary particles on the surface of the rigid
body. Second, the equation for the angular velocity 
 about the centre of mass which, in the
case of 2D motion, is

I
d


dt
= τ, (10.8)

where I is the moment of inertia (a scalar for the present case) and τ is the total torque about
the centre of mass. The torque can be calculated from the forces on the boundary particles of
the rigid body. We then get

I
dΩ
dt

=
∑

k

mk(rk − R) × fk, (10.9)

where the direction of Ω is perpendicular to the plane of the motion and R is the position of
the centre of mass. The rigid body boundary particles move as part of the rigid body so that
the change in position of boundary particle k is given by

drk

dt
= V + Ω × (rk − R). (10.10)

From (10.6) and (10.7) we get

d

dt

(∑
a

mava + MV

)
= 0, (10.11)

because the pair forces in each term cancel. Linear momentum is, therefore, conserved.
To prove the conservation of angular momentum is a little more complicated. Since it has not
been given in the literature, I now give it here.

The rate of change of the angular momentum of the rigid body about a fixed origin, when
the motion takes place in a plane, is

dJ
dt

= MR × dV
dt

+ I
d


dt
. (10.12)

Using the previous equations the right-hand side becomes

R ×
∑

k

mk fk +
∑

k

mk(rk − R) × fk =
∑

k

mk rk × fk (10.13)

=
∑

k

∑
a

mk rk × fka. (10.14)

The rate of change of the angular momentum of the liquid is∑
a

mara × dva

dt
=

∑
a

∑
k

mara × fak, (10.15)

because the pressure forces give zero net contribution to the total angular momentum of the
fluid as we showed earlier. Adding the rate of change of angular momentum of the rigid body
and the liquid and recalling that mk fka = −ma fak gives∑

k

∑
a

ma(ra − rk) × fka =
∑

k

∑
a

mamk

ma + mk

(ra − rk) × n̂kB(x, y). (10.16)

Now consider the contribution to the rate of change of angular momentum from a liquid
particle a. Suppose this particle lies between two boundary particles k and (k + 1) and suppose
the tangential distance to k is x and to (k + 1) is (1 − x) assuming the unit of length is the
separation of the boundary particles. The contribution from the previous summation is then

xB(x, y) − (1 − x)B(1 − x, y) = 0 (10.17)
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provided B(x, y) = (1 − x)�(y) which is the choice made in the next section. The rate of
change of total angular momentum is, therefore, zero. This proof requires that the masses of
the boundary particles are equal. If they are not equal then the forces must be scaled so that
the torque from neighbouring boundary particles vanishes.

10.3. The boundary force

Monaghan et al (2004) write B(x, y) as a product �(y)χ(x) where the function χ(x) is
defined by

χ(x) =




(
1 − x

�p

)
, if 0 < x < �p,

0, otherwise,

where �p is the boundary particle spacing. This factor ensures that a fluid particle moving
parallel to the wall will always feel the same force because, when it is between any two boundary
particles, the total force from them is constant, regardless of where it lies between them.

The essential condition on the function �(y) is that it increases as y decreases to prevent
penetration of the wall. Monaghan et al (2004) choose a form related to the gradient of the
cubic spline with the argument q = y/h. The gradient of the cubic spline has a maximum at
q = 2/3. For 0 < q < 2/3 they replace the value of the gradient by its maximum. Thus,

�(y) = β




2
3 , if 0 < q < 2

3 ,

(2q − 3
2q2), if 2

3 < q < 1,

1
2 (2 − q)2, if 1 < q < 2,

0, otherwise,

where β is 0.02 c2
s /y. This term is an estimate of the maximum force/mass necessary to

stop a particle moving at the estimated maximum speed. The factor 1/y ensures that a faster
moving particle can be stopped. Other details concerning boundaries, including the treatment
of corners, are given by Monaghan et al (2004). If there is more than one rigid body interacting
with the fluid, then the same methods can be used but now there may be an interaction between
the bodies. There are, therefore, two types of boundary forces, namely, boundary–fluid and
boundary–boundary. The best choice of boundary force is not known.

Other authors (e.g. Colagrossi and Landrini 2003) prefer to replace the rigid boundaries
by ghost particles. This has advantages when the geometry is simple because the use of
ghost particles gives less disturbance to the fluid. However, for complicated geometries, for
example, those describing engine body parts in liquid metal moulding (Cleary and Ha 2002), or
in geophysical flows, boundary particles are easier to use and can be more accurate. A simple
generalization is to allow the boundary particles to have a different interaction with different
fluids. For example, in the case of a dusty gas, the dust and gas SPH particles could interact
with the boundary particles with different forces.

10.4. Applications to rigid bodies in water

The early applications were to bores, dam collapse, wave makers and breaking waves, though
not to a high accuracy because only a small number of particles were used (Monaghan 1994).
Further applications, with comparisons between SPH and experimental results for waves
on beaches were made by Monaghan and Kos (1999), who also studied the generation of
solitary waves by dropping boxes (Monaghan and Kos 2000) or by sliding boxes down ramps
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Monaghan et al (2004). The mechanism by which a rising bubble could sink a ship was
studied using experiments and SPH simulations by May and Monaghan (2003). Colagrossi and
Landrini (2003) describe applications to more than one fluid in dam break (see also Colicchio
et al (2002)). They also considered the rise of bubbles in water and the effect of air on wave
breaking. Their work incorporates a number of improvements for these problems including
a periodic re-initialization of the density field based on moving least squares interpolation
(Belytschko et al 1998), and a generalized Balsara correction (discussed in section 9). Because
of the contrast in density they use the acceleration equation (5.35) with � = 1, and the
convergence equation (5.26).

Sloshing tanks have been studied by Colagrossi (2004) and Colagrossi et al (2003) who
found that the SPH simulations revealed an aspect of the sloshing not noticed previously.
Subsequent specially designed experiments confirmed this prediction.

10.5. Turbulence

There have been limited studies of turbulence using SPH. Studies of wave breaking by
Colagrossi (2004), and Landrini et al (2003) show that detailed properties of the complex
vortices resulting from wave breaking can be recovered using SPH. A fully Lagrangian
turbulence model based on the Lagrangian averaged alpha model (Holm 1999), Mohseni et al
2003) has been worked out (Monaghan 2002, 2004), but no comparisons have been made with
other, more traditional, methods. In the SPH Lagrangian averaged model a typical particle a is
moved with the XSPH smoothed velocity v̂a (Monaghan 1989). This was originally defined by

v̂a = va + ε
∑

b

mb

(vb − va)

ρ̄ab

Wab, (10.18)

where ε ∼ 0.5 is constant and the kernel need not be the same as the kernel used in calculating
the density. This smoothed velocity brings the particle velocity closer to the average velocity in
its neighbourhood and reduces the particle disorder. Moving the particles with the new velocity
does not change the linear or angular momentum. However, if the particles are moving with
the smoothed velocity, energy is not conserved. To conserve it, and bring the algorithm into
agreement with the alpha model of turbulence, we replace (10.18) with

v̂a = va + ε
∑

b

mb

(v̂b − v̂a)

ρ̄ab

Wab. (10.19)

Moving particles with this velocity still conserves linear and angular momentum. In the
continuum limit the previous equation becomes

v̂a = va +
1

2

ε

ρ
∇j

(
ρ∇j v̂a

) (∫
q2W(q, h) dq

)
, (10.20)

where ∇j = ∂/∂xj . To compare with the continuum α model define

αturb = 1

2
ε

∫
q2W(q, h) dq ∼ εh2, (10.21)

so that (10.20) agrees, when ρ is constant, with Holm (1999).
The smoothing algorithm is similar to a discrete time-stepping of a diffusion equation.

For example, the diffusion equation

dv

dτ
= κ

ρ
∇j (ρ∇jv) (10.22)
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can be approximated by the implicit, discrete time stepping

vn+1 = vn + δτ
κ

ρ
∇j (ρ∇jvn+1). (10.23)

If v̂ is identified with vn+1, v with vn, the two equations (10.20) and (10.23) become equivalent.
Because the implicit smoothing is stable it can be used for any value of ε > 0. However,
in practice, this implicit equation must be solved by iteration and several iterations may be
needed if ε > 1.

To complete the dynamics the most convenient approach is to use a Lagrangian
(Monaghan 2002).

L =
∑

b

mb

(
1

2
v̂b · vb − ub − �b

)
, (10.24)

where � is a potential energy. The kinetic energy term can be written as

1

2

∑
b

mbv̂b · v̂b +
ε

4

∑
a

∑
b

mamb

v̂2
ab

ρ̄ab

Wab, (10.25)

from which the canonical momentum of particle a can be calculated. Remarkably, it is
just mava .

The smoothing of the velocity makes the Lagrangian averaged model similar to the large
Eddy simulation method. However, the Lagrangian leads to a different set of equations from
those used in LES simulations and variable resolution length is built into the equations. An
interesting feature of these equations is that, in the absence of any dissipation, they result in
the energy being redistributed so that the energy transfer to short length scales is impeded
(Mohseni et al 2003, Monaghan 2004). Various aspects of these equations are discussed by
Monaghan (2002, 2004). There is a need to apply the SPH turbulence model to standard
problems such as turbulence decay in two- and three-dimensional boxes. An interesting
astrophysical example to study would be the turbulence in toy stars.

Particle methods lead naturally to the idea of studying turbulence along the lines of
statistical mechanics, that is in terms of the velocity and spatial distributions of the particles.
No detailed work on this has appeared in the literature though there has been some analysis of
probability distributions using SPH (Welton 1998, Welton and Pope 1997).

10.6. Multiphase flow

It is straightforward to include more than one fluid in SPH simulations. Each fluid has its own
set of SPH particles with an appropriate equation of state. All the SPH particles are used in the
summations. If the fluids are incompressible, the technique described earlier, where the speed
of sound is artificial, and sufficiently large to make density fluctuations negligible, can be used.
Gravity currents flowing into a stratified fluid have been studied using both experiment and
simulation (Monaghan et al 1999) and air–water interactions have been simulated successfully
by Colagrossi and Landrini (2003). Dusty gas occurs in both astrophysics and in volcanic
outbursts. A formulation of SPH suitable for dusty gas (Monaghan and Kocharyan 1995) is
available but no applications have appeared in the literature, yet.

11. Elasticity and fracture

The equations of elastic dynamics are the acceleration equation

dvi

dt
= 1

ρ

∂σ ij

∂xj
+ gi, (11.1)
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where the stress tensor is given by

σ ij = −Pδij + Sij , (11.2)

Sij is the deviatoric stress and gi denotes the ith component of a body force per unit mass.
In linear elastic theory, the deviatoric stress can be obtained from Hooke’s law with shear
modulus µ

dSij

dt
= 2µ

(
ε̇ij − 1

3
δij ε̇kk

)
+ SikRjk + RikSkj , (11.3)

where

ε̇ij = 1

2

(
∂vi

∂xj
+

∂vj

∂xi

)
(11.4)

and

Rij = 1

2

(
∂vi

∂xj
− ∂vj

∂xi

)
. (11.5)

Alternative laws for the time change of the deviatoric stress (Ellero et al 2002) can be
used without any change in the formalism. The pressure P is normally obtained from the
Tillotson or Mie Gruniessen equation of state. The elastic equations can be converted into
SPH form following the principles already established. In particular, the acceleration equation
becomes

dvi
a

dt
=

∑
b

mb

(
σ

ij
a

ρ2
a

+
σ

ij

b

ρ2
b

+ �ab

)
∂Wab

∂x
j
a

+ gi (11.6)

and the velocity derivatives in the equation for the deviatoric stress and the tensor Rij can be
estimated using the methods in section 2.2.

The elastic dynamical equations were first studied by Libersky and Petschek (1991).
A comprehensive discussion by Randles and Libersky (1996) covers many aspects of elastic
SPH. The elastic equations were combined with an elastic fracture model (Grady and
Kipp 1987, Benz and Asphaug 1994, 1995) in order to study asteroid/comet and planetesimal
collisions (Michel et al (2004) give a comprehensive review of this work). The brittle fracture
model of Grady and Kipp (1987) is based on Griffiths theory of fracture. A set of flaws (cracks)
is assigned to the SPH particles at random, according to the Weibull distribution. Depending
on the flaw, tension may or may not cause it to grow. The growth is associated with the local
damage quantified by a damage parameter D. When D is zero it means that the material
is perfectly elastic and when D increases to 1 the material is completely damaged and the
contribution of the deviatoric stress is zero. The precise way in which the flaws are assigned,
and the equation for D, are discussed in detail by Benz and Aspaugh.

Since material carries its damage with it, Lagrangian models like SPH are uniquely
designed to model fracture. SPH, in particular, gives a good description of the fragments
and provides a natural transition from the continuum to the fragmented state. This method has
also been used to study fracture in and around volcanoes (Gray and Monaghan 2004).

In the initial application of SPH to elastic problems it was noticed that, under tension,
particles tended to clump in pairs. This instability was first analysed by Phillips and
Monaghan (1985) in the context of magneto-hydrodynamics. They showed that the tension
which always exists in magnetic fields can cause an instability. The instability was
re-discovered by Swegle et al (1995) in the context of elastic simulations and called the tensile
instability. Various methods have been proposed to eliminate it from SPH simulations. The
most successful has been the artificial stress method (Monaghan 2000) and Gray et al (2001)
which also includes using the XSPH (Monaghan 1989) smoothed velocity. Others include
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additional stress points (Dyka et al 1997), and the correction of the kernels to give exact
linear interpolation (Dilts 1999, Bonet and Lok 1999, Bonet and Kulasegaram 2000, 2001).
One skeleton in the SPH closet is that the normal SPH elastic equations do not conserve angular
momentum. A spectacular example is a rotating elastic wheel which loses its rotation after
one rotation or less. Hoover et al (2004) show that by using strong XSPH smoothing the
loss of angular momentum could be reduced. Atomic models of elasticity conserve angular
momentum exactly and it would be worth investigating whether an SPH elastic model can be
based on the atomic models with the SPH particles mimicking atoms.

12. Special and general relativistic SPH

The continuum equations for special relativity can be derived from the derivative of the energy
momentum tensor

∂T µν

∂xν
= 0. (12.1)

For a non-dissipative gas of baryons each with rest mass m0, T µν

T µν = (nm0c
2 + nu + P)UµUν + Pηµν, (12.2)

where Uµ is a 4-velocity and c is the speed of light. In the following, the velocity unit
is c and the energy unit is m0c

2. In (12.1) n and u are the baryon number density and
the energy/baryon in the rest frame of the element of fluid they refer to. The metric tensor
ηµν has the signature (−1, 1, 1, 1). The resulting equations can be solved using a variety
of computational algorithms. When the gas is ideal (i.e. P = (� − 1)nu) excellent results
have been obtained using Riemann methods (Marti and Mueller 2003). For more complicated
equations of state, for example, those that are used to mimic heavy ion collisions (Amsden
et al 1978), particle in cell (PIC) methods have been used (Amsden et al 1978). In this latter
case, after the collision, the rapidly expanding pion gas ceases to behave like a continuum fluid
and behaves more like a set of particles in a process called ‘freeze-out’. This situation would
be very easy to simulate using SPH because it handles the transition from continuum fluid to
particles seamlessly.

SPH equations for special relativity can be derived either from the continuum equations
(Mann 1991, Laguna et al 1993, Chow and Monaghan 1997) or from a Lagrangian (Monaghan
and Price 2001). The Lagrangian is

L = −
∫

T µνUµUν dr, (12.3)

or

L = −
∫

n(1 + u) dr. (12.4)

The SPH formalism can be set up in a selected frame, conveniently called the computing frame.
In this frame the baryon number density is

N = nU 0 = nγ = n/
√

(1 − v2). (12.5)

Using standard SPH interpolation but replacing the mass mb for SPH particle b by the
number of baryons νb, Monaghan and Price (2001) show that the Lagrangian becomes

L = −
∑

b

νb

√
(1 − v2

b)(1 + ub), (12.6)
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with

N(r) =
∑

b

νbW(|r − rb|). (12.7)

The Lagrangian equations then give the acceleration equation

d pa

dt
= −νa

∑
b

νb

(
Pa

N2
a

+
Pb

N2
b

)
∇aWab, (12.8)

where the canonical momentum pa is given by

pa = νa

(
1 + ua +

Pa

na

)
. (12.9)

This equation is identical to that obtained from the continuum equations by Chow and
Monaghan (1997). To apply the SPH equations to strong shocks it is necessary to add
dissipative terms. The dissipative terms for the non-relativistic case can be chosen by analogy
with the actual viscosity and heat conduction of a gas. However, in the relativistic case there
are no accurate relativistic dissipative terms (if they existed they would involve relativistic
fields) to act as a guide The approach of Eckart (1940), and Landau and Lifshitz (1993) gives
dissipative terms which are unstable (Hiscock and Lindblom 1985), while Carter’s approach
fails to correctly describe the non-relativistic gases (Olson and Hiscock 1990). Chow and
Monaghan (1997), therefore, based their dissipation terms on those chosen for Riemann
problems which, in the SPH form, are similar to those worked out by Amsden et al (1978)
by considering baryon scattering. These dissipation terms are very effective and give a degree
of accuracy comparable to methods based on Riemann solvers. The disappointing early SPH
calculations of Mann (1991) and Laguna et al (1993) can be attributed to their poor choice
of artificial viscosity. No attempt has yet been made to solve these problems with h and N ,
calculated consistently as described earlier for h and ρ.

The general relativistic equations for fluid dynamics in a specified metric can also be
obtained from a Lagrangian. The resulting SPH equations (Monaghan and Price 2001) differ
from those of Siegler and Riffert (2000) which do not conserve momentum. The shock
calculations of Siegler and Riffert (2000) show unphysical jumps at the contact discontinuity.
These are due to the lack of heat conduction in the dissipative terms. At present no satisfactory
dissipative terms have appeared in the literature. One obvious approach would be to use the
signal velocities found for Riemann solvers, then construct dissipative terms along the lines of
those used by Chow and Monaghan (1997).

13. Prospects for the future

The features of SPH which make it an effective computational algorithm are ultimately due
to the fact that it can be derived from a Lagrangian and has the conservation properties of
a Lagrangian system. As a result, the conservation of momentum and energy together with
the approximate invariant of the circulation follow naturally. However, SPH also conserves
composition, that is, each particle carries its composition unchanged unless the material the
particle represents undergoes chemical transformations. This property of carrying composition
unchanged has not been fully exploited despite its importance in both industry and astronomy.
In the latter case the extent to which elements are fully mixed in clusters of stars is known
from observation, but has not been studied with simulations.

Another attractive feature of SPH is that the resolution adjusts smoothly to changes in the
density, but there is no reason, other than computational efficiency, why the resolution could
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not be changed in response to steep local gradients in other quantities, for example, temperature
gradients. Preliminary steps have already been taken. These are:

• Direct splitting Kitsionas and Whitworth (2002).
• Adjustment of h and particle position Børve et al (2001).
• Regridding of the particles Chaniotis et al (2002).

All of these have defects which may be overcome. The first has not been tested for
splitting and merging in problems where the split–merge rule depends, for example, on the
temperature gradient, nor has it been tested for liquids with a stiff equation of state where
density perturbations may lead to large pressure changes. The second is computationally
intensive, however, that may be the price one has to pay for a better algorithm. The third has
not been extensively tested with the split–merge rule based on a variety of gradients and, in
current formulations, leads to excess diffusion, but this can be expected to be greatly reduced
in the future.

To achieve a robust SPH algorithm for splitting and merging, it might be useful to reflect
on what happens in nature. For example, when a gas moves into a region of high temperature
the atoms smoothly ionize, producing more particles, then smoothly recombine if they enter
a cooler state. This is exactly the process that would be natural for SPH and it could be
implemented by allowing a particle to split, but placing the new particles close together so the
effect on the flow will initially be negligible. The original particle, now less massive, could
be tagged to provide a nucleus for merging. It mimics the role of the ion in the ionized gas
example. The flow would gradually spread the new particles because of their slightly different
velocities. The merging could occur by allowing the split particles to be attracted to the tagged
particles. This would be a continuous process similar to the way ions and electrons in an
ionized gas combine when cooled.

The next class of software advances would be the development of more efficient strategies
for handling very low Mach number flows. These are required for industrial, geological
and oceanographic hydrodynamic problems, and for simulating the dynamics of elastic
materials. Recent work (Hu and Adams, preprint (2005)) has produced accurate and robust
SPH algorithms for multi-phase flow including surface tension effects involving three fluids,
but the maximum density ratio of the fluids is 100, which is an order of magnitude less than the
air–water density ratio. This work improves on that of Colagrossi and Landrini described in
this review. If the efficient strategies can be found then the low Mach number flows in geology
could be handled efficiently. At present, the most straightforward application of SPH is in the
volcanic outbursts as these are often close to the speed of sound. An implicit code would enable
SPH codes to be devised for plate tectonics. In marine engineering we could look forward to
simulations of water–metal impact leading to breakage and providing information about the
stability of ships, especially those containing dynamically significant moving parts, as in a car
ferry.

Within the category of software development we mention two, the first being concerned
with MHD problems. We can expect significant advances in the next few years as the technique
of Børve et al (2001) is made more efficient, and that of Price and Monaghan (2004a) is
improved. The second is concerned with the multi-scaling problems, where calculations at the
atomic level are linked to macroscopic dynamics. Many researchers have noted that SPH allows
a seamless transition from the continuum to the fragments in problems involving fracture and
splashing fluids. It is natural, therefore, to predict that SPH will provide an effective approach
to multi-scaling simulations.

Finally, it is worth noting that apart from the advances in software there have been
significant advances in hardware as well. New chips (FPGA), in particular, can be programmed
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to implement the SPH summations in hardware. This will lead to SPH simulations which are
extremely fast and will make previously difficult problems trivial.
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