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Efficient Neighbor Search for Particle-based Fluids
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Abstract

Lagrangian particle-based animation is a popular strategy for simulating complex phenomena as
fluids. Due to its inherent mesh-less nature the set of neighbor particles within a specified range
must be efficiently found.

In this paper we propose Cell Indezring a novel approach for searching approximate neighbor
particles necessary for efficient fluid simulation using SPH. Instead of storing particles into a
fixed 3D grid or a hash map, we encode their index and coordinates into a key. The list of
keys is then sorted using linear time radix sort. A simple traversal using H-mask can quickly
accumulate approximate neighbors without problematic cache misses of Spatial Hashing, large
memory requirements of full 3D grids or O(nlogn) time complexity of kd-trees. Furthermore
we can achieve sub-cell precision by using larger H-masks, while having only constant factor
slowdown. Using H-mask can substantially increase the precision of Spatial Hashing or 3D grids,
however more cache misses or larger memory requirements arise.

We have demonstrated our approach within a standard SPH based fluid simulation.

Mathematics Subject Classification 2000: 1.3.5, 1.3.7
Additional Key Words and Phrases: Neighbor Search, Cell Indexing, H-Mask, Multi-Phase
Smoothed Particle Hydrodynamics

1. INTRODUCTION

Physically based animation of complex natural phenomena is an attractive topic
among the computer graphics research. Simulation methods for rigid and de-
formable solids are being coupled with various fluid simulation strategies. For
both Eulerian [13; 4; 24] and Lagrangian approaches [20; 31] unified solid-fluid sim-
ulation techniques has been proposed. However, still a number of issues related to
stability, accuracy, realistic boundary conditions, performance etc. arise. Recent
graphics hardware allows huge parallelization of many time consuming problems,
thus simulation algorithms has to be adapted.

Generally fluid simulation techniques solving full 3D Navier-Stokes equations
can be categorized as Fulerian and Lagrangian. In Eulerian approaches governing
equations are evaluated on a fixed mesh (usually a 3D grid), whereas Lagrangian
methods can be both mesh-based or mesh-less. In both Lagrangian strategies mesh
or particles are not fixed to the domain, but are advected with the fluid. This can
simplify governing equations, see section (3) and allows virtually unlimited sim-
ulation space. Beside these advantages, it is usually complex to extract smooth
boundary representation of interfaces, correctly handle interface tension in small
features as bubbles and droplets, perform complex remeshing (mesh-based tech-
niques) or alternatively efficiently find neighbor (closest) particle pairs (mesh-less
techniques). Beside full Navier-Stokes simulations, several ”shallow water” tech-
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niques exists, where fluid interface is simulated using wave equations. However, in
combination with Navier-Stokes equation they can achieve quite realistic results.[36;
17]

In this paper we focus on Lagrangian particle-base simulation of viscous fluids
using Smoothed Particle Hydrodynamics (SPH), see section (3). It is a mesh-less
approach, where all physical quantities are sampled on particle locations. The
influence of each particle is only local' thus it is essential to find the set of neighbor
particles. Since this highly affects further calculations of fluid dynamics it becomes
usually the bottleneck of the overall animation. In section (4) we have extended
the well known Spatial Hashing for varying particles support length, see subsection
(4.1) and developed a novel neighbor search algorithm Cell Indezxing, see subsection
(4.2), fixing several issues of previous methods.

2. RELATED WORK

It is beyond the scope of this article to give an extensive overview of the fluid
simulation problematics, therefore we focus here only to related Eulerian and mesh-
less Lagrangian works.

2.1 Eulerian Grid-based Methods

Since introducing to graphics community the full 3D simulation of Navier-Stokes
equations, intensive research has been done to improve their the famous Eulerian-
based MAC-grid method [12].? Later Stam proposed the popular extension of basic
MAC by using a semi-Lagrangian integration scheme and iterative solver of the
pressure equation.[32] Fedkiw et al. developed a Particle Level Set method for
accurate interface tracking.[11; 10]

Advanced simulation of melting and flowing of highly viscous, non-Newtonian
fluids were presented in [4]. Later Carlson et al. used distributed Lagrangian
multipliers [5] for animating the interplay between rigid bodies and viscous in-
compressible fluids. Direct two way coupling between mesh-based thin solids and
Eulerian-based fluids was done in [13; 24].

Hong and Kim [16] use a Volume Of Fluid (VOF) indicator function to simulate
a two-phase fluid flow and bubbles with surface tension forces. Losasso et al. ex-
tended the particle Level Set Method for interface tracking of multiple interacting
fluids [25] and presented a cutting-edge fluid simulator. A generalized solution to
modeling hydraulic erosion is presented by Benes et al. in [3]. Recently Chen-
tanez [6] developed a method for animating incompressible liquids with detailed
free surfaces using Lattice-Based Tetrahedral Meshes.

Octrees has been used to speed-up grid-based simulations [23]. Further comb-
ing 2D height-fields with a full 3D Navier-Stokes simulation near the interface al-
lowed efficient animation of large bodies of water.[17]. Recently controlling fluid
motion while preserving details was successfully applied to both grid-based Lattice-
Boltzmann Method (LBM) and Lagrangian Smoothed Particle Hydrodynamics
(SPH)[35].

1Within a support distance from particles location
2Nevertheless a full 3D fluid simulation in CFD engineering has been already well established
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2.2 Lagrangian Particle-based Methods

Particle-based simulations were introduced to graphics community by Reeves. These
animations of simple fountains and sprays were presented by uncoupled particles,
which is insufficient for realistic fluid simulation.

Later Desbrun et al. [9] used Smoothed Particle Hydrodynamics® (SPH) to couple
particles and simulate highly deformable bodies including viscous fluids. Miiller et
al. further popularize SPH technique by animating a pouring water into a glass
at interactive rates [27]. By averaging viscosity, they came with a simple model of
multi-phase fluids. [28].

Since computing pressure forces only locally andusing explicit integration, their
model is suitable only for compressible and near incompressible fluids. For stiff
fluids incompressibility is achieved by taking very small time steps.* Premoze et al.
gained incompressibility by solving the pressure globally (using Poisson equation)
with an iterative linear equation solver. [29] This technique is referred as Moving
Particle Semi-implicit (MPS).

Clavet et al. describe a SPH based interactive technique for simulating visco-
elastic and plastic fluids by connecting particles with temporary springs [7]. Unified
particle-based SPH model for coupling solids and fluids has been presented in [20]
and later in [31]. Recently a successful approach of coupling SPH and Particle
Level Set has been done by Losasso.[22]. Promising results are shown by Harada
when moving the entire SPH calculation to GPU and precalculate the influence of
solid boundary particles.?. Their were simulating 60k particles at nearly interactive
rates (17 fps)[14; 15].

Further simplifications has been proposed by Adams et. al [1] by adaptively
sampling particles and allowing them to have various sizes. For sparse particles
Kipfer et al. developed a novel technique for computing neighbor particles [21].

3. MULTI-PHASE SMOOTHED PARTICLE HYDRODYNAMICS

Inspired by Monte-Carlo integration Smoothed Particle Hydrodynamics (SPH) was
initially developed by Lucy and Monaghan for simulating flow of interstellar gas
within Astrophysics[26]. Unlike traditional mesh-based methods (FEM, FDM)
where physical quantities are evaluated on a fixed Mesh (grid), SPH belongs to
mesh-less methods, where calculated values are approximated from neighboring
points. Particles have no fixed topology, thus are suitable for complex dynamic
phenomena as fluids. Due to the particle-based Lagrangian nature of SPH, mass
conservation is trivially satisfied and convection of the substance is inherent.

3.1 Smoothing with Particles

Given a set of particles (interpolation points) r; carrying values A; = A(r;) of field
quantity A we can approximate A(r) at arbitrary point r by a convolution with a

3originally developed by TLucy and Monaghan

4Mainly due to stability issues

5Commonly solid-fluid boundary conditions are solved by fixing particles to the solid volume near
the surface. This increase the number of particles and lower down performance
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radial symmetric smoothing kernel W (r, h) as [26; 28]

Alr) m AxW = /, AW (|r — 1’|, h)dr' ~ Z V;A;W(r —rj,h) (1)

and further replaced by summation over neighbor particles having finite volume
V; = mj/p;j. Mass of particles is a constant property, thus volume is defined as
the ratio between mass m; and density p;. The convolution smoothing kernel must
have the following properties

/W(r,h)dr =1 A I{% W (r,h) = d(r) (2)

where h is the support length of the kernel, i.e. the distance to which particle affects
other particles. Notice in limit case h < 0 kernel W (r, h) must be the Dirac delta
function d(r). Making the kernel second order differentiable we can further express
gradient VA(r) and laplacian V2 A(r) of field function A(r) at arbitrary point as

Afr) = 3 V;A;W(r —rj,h)
VA(I') = Zj V}AjVW(I'—I‘j,h) (3)
V2ZA(r) = > ViA; VW (x —xj, h)

This properties greatly simplify further calculations of Lagrangian-based fluid dy-
namics.

3.2 Evaluating Fluid Properties using SPH

The well known Navier-Stokes governing equations of a simple Newtonian iso-
thermal and incompressible fluid can by expressed in Eulerian form by two conser-
vation laws, i.e. the conservation of mass (continuity equation) and the conservation
of momentum (momentum equation)

0
a—f = —pV-.v (continuity eq.)
ov 9 (4)
P\ o +v-Vv|] = =Vp+uV°v+pg (momentum eq.)
Lagrangian (particle based) formulation can be obtained using the material deriva-
tive %‘t‘ = %—?+V~Vq.6 as
Dp
e - VY
D . (5)
pD_‘tI — —VP+MV2V+pg (: F press +Fv1sco _+_Fext)

Assuming constant mass of all particles total mass of fluid is always conserved. we
can thus completely omit continuity equation from further calculations. Viewing
the momentum equation as Newton’s second law (f = ma), i.e. we only need to

6Since particles move with the fluid the convective term v - Vq is not present
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calculate forces acting on particles. Notice the right hand side of the momentum
equation can be thus expressed as a sum of pressure F P, wiscosity F Vi and
external F ¢ force fields. This external force field further contains all other force
fields acting on fluid (e.g. interface tension F " or gravity F&rav)

Agsuming a finite volume of particles, we get the relation between total force
f; acting on i-th particle and respective force field, by integrating the force field
over the particles volume, setting F; = F(r;) and using SPH approximation, see
equation (3) as

fi = /F(I‘)dl‘ ~ /‘/;FZW(I‘ - I‘j,h) = ‘/zFZ /W(I‘ - I‘i,h) = V;FZ (6)

Fluid Properties. Assuming p; = m;/V; density can be approximated using SPH
as well. Further pressure P; occurred at i-th particle is described by Tait’s equation

[2]
):ijW(ri—rj,h) Py = ke ((ﬁ)7—1> (7)

Po

Using blindly the SPH approximation for pressure force £"*** and multiphase vis-

cosity force fiViSCO violates the action-reaction principle, since the forces are not
symmetric (f; # —f;). Various symmetrization approaches exists among the SPH
literature (see [30; 26]) however we adapt here the simplified formulation by Miiller
[28],8 where the pressure and viscosity is only averaged.?

fipress — ViFipress - _ Z V’V‘ %VW press (ri —rj, h) (a)

visco visco Hi + Hj visco
£y = ViFyisco = ZVV = (v — ) VW YO (e; — k) (B) ()
Ciint — Z VJCmt VQW poly (I‘ —rj h) (C)

Notice particle volume V; = m;/p; uses approximate density p; computed in equa-
tion (7).
. int
Interface tension force f;™ acts along the normalized gradient n = ‘gg—t‘ of
the interface color field C''"*(r) and is proportional to its curvature x; = V2C;nt.
Interface color field values C;™* at particle locations are approximated from particles
interface color values ¢," using SPH, see equation (8) (c). Interface tension force

is thus defined as

vciint
|vCiint |

fimt — —O'mtlﬂ',ini _ _a,mtVQCimt

9)

7An simpler alternative is the ideal gas equation P; = k(p — po)
8See [9] for alternative formulations
9This gives more stable simulation, with the cost of some energy dissipation
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Smoothing Kernels. In our computations we use the following smoothing kernels
adapted from [27] and its derivatives (see appendix (6)).

315 (h? —r?)3 0<r<h A r=]|r|
poly — ST
WP (r, h) = 647h? { 0 otherwise
15 [ (h—r1)? 0<r<h A r=]r|
press _ 9 > >
w (r,h) = Thb { 0 otherwise (10)
; 15 (- 44 1 0<r<h A r=]r
VI1sCOo — 2 3 h2 2 — =
w (r, h) 27 hb { 0 ' otherwise

3.3 Simulation Overview

Our simulation loop contains three main steps, namely the Neighbor Search, Force
Computations and the Time Integration. We use explicit time integration, thus the
overall simulation can be categorized as explicit and force-based, see algorithm (1).

In: support length h, subdivision factor H and delta time At

function SPH(h, H, At)
1:  NEIGHBOURS ¢~ SEARCHNEIGHBORS(h, H)

2: foreach P; in PARTICLES do

3 pi < 0; VC;+0; V2C;«0; f;« £ /* initialize */

4 foreach P; in NEIGHBOURS(P;) do /x accumulate density */

5 pi < pi +m;WPW(r; —r; h)

6 end

- P; « k8% ((p%)7 — 1) /* calculate pressure */
: foreach P; in NEIGHBOURS(P;) do /* accumulate forces */

o f; £ = ViV, 25 VIV Pess(r, — 1, ) /* (= £ */

10: £« f + Vz‘/] #H‘Z’#J‘ ('Uj _ UZ')V2WViSCO(I‘Z' -rj, h) /% (: fivisco) */

11: VCi < VCi+ Ve, VWP (r; —r;, h) /* (= VOt %/

12: V20 = V2C; + Ve M V2W PN (r; —rj, h) /% (= V20 nt) */

13: end

w6 e fi—omvioR TO /* (= f£int) %/

15:  end

16: foreach P; in PARTICLES do /* Leap-Frog */

17: vV, &V + At;:l_

18: r; < r; + Atv;

19: end

end

Algorithm 1: Our fluid simulation step using SPH
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As shown in algorithm (1), searching for neighbor particles (i.e. building the
list of close particle pairs) is done in SEARCHNEIGHBORS(h, H), where h is support
length and H is the subdivision factor, see section (4). Next the force computation is
done by iterating over all particles (lines 2-15). First density p; is accumulated from
neighbors (lines 4-6), then pressure P; is calculated (line 7) and finally total force
acting on particle is accumulated (lines 8-14). Time integration is performed using
standard second order ”Leap-frog” scheme (lines 16-19). This looks similar to the
simple first-order explicit Euler scheme, however when the velocity is initialized®
correctly as v; = v;(to — %At) the code perfectly mimic the following ”Leap-frog”
update rules (see equation (11))

2 2 m; 1 (11)
ri(t+ At) < ri(t — At) + Atv,(t + §At)

Due to the explicit nature of our method, only small time steps are allowed to
maintain stability and accuracy. Formally, i-th particle can be integrated with a
maximal time step At; according to the Courant condition of convergence'!

At; < At° = aﬁ At; = min (Atc,ai> (12)
c Vil
where ¢!? is speed of sound in the fluid and a = 0.3 is the Courant number. Stability
(for fast moving particles) can be further increased by choosing A¢; as in equation
(12).

Choosing the global time step as At = min;{At;} is safe, but obviously inefficient.
Since usually only a few particles will need this minimal time step, we can rather
integrate each particle using its own time step At;. Similarly as Desbrun [9] to
synchronize integration of particles we choose a user defined simulation frame time
At™ and find smallest positive number n; satisfying At; = A¢™@* /2" < At; and
set particles time step to At,. When the time step changes, we must further correct
the position of the particle as

(At;,new)2 - (At;,old)2
Smi

r;<r;+ f; (13)

Boundary Conditions. In SPH context solid-fluid boundary conditions are usu-
ally modeled by simply attaching ghost particles!® near the boundary inside the
solid object. this is usually a natural choice for deformable and melting solids.
However for pure rigid objects one can precompute the influence of ghost particles
(with respect to the body frame) and store it into a distance field omitting further
calculations, thus speeding up whole simulation [14].

Interface Extraction. Realistic looking visualizations can be achieved by extract-
ing a smooth interface representation. Beside using Marching Cubes to extract the

10The initialization routine trivial and is omitted here

1 Combating numerical errors time step should be even smaller.
12\Material property, i.e. user defined constant

I3For static objects their positions are not integrated
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zero-level of the implicit density function p(r) = 0 several attempts has been done.
We refer interested reader to [1] for further details.

4. NEIGHBOR SEARCH

Similarly to n-body problem, searching for close particle pairs is a crucial prob-
lem in almost any particle-based fluid simulation. Since this usually becomes the
bottleneck of the simulation time, efficient algorithms are necessary. In the SPH
context each particle affects only a set of neighbor particles which lie within its sup-
port distance h. Formally we define for each particle p; its set of neighbor particle
indices N;(h) as

Ni(h)={j | Iri—rj|<h} (14)

Beside the naive and inefficient O(n?) ”all-pair-test”, several algorithms usually
based on spatial subdivision and fast approximate neighbor search has been pro-
posed [34; 21; 18; 8]. Here we extend the usual Spatial Hashing, see subsection (4.1),
technique for faster SPH simulation and propose a novel approach Cell Indexing,
see subsection (4.2), based on indexing non-empty cells in a virtual subdivision
grid.

4.1 Extended Spatial Hashing

A common approach to optimize the ”all-pair-test” is to subdivide the smallest en-
closing axis aligned bounding box (AABB) into a 3D grid of cells with size h. For
each particle with position r; = (z,y, z) we use its relative coordinates to AABBs
minimal corner ¢ min = (T min; Ymin, Zmin) and calculate its (positive) cell coordi-
nates cell(z,y,z,h) = (i,7,k), see equation (15). Into each cell (i, ], k) we could
store indices of particles with the same cell coordinates. Depending on the AABB
and cell size ratio, such voxelization obviously lead to huge memory consumption.'4

Teschner et. al [34] overcome this problem by introducing spatial hash function
hash(i, j, k) which naturally maps particle cell coordinates to a bucket in a hash
map. This enables grid size to be virtually unlimited and does not store empty
cells. The hash function is defined as

(=] == (== - o

hash(i, j, k) = (i-p1 xor j-ps xor k-p3) mod M

where p; = 73856093, p, = 19349663 and p3 = 83492791 are large prime numbers
and M is the size of the hash map. Using cell and hash functions, insertion
of a particle is O(1) thus building the data structure for approximate neighbor
search is linear. To find neighbors N;(h) for i-th particle we need examine only
particles from all (26 in 3D) surrounding cells. Assuming the particle distribution
is approximately even, each cell contains only a constant number of particles and
thus overall neighbor search is near linear.

However in the SPH framework particles can cluster'®. This leads usually to
larger bucket sizes'® or slower hashing. To reduce this problem we can naturally

cell(z,y,z, h)

Mstoring empty cells is not optimal
Ssimulating compressible (near incompressible) fluids with strong pressures
16We assume all buckets have fixed size as speed-up
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hash particles into smaller cells but then we need to examine particles from more
neighboring cells.

Formally let h' = h/(2H + 1) be the subdivided cell size and H the subdivision
factor. When calculating approximate neighbors of particle in cell (4, j, k) we need
to examine particles from all (i + s, j + ¢, k4 u) cells, where (s,t,u) € Mgy(h). The
set H-mask Mg (h) contains relative coordinates of all neighbor cells which are not
completely outside the support of processed cell, see figure (1) (d)

My (h) = {(s,t,u) | |[(W's,hWt,h'u)| <h A s,t,ue{—H,---,+H}} (16)

Finally notice, that larger masks'” completely contains smaller masks, i.e. G <
H = Mg(h) C Mg(h). This allows simulations where particles have different
support length. Indeed, assuming cell size is h' and particles support is h we select
H-mask for this particle according to H = |h/h'] + 1'%.

Hashing naturally introduce cache misses, thus examining all Mg (h) can even
slow down the process'®. With larger H size of hash map (M) must increase to
avoid numerous collisions. It can be estimated experimentally.

4.2 Cell Indexing

Inspired by the staggered grids [21] we have developed a novel approach for searching
approximate neighbor particles in a linear time, trying to avoid several disadvan-
tages of the spatial hashing. Similarly to other grid methods we first calculate the
AABB of all particles and use further only their relative coordinates to AABBs
minimal corner ¢ ;,. For each particle we define it’s key(n,i,J, k) as

2f > N
key(n,i,j, k) =n +2li 4 21+75 4 ol +7+K . where 27 > |B,/h] (17)
2K > |B,/h|

where n is index of particle, N is the number of particles, B,, B, and B. are
dimensions of bounding box, (4,7, k) = cell(x,y, z) are cell coordinates and I, J, K
and are arbitrary constants 2° depending on the size of the AABB and cell size h.
Notice, that function key(n,i,j, k) encode its parameters to a unique key. Thus
given a key ¢ we can compute unique (n, i, j, k).2!

1D Case. Suppose a 1D case show in figure (1) (a), where the keys reduce to
key(n,i) = n+27i. Given two arbitrary particles m and n with keys key(m, i,,) <
key(n,i,) their cell coordinates also satisfy i,, < i, and vice-versa. After sorting
all keys, we can thus efficiently access particles with increasing cell coordinates.
Given a key ¢ index of associated particle is m = ¢ mod 27.

When building the neighbor set N(h) for particle p which lies in cell i we need
to examine only particles in cells>® ¢ — 1, i, i + 1. This can be simply achieved

17with larger subdivision factor H

18Naturally this ration must be reasonable small

19Storing all indices of H-neighbor cells leads to more memory usage and slowdown
20ysually 16 or 32

21Particle index is n = ¢ mod 27, cell coordinates are i = (¢/27) mod 27, -

22 Assuming size of cell is h
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Fig. 1. Cell Indexing principles. In (a) 1D case is shown. The left most column represents
1D space divided into cells. Dashed columns symbolize indices of particles. Each row thns
contain all particles with equal -coordinate. Dotted lines show the ordering of sorted
kevs. In (b) 2D extension is illustrated. Notice the third dimension depicts particle index,
thus has no geometrical meaning. In (¢) 1D searching principle is shown. The search
follows key ordering, thus (in 1D) the i-coordinate as well. Simple 1-mask (cells with
thick outline) is show and respective non-empty cells 11,1, ¢4 (light-gray cells). In (d)
H-mask is extended to 2D showing its non-empty cells and their corresponding location
in the mask. Since the presented 2-mask is (in 2D) equal to the full x5 mask, the henefits
of H-mask is not obvious from the picture, however for larger H (or in 30)) one can clearly
see, that some "corner” cells of the full (2H+1)x(2H+1) square mask will be omitted in
respective “spherical” H-mask.

by storing indices K(i_1), K(i) and K(ipy) * of first>* keys in non-empty cells
iy <4 < isr- We examine all keys (associated particles) in cell iy only when
iy =i — 1 starting with key at index K(i—-y). Similarly we examine cell 1, only
when iy = i+ 1. We are processing particles in i-th cell until the respective key
maps coordinates of this cell. i.e. for each key ¢ must hold [q/2"| = |ax)/2'].
Assuming the maximum number of particles inside one cell is bound, this traversal

2310(§) is index of key in list of all keys
ey in cell 1 with the smallest particle index
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is O(n). However when simulating particles with SPH this upper bound is not
guaranteed, but fortunately in average case there are only few particles in one
cell. To overcome particle clustering problem?® we can choose the cell size h' =
h/(2H +1), where H is a subdivision factor depending on the fluid properties. When
searching for neighbors we need now to examine cells iy <i_pgy1 <+ - <i - <
ivp—1 < i+pm and thus store 2H + 1 key indices K(i_g), - K(7), -, K(i1 1), what
slows down the traversal by a constant factor O(H) per iteration. The algorithm
thus stays linear O(HN).

2D and 3D Case. The extension to 2D and 3D is not obvious, see figure (1) (b).
In 2D when key(m,in,jm) < key(n,iy, j,) then j,, < j, while the order of i,, and
in is non-decreasing only if j,, = j, (j-coordinates are equal). When calculating
neighbors for particle in cell (7, j) we need to store all 9 key indices K(is,jt) | s,t €
—1,0,41 and examine non-empty cell (is, ;) only when (iz,j:) = (i + 5,5 + ¢).
Furthermore in 3D we need 27 indices K(is, jt, ku) | 8, t,u € —1,0,+1 and examine
non-empty cell (ig,ji, ky) only when (is,j:,ky) = (0 + 8,5 + ¢,k +u). We could
generalize this approach for cell subdivision taking s,t,u € —H,---,+H or even
better using H-mask where (s,t,u) € Mg (h). The traversal is therefore in average
case linear with complexity O(|M g (h)|N).

Sorting Keys. To make the overall neighbor search algorithm linear, we must
sort keys in linear time. As pointed by Terdiman [33] even a set of floating point
numbers can be quickly sorted in O(n) using radix sort. Since we have encoded
indices of particles into their keys2® we can use radix sort and have correct indices
after sorting.

5. IMPLEMENTATION AND RESULTS

As shown in figure (2) three different simulations of the classical Dam-break test
has been performed. Increasing the stiffness and surface tension coefficient, fluid
behaves less compressible thus more realistic. In all three scenarios we used 1600
particles and set the rest density p, = 1000kg/m?, mass m; = 0.0012kg, support
length h = 0.05m viscosity u; = 50Ns/m? and used a fixed time stepping with
delta time At = 0.002s. The surface tension coefficient o varied from 0.6 (top), 1.4
(mid) to 2.2 (bottom). We set stiffness k8 to 20Nm/g (top), 40Nm/g (mid) and
70Nm/g (bottom). Boundary conditions were handled by inelastic particle-plane
collision resolution with wet friction. Simple particle-to-plane projection is used to
prevent overshooting. State variables were integrated using explicit ”Leap-Frog”
integration scheme with fixed time stepping. The simulation has been performed
on Mobile P4 1.7 GHz with GeForce 4 Go.

To test our approach we run each test case with three different neighbor search
methods, namely the naive O(n?) all-pairs-test”, Spatial Hashing and our Cell
Indexing.?™ and measured the average time spent for searching neighbors and inte-
gration of one time step. These results are summarized in table (I).

25Too many particles in one cell
26Keys are usually 64-bit numbers, 16 bits for each (n,i, 5, k) component
270ther (tree) methods are left a the subject of future work
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Fig. 2. The classical Dam-break test within our SPH simulation environment. The three
different test sunulations demonstrate various fluid behavior with respect to changing stiff-
ness and surface tension parameters. Top row describes the behavior of more compressible
fiuid with less attraction between particles, middle row corresponds to higher constants
and finally the last row represents a stiffer fluid with stronger surface tension. Notice the
snapshots are not taken in equal time steps.

All-Pairs | Spatial Hashing | Cell Indexing | Dynamics
Test Case 1 1.95 s D42 s 0,25 = 0,25 =
Test Case 2 1,97 s 0,45 5 0.27 s 0,24 s
Test Case 3 1,93 s 0,43 s 0,27 5 1,28 =

lable 1, Dam-break testa, 1600 Particles. Average time spent in one simulation time step in each
test case.

6. CONCLUSION AND FUTURE WORK

We have proposed and demonstrated Cell Indexing as a novel approach for searching
approximate neighbor particles within a SPH base fluid simulation. Due to cache
misses, Spatial Hashing has been slightly outperformed by our method, without
large memory requirements of Full 3D voxelization. Our approach is inherently
linear, thus will outperform hierarchical methods®® for larger data sets. We have
introduced a H-mask to achieve speed-up by searching on a sub-cell resolution.

> ;
28They usually need O(n logn) to rebuild.
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This seamlessly fits into Cell Indexing a extends even Spatial Hashing.??

Due to the immense computational power of current graphics hardware, we will
investigate in the future the possibility of implementing our approach on GPU.
Further we will try to involve spatial and temporal coherence into our method and
allow it to use multi-resolutional fluid as been done in[19] The inherent compress-
ibility of SPH can be decreased by solving the pressure implicitly. Therefore we
will explore methods as MPS[29] and solve the pressure equation iteratively.

Appendix - Smoothing Kernel Derivatives

e L e I
V2W PN (r, h) = % { (()hQ —r2)(7r? — 3h2) 256:5152 AN r=]r|
VW e h) = _% { éh B T)Q% (O)tie:visz h =i
V2T Vo (p, ) = % { (()h —r) 25(3:‘5152 A r=]r|

(18)
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