
Fluid Flow for the Rest of Us: Tutorial of the Marker and Cell Method in

Computer Graphics

David Cline David Cardon Parris K. Egbert ∗

Brigham Young University

Abstract

Understanding how fluid is modeled for computer graphics can be
a challenge. This is especially true for students who have not taken
courses in vector calculus and differential equations, or are rusty
in these subjects. Beginning students tend to get bogged down in
the notation of the Navier-Stokes equations and the inevitable dif-
ficulties that arise when trying to discretize them. Despite this fact,
we will attempt to show that, given a little instruction, building a
complete fluid simulator is actually fairly straightforward.

1 Introduction

In the fall of 2001 I attempted to implement a fluid simulator, with
only limited success. In retrospect, I can see that there were really
two reasons for my lack of success. First, my math background had
not prepared me for the notation of the Navier-Stokes equations,
and second, the implementation details of the fluid flow systems
described in the literature were scattered over a lot of “previous
work”.

A couple of years later, in the Winter of 2004, a friend of mine,
Dave Cardon, implemented a liquid simulator as a class project.
While he was better prepared for the task than I was, he still found
it difficult to ferret out all of the details needed to implement a fluid
simulator.

After both of our experiences, we realized that implementing a
fluid simulator is really not that difficult once all the details have
been tracked down. It was understanding the notation and track-
ing down the details that was the hard part. At that point, we de-
cided to write what we wish we’d had to begin with, a detailed
tutorial describing both the Navier-Stokes equations, and some of
the most recent advances in fluid simulation for computer graphics.
To that end, we have written this paper, which is organized as fol-
lows: First, the mathematical notation used by the Navier-Stokes
equations is described. Then the Navier-Stokes equations are pre-
sented, giving what we hope is an intuitive explanation of each of
the terms. Next, we describe a fluid simulator similar to the one
described in [Foster and Fedkiw 2001]. After the basic simulator
has been described, we show how to extend it to achieve different
effects, including making the fluid respond to moving objects as in
[Foster and Fedkiw 2001], the simulation of fluids with variable vis-
cosity [Carlson et al. 2002], viscoelastic fluid simulation [Goktekin
et al. 2004], and the simulation of smoke [Fedkiw et al. 2001]. Fi-
nally, we discuss how to track the surface of a fluid using level sets.

2 Understanding the Navier-Stokes Equa-

tions

2.1 Fluid Flow as a Velocity Field

In this paper we model fluid flow as a velocity field, a vector
field that defines the motion of a fluid at a set of points in space.

∗cline@rivit.cs.byu.edu, the dave@byu.edu, egbert@cs.byu.edu

Throughout our discussions, we will use the term u to refer to
this velocity field. To simulate a flowing fluid, we evolve u over
time, and move marker particles (or some other representation of
the fluid, such as a level set) through space as dictated by u. Since
we cannot store velocity information at every point in space, veloc-
ities are stored at discrete grid points, and velocities between these
samples are found by interpolation. The rules used to evolve u are
based on the Navier-Stokes equations, which will be presented in
section 2.3.

2.2 Mathematical Notation

In this section, we introduce the mathematical notation used to de-
fine the Navier-Stokes equations. In our descriptions we will use
bold to indicate vector quantities, and itallics to indicate scalar
quantities. For each term, we will try to give an intuitive expla-
nation of what means, and then explain how we evaluate it numer-
ically in our application. Although the terms described in this sec-
tion may appear challenging, keep in mind that in every case they
boil down to adding or subtracting a few values from a small neigh-
borhood in the grid.

The partial derivative (∂). The derivative of a function of one

variable f (x) can be written
d f
dx . If a function is defined over multi-

ple variables, such as g(x,y,z), it has a partial derivative, or simply
partial, for each variable over which the function is defined. To
distinguish the partial from the standard derivative, a stylized “d” is
used in the notation. For example, the partial of g with respect to y

is written
∂g
∂y

, and is defined as the limit of a central difference:

∂g(x,y,z)

∂y
= lim

h→0

g(x, y+h, z)−g(x, y−h, z)

2h

This is almost identical to the definition of the derivative found in
any Calculus text. One way to evaluate the partial on a discrete
grid is to drop the limit from the above expression and use an h of
one grid cell width. The denominator of the expression can also be
ignored for our application, leaving the central difference

∂g(x,y,z)

∂y
= g(x, y+1, z)−g(x, y−1, z) (1)

Besides the central difference, it is sometimes convenient to use a
forward or a backward difference to evaluate the partial:

∂g(x,y,z)

∂y
= g(x, y+1, z)−g(x, y, z) (2)

∂g(x,y,z)

∂y
= g(x, y, z)−g(x, y−1, z) (3)

Sometimes we want to take the partial of one of the compo-
nents of a vector-valued function. We will use subscripts to
denote the different components of the function. For example,
∂ux

∂y
= ux(x,y + 1,z)− ux(x,y− 1,z) is the partial derivative of the

x component of u in the y direction evaluated using central differ-
ences.

The gradient operator (∇). The gradient operator is a vector of
partial derivatives. In three dimensions, it is defined

∇ =

(

∂

∂x
,

∂

∂y
,

∂

∂ z

)

.

The gradient of a scalar field, ∇g, is a vector field that tells how the
scalar field changes spatially. In our application, we will calculate
the gradient of the pressure field using backward differences:

∇g(x,y,z) = (g(x,y,z)−g(x−1,y,z),
g(x,y,z)−g(x,y−1,z),
g(x,y,z)−g(x,y,z−1))

(4)

The divergence of a vector field (∇·). Since the gradient op-
erator is just a vector of partial derivatives, it can be used in a dot
product with a vector field. For instance, consider the vector field
u. The dot product of the gradient operator with the vector field u
produces the scalar field

∇ ·u =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂ z

where ux, uy and uz are the x, y and z components of u. This use
of the gradient operator is called the divergence of a vector field
because it describes the net flow out of or into points in the vector
field. Rather than finding the divergence of points within the vector
field, however, we will use forward differences to find the net flow
out of or into a small cube within the vector field:

∇ ·u(x,y,z) = (ux(x+1,y,z)−ux(x,y,z)) +
(uy(x,y+1,z)−uy(x,y,z)) +
(uz(x,y,z+1)−uz(x,y,z))

(5)

The Laplacian operator, (∇2). The Laplacian operator is the
dot product of two gradient operators. This dot product produces
a scalar quantity which is the sum of the x, y and z second partials
(the derivatives of the derivatives):

∇2 = ∇ ·∇ =
∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂ z2
.

Applying ∇2 to a scalar field produces another scalar field that
roughly describes how much values in the original field differ from
their neighborhood average. This property becomes readily appar-
ent when we look at the terms of equation 6. To evaluate the lapla-
cian, we subtract a backward difference from a forward difference at
the point of interest. This formulation keeps the calculation within
a neighborhood of three grid cells:

∇2g(x,y,z) = g(x+1,y,z) + g(x−1,y,z) +
g(x,y+1,z) + g(x,y−1,z) +
g(x,y,z+1) + g(x,y,z−1) − 6g(x,y,z).

(6)

To apply ∇2 to a vector field, we apply the operator to each vector
component separately, resulting in a vector field that gives the dif-
ference between vectors in the original field and their neighborhood
average:

∇2u(x,y,z) = (∇2ux(x,y,z), ∇2uy(x,y,z), ∇2uz(x,y,z)). (7)

2.3 The Navier-Stokes Equations for Incompressible

Flow

the Navier-Stokes equations are a set of two differential equations
that describe the velocity field of a fluid, u, over time. They are
called differential equations because they specify the derivatives of
the velocity field rather than the velocity field itself. The first of the
equations arises because we are simulating incompressible fluids,
and is given by

∇ ·u = 0. (8)

Simply put, this equation says that the amount of fluid flowing into
any volume in space must be equal to the amount flowing out. Note
that this is just the divergence of the velocity field. During simula-
tion, we will solve a pressure term to satisfy equation 8.

The second of the Navier-Stokes equations is a little more com-
plicated. It specifies how u changes over time, and is given by

∂u

∂ t
= − (∇ ·u)u − 1

ρ
∇p + ν∇2u + F. (9)

The second equation accounts for the motion of the fluid through
space, along with any internal or external forces that act on the fluid.
The terms of this equation can be described as follows:

∂u
∂ t

The derivative of velocity with respect to time.
This will be calculated at all grid points contain-
ing fluid during each time step of the simulation.

−(∇ ·u)u The convection term. This term arises because
of the conservation of momentum. Since the ve-
locity field is sampled at fixed spatial locations,
the momentum of the fluid must be moved or
“convected” through space along with the fluid
itself. In practice, we will use a “backward par-
ticle trace” method to solve this term.

− 1
ρ ∇p The pressure term. This term captures forces

generated by pressure differences within the
fluid. ρ is the density of the fluid, which is al-
ways set to one in our simulations, and p is the
pressure. Since we are simulating incompress-
ible fluids, the pressure term will be coupled
with equation 8 to make sure the flow remains
incompressible.

ν∇2u The viscosity term. In thick fluids, friction
forces cause the velocity of the fluid to move
toward the neighborhood average. The viscos-
ity term captures this relationship using the ∇2

operator. The variable ν is called the kinematic
viscosity of the fluid, and it determines the thick-
ness of the fluid. The higher the value of ν , the
thicker the fluid.

F External force. Any external forces, such as
gravity or contact forces with objects are in-
cluded in this term. In practice, the external
force term allows us to modify or set velocities
in the grid to any desired value as one of the sim-
ulation steps. The fluid then moves naturally, as
though external forces have acted on it.

3 The MAC Grid

This section describes how to discretize the velocity and pressure
fields used in the Navier-Stokes equations. We use the staggered
Marker And Cell (MAC) grid first published in [Harlow and Welch
1965], which has become one of the most popular ways to simulate
fluid flow in computer graphics.

The MAC grid method discretizes space into cubical cells with
width h. Each cell has a pressure, p, defined at its center. It also has
a velocity, u = (ux,uy,uz), but the components of the velocity are
placed at the centers of three of the cell faces, ux on the x-min face,
uy on the y-min face, and uz on the z-min face, as shown in figure
1. Staggering the position of the velocity in this manner tends to
produce more stable simulations than storing the velocity at the cell
centers.

In addition to spatial grid cells, a set of marker particles (points in
space) is used to represent the fluid volume. As the simulation pro-
gresses, the marker particles are moved through the velocity field
and then used to determine which cells contain fluid.

ux

uz

uy

p

h
y

x

z

Figure 1: A MAC grid cell. Velocity components, ux, uy and uz, are
stored on the minimal faces of the cell. Pressure, p, is stored at the
cell center.

3.1 Putting the MAC Grid in a Hashtable

One of the main disadvantages to using a fixed MAC grid structure
is that u is not defined outside the grid bounds. To get around this
problem, we use a dynamic grid. Grid cells are created as needed,
and destroyed when no longer in use. The cells are stored in a hash
table which is keyed by the cell coordinates. We use the hash func-
tion presented in [Worley 1996] and used by [Steele et al. 2004]:

hash = 541x+79y+31z. (10)

[Teschner et al. 2003] define a similar hash function that could also
be used. Using a hash table version of the MAC grid frees the fluid
to go anywhere in the environment, and reduces memory require-
ments so that the number of grid cells is proportional to the amount
of fluid being simulated rather than the entire volume of the simu-
lation space.

Despite the trouble to which we have gone to make the simu-
lation space unbounded, we allow simulations to specify explicit
bounds on where the fluid can go. This makes it easy to define
walls for the fluid to collide against, and prevents fluid particles
from flying off into infinity.

4 Simulation

This section describes our basic simulation method, which is essen-
tially the same as the one presented in [Foster and Fedkiw 2001],

except that we use a dynamic MAC grid instead of a static one. Fig-
ure 2 shows several screen shots captured from the basic simulator
described in this section.

Figure 2: Screen shots from the basic fluid simulator. The upper
left image shows the grid cells that define the velocity field. In
the other images, the fluid particles that track the liquid volume
are shown. The particles are rendered in OpenGL as billboards
(pictures of spheres) rather than actual 3D spheres for efficiency.

4.1 The Basic Simulator

The MAC grid method simulates fluid flow by periodically updat-
ing the velocity field. Marker particles are moved through the ve-
locity field to keep track of where the fluid is in space. The actual
sequence that our simulator uses to do this is shown in figure 3.
The remainder of this section will detail each of the steps in the
algorithm.

Step 1. Calculate the time step. To avoid unnecessary compu-
tation, we would like to use a time step that is as large as possible,
but if it is too long, the flow may look unnatural or become unstable.
We use a heuristic called the CFL condition to determine what ∆t
to use. For our application, the CFL condition states that ∆t should
be small enough so that the maximum motion in the velocity field
is less than the width of a grid cell. In other words, ∆t ≤ h/|umax|
where h is the width of a grid cell and umax is the maximum velocity
in u.

In practice, the strict CFL condition can be relaxed somewhat as
long as there is a big enough buffer zone around the cells containing
fluid. [Foster and Fedkiw 2001] and [Enright et al. 2002] got away
with time steps as much as five times larger than dictated by the
CFL condition. Our implementation finds ∆t by scaling the CFL
time step by a user-specified constant, kc f l :

∆t = kc f l

h

|umax|
. (11)

∆t is then clamped to lie between user-specified min and max time
steps.

Step 2. Update the grid. Before the velocity field can be ad-
vanced, the list of cells containing fluid must be updated, and a
buffer zone of air must be created around the fluid so that the fluid

Basic Fluid Dynamics Algorithm

1. Calculate the simulation time step, ∆t (equation 11).
2. Update the grid based on the marker particles (figure 4).
3. Advance the velocity field, u.

3a. Apply convection using a backwards particle trace.
3b. Apply external forces.
3c. Apply viscosity.
3d. Calculate the pressure to satisfy ∇ ·u = 0.
3e. Apply the pressure.
3f. Extrapolate fluid velocities into buffer zone (figure 7).
3g. Set solid cell velocities.

4. Move the particles through u for ∆t time.
4a. If ∆t extends beyond the next displayed frame time

Advance particles to the next displayed frame.
Display frame and repeat step 4a.

4b. Move particles through u for the remainder of ∆t.

Figure 3: Fluid dynamics algorithm

will have a place to flow to during the next time step. Note that the
velocities from the previous time step are needed to update the ve-
locity field, so we can’t simply throw away the old grid and create
a new one. Instead the current grid must be updated. To do this, we
identify which grid cells currently contain fluid, and then iteratively
create a buffer zone around the fluid cells big enough to accomodate
any flow that might occur during ∆t time.1 Finally, any cells that
are no longer needed are removed from the grid. In our implemen-
tation, each grid cell has a “cell type” field to determine whether
the cell contains fluid, air, or is part of a solid object. We also use
an integer field called “layer” to help with some of the simulation
steps that build outwards from the fluid into the air buffer in layers.
The complete algorithm that we use to update the grid is presented
in figure 4.

Step 3. Advance the velocity field. After the grid has been
updated, we advance the velocity field by ∆t. Some of the steps
required to advance the velocity field cannot be done in place, and
thus require an extra copy of the velocity field data. Our solution
is to store a temporary vector in each grid cell. We found this be
easier and more memory efficient than keeping two synchronized
copies of the hash table grid.

Step 3a. Apply convection using a backwards particle trace.
The velocity field is convected using the backwards particle trace
method described in [Stam 1999]. A backwards particle trace starts
at the location for which we want to update the velocity field, x =
(x,y,z). A virtual particle is traced from x backwards through u for
−∆t time, arriving at point y. The velocity at x is then replaced
by the current velocity at point y. Note that this step cannot be
done in place, so we use the temporary vectors in the cells to store
intermediate values, and then copy the temporary values to u after
all of the particles have been traced.

The easiest way to trace point x through the velocity field is
to use the Euler step method, which simply evaluates the veloc-
ity at x and then updates the position of x based on this velocity
(i.e. y = x+∆t u(x)). Unfortunately, the Euler step method can be
rather inaccurate because the velocity field is not constant. A more
accurate method, which we use, is called Runge-Kutta order two

1In practice, the buffer zone should be at least 2 cells in width to avoid

some odd interpolation artifacts related to the staggered grid representation.

Dynamic Grid Update

set “layer” field of all cells to −1

// update cells that currently have fluid in them
for each marker particle, P

if the cell, C, containing the center of P does not exist
if C is within the simulation bounds

create C and put it in the hash table
set the cell type of C to “fluid”
C.layer = 0

else if C is not part of a solid object
Set the cell type for C to “fluid”
C.layer = 0

// create a buffer zone around the fluid
for i = 1 to max(2,dkc f le)

for each liquid or air cell, C, such that C.layer == i−1
for each of the six neighbors of C, N

if N already exists in the hash table
if N.layer == −1 and N is not solid

set the cell type of N to “air”
N.layer = i

else
create N and put it in the hash table
N.layer = i
if N is in the simulation bounds

set the cell type of N to “air”
else

set the cell type of N to “solid”

delete any cells with layer == −1.

Figure 4: Algorithm to update the dynamic grid.

interpolation (RK2). The idea behind RK2 is to take half an Euler
step, and then use the velocity at this intermediate location as an
approximate average over the whole time step:

y = x+∆t u

(

x+
∆t

2
u(x)

)

. (12)

Since the MAC grid stores the components of the velocity at dif-
ferent spatial locations, a separate particle must be traced for each
component of u. In addition, the staggered grid makes interpolating
the velocity field more difficult (a separate trilinear interpolation is
required for ux, uy and uz). Our simulator performs the interpola-
tion by scaling the location to be interpolated by the reciprocal of
the cell width, 1/h. It then shifts the scaled location so that the de-
sired data element can be treated as if it were located at the minimal
cell corners. For example, uy(x,y,z) is found by interpolating from
the grid coordinates (x/h−0.5, y/h, z/h−0.5).

While the details of the particle trace and component interpo-
lation may seem trivial, we have found these two concepts to be
some of the hardest for implementers to conceptualize and put into
code. For this reason, we include pseudocode for these operations
in figure 5.

Step 3b. Apply external forces. After the velocity field has
been convected, the next step is to add external forces. In the case
of gravity, the simulation adds the vector ∆tg to the velocities in the
grid, where g = (gx,gy,gz) is the gravitational force defined for the

// Trace a particle from point (x, y, z) for t time using RK2.
Point traceParticle(float x, float y, float z, float t)

Vector V = getVelocity(x, y, z);
V = getVelocity(x+0.5*t*V.x, y+0.5*t*V.y, z+0.5*t*V.z);
return Point(x, y, z) + t*V;

// Get the interpolated velocity at a point in space.
Vector getVelocity(float x, float y, float z)

Vector V;
V.x = getInterpolatedValue(x/h, y/h-0.5, z/h-0.5, 0);
V.y = getInterpolatedValue(x/h-0.5, y/h, z/h-0.5, 1);
V.z = getInterpolatedValue(x/h-0.5, y/h-0.5, z/h, 2);
return V;

// Get an interpolated data value from the grid.
float getInterpolatedValue(float x, float y, float z, int index)

int i = floor(x);
int j = floor(y);
int k = floor(z);
return (i+1-x) * (j+1-y) * (k+1-z) * cell(i, j, k).u[index] +

(x-i) * (j+1-y) * (k+1-z) * cell(i+1, j, k).u[index] +
(i+1-x) * (y-j) * (k+1-z) * cell(i, j+1, k).u[index] +
(x-i) * (y-j) * (k+1-z) * cell(i+1, j+1, k).u[index] +
(i+1-x) * (j+1-y) * (z-k) * cell(i, j, k+1).u[index] +
(x-i) * (j+1-y) * (z-k) * cell(i+1, j, k+1).u[index] +
(i+1-x) * (y-j) * (z-k) * cell(i, j+1, k+1).u[index] +
(x-i) * (y-j) * (z-k) * cell(i+1, j+1, k+1).u[index];

Figure 5: Pseudocode for functions to trace a particle through the
velocity field, get the velocity at a point in space, and determine
an interpolated data value at a real-valued grid location. The large
expression in “getInterpolatedValue” is just the trilinear interpola-
tion formula. Note that in practice some of the grid cells requested
in this routine may not exist. An actual implementation of “get-
InterpolatedValue” should drop terms associated with non-existant
cells, and then divide the result by the total weight associated with
the remaining terms. (For example, the weight for cell(i+1, j, k)
is (x-i)*(j+1-y)*(k+1-z).) In our simulator, MAC cells store point-
ers to all of the seven neighbors used by “getInterpolatedValue”
and a flag telling whether all of these interpolating neighbors exist.
This allows the routine to bypass hashtable lookups and individual
checks to see if the neighbors exist in most instances.

simulation. Once again, external force is only applied to velocity
components that border fluid cells.

Besides adding simple body forces such as gravity, the external
force step can be used as a versatile tool to create different flow ef-
fects. Later we will describe how to use this step to make spouts
and fountains, enhance swirling motions in the flow and create vis-
coelastic effects.

Step 3c. Apply viscosity. We solve the viscosity term by di-
rectly evaluating ∇2u as in equation 7, and then adding ∆tν∇2u to
u. As in the case of convection and external force, we only apply
viscosity to the components of u that border fluid cells. In addition,
only components of u that border fluid cells are allowed to take part
in the computation of ∇2u, so that some of the terms in equation 6
are omitted for cells on the fluid border. Note that as with convec-
tion, the algorithm cannot apply viscosity in place, so once again
the temporary vectors are used to store intermediate values.

Step 3d. Calculate pressure. At this point, we have a velocity
field that does not satisfy equation 8, but we still have to apply the
pressure term. What we would like to do is set the pressures in fluid
cells so that the divergence throughout the fluid will be zero. For
any given fluid cell, we could alter its pressure to satisfy ∇ ·u = 0.
Doing this would change the divergence of the neighboring cells,
however. To make all of the fluid cells divergence free after pressure
has been applied, we need to solve for all of the pressures simulta-
neously. This gives rise to a large, sparse linear system with one
variable for the pressure of each cell containing fluid. The system
can be written as follows:

A P = B (13)

where A is a matrix of coefficients, P is the vector of unknown
pressures for which we want to solve, and B is a vector based on
the divergence the velocity field after step 3c.

The values in A are defined as follows: each fluid cell, Ci, is
assigned a row in A. The coefficient corresponding to the Ci in that
row, aii, is set to minus the number of non-solid neighbors of Ci.
For all liquid neighbors of Ci, the coefficient in row i is set to 1.
Other coefficients in row i are set to zero.

As an example of how to set values in matrix A, consider the
hypothetical cell, C10, shown in figure 6. C10 has six neighbors, two
air cells, two solid cells, and two fluid cells, C9 and C21. Note that
only fluid cells are numbered, since other cells do not go into the
matrix. With this information, we can fill in row 10 of the matrix.
A10,10 is set to -4 (negative the number of non-solid neighbors of
C10). A10,9 and a10,21 are set set to 1. All other values in row 10 are
set to zero.

C10

air

solid

C9

air

C21

solid

Figure 6: A hypothetical cell, C10, and its neighbors. For clarity,
cells are shown as dots rather than cubes.

The values of vector B in equation 13 are calculated using a mod-
ified version of ∇ · u (equation 5) in which velocity components
between fluid cells and solid cells are considered to be zero. In
addition to the divergence term, we explicitly subtract the pressure
contributions of air cells since they are not included in the matrix
coefficients. This leaves

bi =
ρh

∆t
(∇ ·ui) − ki patm (14)

where bi is the i-th entry in B, ρ is the density in celli, h is the
cell width, ∇ ·ui is the modified divergence just described, ki is the
number of air cells neighboring celli, and patm is the atmospheric
pressure. In matrix form, the example system just described looks
something like



















...

...
. . . 1 −4 . . . 1

...

...





































...
p9

p10

...
p21



















=



















...

...
ρh
∆t (∇ ·u10)−2patm

...

...



















Our simulator uses a fairly standard implementation of the conju-
gate gradient method to solve equation 13 for the vector of unknown
pressures. We believe that any method designed for sparse matrices
will probably work well, and recommend downloading one of the
many free sparse matrix solvers available online instead of coding
one from scratch. (Creating a good sparse matrix solver may be a
larger project than the rest of the simulator combined!)

Step 3e. Apply pressure. Pressure is only applied to the ve-
locity components in u that border fluid cells but not solid cells.
Air cells are considered to be at atmospheric pressure and have a
density of one. The velocity u(x,y,z) is updated by

unew(x,y,z) = u(x,y,z)− ∆t

ρh
∇p(x,y,z) (15)

where h is the cell width, ρ is the density of the cell, and ∇p(x,y,z)
is the pressure gradient evaluated using equation 4.

Step 3f. Extrapolate fluid velocities into surrounding cells.
Once the pressure has been applied, the velocity field conforms to
the Navier-Stokes equations within the fluid, but velocities outside
the fluid volume need to be set. We find these velocities using a
simple extrapolation method that propagates the known fluid ve-
locities into the buffer zone surrounding the fluid. Figure 7 gives
the algorithm that we use to extrapolate the velocities. A better,
but more complicated extrapolation method is described in [Enright
et al. 2002].

Extrapolation of Fluid Velocities

set “layer” field to 0 for fluid cells and −1 for non fluid cells

for i = 1 to max(2,dkc f le)
for each cell, C, such that C.layer == −1

if C has a neighbor, N, such that N.layer == i−1
for velocity components of C not bordering fluid cells, u j

set u j to the average of the neighbors of C
in which N.layer == i−1.

C.layer = i

Figure 7: Algorithm to extrapolate fluid velocities into the buffer
zone surrounding the fluid.

Step 3g. Set the velocities of solid cells. To prevent the fluid
entering solid objects, we set velocity components that point into
solid cells from liquid or air cells to zero. Velocity components that
point out of solid cells, or that lie on the border between two solid
cells are left unchanged.

Step 4. Move the marker particles through the velocity field.
After the velocity field has been advanced, the marker particles
can be moved. Since ∆t does not necessarily coincide with frame
boundaries, the particles should not always be advanced by ∆t,
however. There are two cases to consider. If the current time step
does not include the next displayed frame, we advance the parti-
cles by ∆t. If, on the other hand, the current time step includes the
next displayed frame, we advance the particles to the next displayed
frame, and then repeat until ∆t time is exhausted. In both cases, we
use RK2 interpolation to advance the particles (equation 12).

4.2 Extensions to the Basic Simulator

At this point we have finished describing the basic fluid simulator.
If you are implementing a fluid flow system based on this tutorial, it
would be a good idea to get the basic simulator that we have just de-
scribed working as a first milestone, then proceed to the extensions
presented in later sections. All of the extensions build directly on
the framework of the basic simulator, and can be programmed in-
dependent of one another. They will be presented in the following
order:

• Adding fluid sources and sinks to the simulator is described
in section 5.

• A method to allow the fluid to respond to moving objects is
described in section 6.

• Section 7 explains how to to simulate fluids with variable or
high viscosity.

• A techiniqe to animate viscoelastic fluids such as jello or liq-
uid soap is presented in section 8.

• Section 9 explains how to modify the simulator to animate
smoke instead of liquids.

• Finally, section 10 describes how level sets can be used to
create a believable liquid surface.

5 Fluid Sources and Sinks

A simple addition that can be made to the simulator is the ability to
have fluid sources and sinks. With this capability, simulations are
not constrained to have a fixed amount of fluid.

Sources. Fluid sources introduce fluid into the simulation. We
support two types of sources, blob sources and spout sources.

A blob source is nothing more than a group of fluid particles
that is added to the simulation at a specified time with a specified
initial velocity. Note that the initial fluid state can be thought of as
a set of blob sources which are introduced at the beginning of the
simulation.

Spout sources allow fluid to be sprayed into the simulation as if
from a nozzle. We implement spout sources using a planar object
(e.g. a circle or rectangle) from which fluid particles emerge with
a specified speed, s. A planar spout source is positioned in space,
and the velocity of cells that the spout intersects are set to point in
the direction of the spout normal, ns, with magnitude s at the begin-
ning of each time step. At regular time intervals, fluid particles are
created over the entire area of the spout. The time interval between
adding particles is d/s, where d is the desired particle spacing and
s is the spout speed. Note that particle creation times may not co-
incide exactly with time steps. To remedy this problem, we add
particles only at the beginnings of time steps and move them along
the velocity field as needed to correspond to the exact time when
they should have been introduced into the simulation.

Sinks. Just as fluid sources introduce fluid into a simulation, fluid
sinks take it away. Sinks are even easier to implement than sources.
Our simulator handles fluid sinks by specifying “sink” cells that
always contain air. Since air cells are always set to atmospheric
pressure, the fluid will naturally flow into these cells. After each
time step, fluid particles that end up in a sink cell are removed from
the simulation.

Pumps and fountains. Besides adding or removing fluid from
a simulation, other interesting effects can be achieved by direct ma-
nipulation of the velocity field. As mentioned in section 2.3, the
velocity of any cell or group of cells can be set arbitrarily during
the external force step of the algorithm, and the fluid will react nat-
urally, as if a force has acted on it. We can use this fact to create
pumps and fountains within the fluid.

6 Fluid-Solid Interaction

This section describes a method to make a fluid simulation respond
realistically to moving polygonal objects, which was first presented
in [Foster and Fedkiw 2001]. Their interaction model does not pro-
vide a way for the fluid to affect object motion; however, it can
produce physically convincing behavior in many instances.

A theoretical model of object interaction. In the last section
we noted that the velocity of any cell in the grid can be set arbitrar-
ily, and the fluid will react as if a force has acted on it. A simple
way to make the fluid react to a moving object would therefore be
to determine which grid cells are occupied by the object and set the
velocity of those cells to the object velocity. In theory, the fluid
would react as though it had been pushed out of the way by the
object.

Problems with the theoretical model. There are several prob-
lems with the interaction model just outlined. A first problem is
that if the velocity field is just set the to object velocity any fluid
particles that come close to the surface of the object will stick to it.
Stickiness may be desireable in some simulations, but more often
we want the fluid to slip around objects rather than stick to them.
An even bigger problem is the pressure equation. When the pres-
sure update occurs, it will modify the velocity field and push fluid
back into the object, an unacceptable situation.

Foster and Fedkiw’s solution. [Foster and Fedkiw 2001]
present an algorithm that solves these two problems. They handle
the stickiness problem by only modifying the part of the velocity
that is normal to the object. Thus, fluid will be pushed out of the
object while still being able to slide across it. Additionally, they
solve the pressure problem by changing the pressure equation so
that velocities inside or on the border of objects are held fixed. In
the context of the simulator described in section 4, Foster and Fed-
kiw’s object interaction algorithm can be described as follows:

• Steps 3a through 3c (convection, viscosity and external force)
continue as usual. During these steps, cells inside or on the
border of moving objects are considered to contain fluid.

• After step 3c, the velocity of any cell that is completely inside
an object is set to the velocity of the object within that cell,
uo.

• An average surface normal for each cell on the object border,
nc, is then calculated. This can done by averaging the normals
of any polygons that intersect the cell.

• Next, the velocity of the object within border cells, uo is cal-
culated. Note that this value will be constant if the object is
moving uniformly.

• After this, the value of the velocity field at the center of border
cells, uc, is found by interpolation.

• Uc is then pushed in the normal direction, nc, to prevent the
flow from going into the object. Mathematically, (uo ·nc) is
compared to (uc ·nc). If (uo ·nc) is greater than (uc ·nc), u is
flowing into the object (something it shouldn’t do). To solve
this problem, uc is changed as in equation 16.

uc uo

nc

unew
c = uc +max (0, (uo ·nc)− (uc ·nc)) nc. (16)

• The newly modified uc is copied back into the grid by setting
the six velocity components that surround the border cell.

• The pressure equation (Steps 3d and 3e) is modified to hold
fixed the velocities of grid cells inside and on the borders of
objects. The modifications are as follows: cells inside or on
the border of objects are not included in matrix A in equation
13. However, these cells are allowed to contribute to the di-
vergence (∇ ·ui) in equation 14. Finally, during the pressure
update (step 3e), velocity components on the faces of cells
inside or on the borders of objects are not changed.

The result of this algorithm is that the fluid reacts to object mo-
tion in a physically plausible way. Moving objects push the fluid
out of the way, but the fluid is free to flow around the objects with-
out getting stuck to them. Additionally, pressure is handled in a
physically consistent way. The velocity field remains divergence
free, and fluid does not flow into objects. Figure 8 summarizes the
object interaction algorithm.

Fluid-Solid Interaction

New Parameters
uo The velocity of the object in a grid cell.
nc The average normal of the object in a cell.

Changes to the Basic Algorithm
Steps 3a to 3c:

Cells inside moving objects are considered to be fluid.
After step 3c:

Set velocity of cells inside objects to the object velocity.
For each cell on the surface of a moving object, C:

Find the average object surface normal inside C, nc.
Determine the object velocity inside C, uo.
Find the value of the velocity field at the center of C, uc.
Push uc in the direction of nc. (equation 16)
Distribute the components of uc to the faces of cell C.

Steps 3d and 3e:
Modify the pressure term to hold velocities inside object

cells constant.

Figure 8: Modifications to the fluid dynamics algorithm (figure 3)
to allow the fluid to respond to moving objects.

7 Variable and High Viscosity Fluids

One of the shortcomings of the simulator defined in section 4 is
that it does not handle variable or high viscosity fluids. Variable

viscosity is not accounted for in the model, and if the viscosity is set
too high, the simulation becomes unstable. This section describes
an extension to handle variable and high viscosity fluids that was
originally presented in [Carlson et al. 2002].

To start with, let’s look at why the simulation blows up if the vis-
cosity is too high. Recall from section 4 that viscosity was modeled
using the Laplacian of the velocity field, ∇2u. To compute the vis-
cous acceleration we scaled the Laplacian by the viscosity (ν) and
the time step (∆t) and added the result to the velocity. This had the
effect of pushing the velocity towards the neighborhood average.
Unfortunately, if ν∆t gets above about 1/6, the viscous force vec-
tor pushes u beyond the neighborhood average, reversing the flow
direction. To solve this problem, we could decrease the viscosity
so that ν∆t is always under 1/6, but this would alter the properties
of the fluid. We could also decrease the time step, but this would
make the simulation very slow for high viscosity fluids. [Carlson
et al. 2002] showed that a better solution is to use what is called
implicit integration to calculate the viscous force.

7.1 Explicit and Implicit Integration.

The way that viscosity was modeled in section 4 is called explicit
integration. Explicit integration schemes compute the derivatives
of the function to be integrated and then march forward in time. In
our case, the function to be integrated is the velocity field u, and
its derivative is ν∇2u. (For this example, we will only consider a
single component of the velocity, since all of the components are
handled in the same way.) We can write the viscosity equation as
follows:

unew = u+ k∇2u

where k = ν∆t. The expression above can be rewritten in matrix
form by collecting the values of u into a column vector, and putting
the coefficients of the equation in a matrix:





















:

:

:

.. k .. (1−6k) .. k ..

:

:

:









































:

u(x−1,y,z)

:

u(x,y,z)

:

u(x,y,z+1)

:





















=





















:

:

:

unew(x,y,z)

:

:

:





















This equation is really easy to solve. All we have to do is multiply
the vector of coefficients by the known vector of current velocities
to get the answer. Unfortunately, as we have seen, this is an explicit
integration scheme that can be unstable. In implicit integration, sta-
bility is gained by posing the problem backwards. Instead of calcu-
lating the derivatives of the function that we want to integrate, we
calculate the negative of the derivatives, and then march backwards
along these negative derivatives one time step. In the case of vis-
cosity, the negative of the derivative is −ν∇2u. We again pose the
problem in matrix form, but this time the known vector of current
velocities is placed on the right hand side of the equals sign and the
unknown vector that we want to solve for is placed on the left:





















:

:

:

.. − k .. (1+6k) .. − k ..

:

:

:









































:

:

:

unew(x,y,z)

:

:

:





















=





















:

u(x−1,y,z)

:

u(x,y,z)

:

u(x,y,z+1)

:





















(17)

The equation is no longer trivial, but it can be solved with the same
sparse solver that was used for the pressure equation in section 4.

Implicit integration works because it defines an explicit integra-
tion scheme that is run backwards. Running explicit integration

forwards tends to decrease the stability of the system, but running it
backwards actually makes the system more stable! Using implicit
integration may seem like a lot of work, but it is worth the extra ef-
fort. What we gain is the ability to take arbitrarily large time steps
without compromising stability.

7.2 Variable Viscosity

[Carlson et al. 2002] handle variable viscosity by augmenting the
simulator to store temperature values at the centers of grid cells.
The temperature is advected and diffused, and then used to calculate
the viscosity at the cell centers.

Updating the temperature. The temperature, q, is advected us-
ing a backwards particle trace that is nearly identical to the one used
to advect the velocity field. (i.e. A virtual particle is traced back-
wards from the cell center along u for one time step using RK2
interpolation. the temperature at the cell center is then replaced
with the interpolated temperature at the resulting location.) Finally,
the temperature is diffused using the equation

qnew = q + ktherm∆t ∇2q (18)

where ∆t is the usual time step, ktherm is a property of the fluid
called the thermal diffusion constant, and ∇2q is the Laplacian of
the temperature evaluated using equation 6.

Calculating the viscosity. Viscosity is computed at the centers
of grid cells using a linear model that transitions between a maxi-
mum and minimum viscosity within a specified temperature zone,
as shown in figure 9. The viscosity for a given temperature, νq, is
given by the interpolation formula

νq =







νmax if q < qmin

νmax − (q−qmin)(νmin−νmax)
qmax−qmin

if qmin ≤ q ≤ qmax

νmin if q > qmax

(19)

where νmin and νmax are the minimum and maximum viscosities
of the fluid, and qmin and qmax define the viscosity transition zone
for the fluid. Note that these values are properties of the fluid as a
whole, so they do not need to be stored in each grid cell.

Temperature

Vi
sc
os
ity

v

v

max

min

qmaxqmin

Figure 9: Variable viscosity is calculated using a linear model that
transitions from νmax to νmin between the temperatures qmin and
qmax.

For reasons that will become apparent shortly, we store the log-
arithm of the viscosity at the cell centers instead of the viscosity it-
self. We also extrapolate the (log) viscosity values calculated within
fluid cells into the air buffer, so that the viscosity at the surface of
the fluid will not be contaminated by the air temperature.

Using the variable viscosity. At this point, we have (log) vis-
cosity values at the centers of the grid cells. However, viscosities
will need to be calculated at other points in space as well. [Carl-
son et al. 2002] note that better results are obtained using geometric

rather than arithmetic averaging to interpolate the viscosity (i.e., the
average of ν1 and ν2 should be

√
ν1 ν2 rather than (ν1 + ν2)/2.),

and this is why we store the logarithm of the viscosities. By linearly
interpolating the logarithm of the viscosities, we are implicitly com-
puting the geometric interoplation of the viscosities themselves.

To use variable viscosity to update the velocity field, we need to
modify the Laplacian operator (equation 6). Recall that we Lapla-
cian (∇2) uses six neighbors around the point to be evaluated. To
simplify the notation, we will label this neighborhood as follows:

u0
u2 u1

u4

u3
u6

u5

v2

v1

v4

v3

v5

v6

where u0 . . .u6 represent a velocity component at a given cell lo-
cation and its six neighbors, and ν1 . . .ν6 represent the viscosity
between u0 and its neighbors. The way that the Laplacian is mod-
ified is to weight the terms of the Laplacian by the viscosity eval-
uated halfway between u0 and its neighbors. Using the labels just
described, the modified Laplacian becomes

∇2
ν = ν1u1 +ν2u2 +ν3u3 +ν4u4 +ν5u5 +ν6u6 −u0

6

∑
i=1

νi

where ∇2
ν is the variable Laplacian operator, and νi is viscosity eval-

uated halfway between u0 and ui using geometric interpolation.
To avoid instability, [Carlson et al. 2002] use implicit integration

to solve the variable viscosity term. The matrix of coefficients used
for the implicit integration is based on the variable Laplacian just
defined, and is given in equation 20. The two vectors in the system,
which we omit here for the sake of space, are exactly as defined in
equation 17.























:

:

−∆tν1 .. −∆tν2 .. −∆tν3 ..

(

1+∆t
6

∑
i=1

νi

)

.. −∆tν4 .. −∆tν5 .. −∆tν6

:

:























(20)

Figure 10 summarizes the changes to the fluid simulator needed to
simulate variable and high viscosity.

8 Simulation of Viscoelastic Fluids

Some fluids exhibit more complex behaviors than can be described
by equation 9. For instance, jello and egg-white bounce and wiggle
because of internal stresses that build up as they move. Fluids that
behave in this way are called viscoelastic because they display some
properties of viscous fluids and some properties of elastic solids
(solids that return to their original shape after deformation). This
section describes a method to animate viscoelastic fluids that was
presented in [Goktekin et al. 2004].

The tensor product, ⊗. The algorithm used by [Goktekin et al.
2004] to animate viscoelastic fluids relies on the tensor or outer
product of vectors. A good way to understand the tensor product is
to compare it to the dot product. A dot product can the thought of
as the product of a 1×3 row matrix and a 3×1 column matrix. The
result is a 1×1 matrix that is treated as a scalar quantity:

Simulating High and Variable Viscosity

New Parameters
νmin, νmax Minimum and maximum viscosity of the fluid.
qmin, qmax Viscosity transition zone temperature limits.
ktherm The thermal diffusion constant of the fluid.
q Temperature at the cell centers.

Changes to the Basic Algorithm
Before step 3a:

Advect temperature using a backwards particle trace.
Diffuse temperature (equation 18).

Replace step 3c with:
Calculate viscosity at cell centers (equation 19).
Store logarithm of viscosities at cell centers.
Extrapolate (log) viscosities from fluid cells into air buffer.
Solve the variable viscosity term for ux, uy and uz separately

using implicit integration (equations 17 and 20).

Figure 10: Modifications to the basic fluid algorithm (figure 3) to
handle variable and high viscosity fluids.

[

x x x
]





x

x

x



 = [x]

The tensor product, denoted by ⊗, does the opposite of the dot prod-
uct. The vectors are multiplied again, but this time the first vector
is considered a column matrix and the second is considered a row
matrix. The result is a 3×3 matrix:





x

x

x





[

x x x
]

=





x x x

x x x

x x x





The viscous stress tensor. Taking the tensor product of the
gradient and the velocity field, ∇⊗u yields a matrix filled with all
the partial derivatives of u:

∇⊗u =









∂
∂x

∂
∂y

∂
∂ z









[

ux uy uz

]

=











∂ux

∂x

∂uy

∂x
∂uz

∂x

∂ux

∂y

∂uy

∂y
∂uz

∂y

∂ux

∂ z

∂uy

∂ z
∂uz

∂ z











.

If we compute one half of this matrix plus its transpose, the re-
sult is a symmetric matrix, T = (∇⊗u + (∇⊗u)T)/2, that has a
very surprising property. In particular, it describes all the ways in
which u is warping and stretching. One way to think about it is
to imagine that rubber bands are embedded throughout the fluid.
The matrix T, which is commonly referred to as the viscous stress
tensor, describes the rate at which the rubber bands are stretching
or contracting as the fluid moves. T can be written explicitly as
follows:

T =
1

2















2∂ux

∂x

∂uy

∂x
+ ∂ux

∂y
∂uz

∂x
+ ∂ux

∂ z

∂uy

∂x
+ ∂ux

∂y

2∂uy

∂y
∂uz

∂y
+

∂uy

∂ z

∂uz

∂x
+ ∂ux

∂ z
∂uz

∂y
+

∂uy

∂ z
2∂uz

∂ z















. (21)

The definition of T may look complicated, but once again, we just
evaluate the terms of the matrix using finite differences. Specif-
ically, the diagonal elements of the T are evaluated using forward
differences, and the off-diagonal elements are evaluated using back-
ward differences. In other words,

∂ux

∂x
= ux(x+1,y,z)−ux(x,y,z) and

∂uy

∂x
= uy(x,y,z)−uy(x−1,y,z).

The elastic strain tensor. T describes the rate at which elastic
strain builds up as a fluid moves, but this is not the whole story. To
compute the elastic force exerted on a viscoelastic fluid the simula-
tor must determine the total strain that exists within the fluid. To put
it in terms of our rubber band analogy, the fluid simulator must de-
termine the total amount that the rubber bands have stretched since
the beginning of the simulation. Fortunately, the total elastic strain
at a point in space can be described using another 3×3 symmetric
elastic strain tensor, which we will call E. To simulate viscoelastic
fluids, [Goktekin et al. 2004] place a separate elastic strain tensor
in each MAC cell, storing the elements of the tensor at different
spatial locations within the cell. Specifically, the diagonal elements
of E are stored at the cell centers, and the off-diagonal elements are
stored on the minimal cell edges (see figure 11).

E11, E22, E33

E12

E13

E23
x

y

z

Figure 11: Elements of the elastic strain tensor, E, are stored at
various locations within a MAC cell. The diagonal elements of the
tensor, E11, E22 and E33 are stored at the center of the cell. Off-
diagonal elements E12, E13 and E23 are stored on the minimal cell
edges as shown. Elements below the diagonal are not stored since
the tensor is symmetric. Tensor elements from neighboring cells
are shown as hollow circles.

Integrating the elastic strain. At the beginning of a simulation,
the elastic strain tensors stored in the grid cells are set to all zeros,
which corresponds to zero strain. As the simulation progresses,
strain builds up according to the differential equation

∂E

∂ t
= T − kyr max(0, ‖E‖− kyp)

E

‖E‖ − (∇E) ·u , (22)

where ∂E
∂ t

is the rate at which the elastic strain is changing over
time. Note that the right hand side of the equation consists of three
terms. Each of the terms are solved separately before the velocity
field convection step:

• The first term of equation 22, T, is just the viscous stress ten-
sor, and we evaluate it using forward and backward differ-
ences as was described earlier in this section. In fact, the ele-
ments of E are stored where they are because of the manner in
which we evaluate T. Our simulator solves his term by adding
∆t E to the elastic strain tensors.

Simulating Viscoelastic Fluids

New Parameters
kem The elastic modulus of the fluid.
kyp The elastic yield point of the fluid.
kyr The elastic yield rate of the fluid.
E The elastic strain tensor, an array of 6 values

stored at various locations in each grid cell.

Changes to the Basic Algorithm
Before step 3a:

Calculate T and accumulate new strain in E.
Yield the elastic strain.
Advect the elastic strain tensors.
Extrapolate the elastic strain into the air buffer.

Before step 3c:
Apply elastic strain force to u using ∇ ·E.

Figure 12: Modifications to the basic fluid algorithm to model vis-
coelastic fluids.

• The second term, kyr max(0, ‖E‖−kyp) E/‖E‖, describes the
plastic yielding that occurs in the fluid. To understand how
this term works, let’s return to the rubber band analogy that
we used earlier. In a viscoelastic fluid, elastic strain can build
up (the rubber bands stretch), but if too much strain builds up,
the fluid permanently deforms to relieve the strain (some of
the rubber bands break). This effect is known as plastic yield-
ing. The plastic yielding of a viscoelastic fluid is modeled by
two parameters. The first, kyp, is called the elastic yield point
of the fluid, and it describes how much strain the fluid can
support before it starts yielding. The second parameter, kyr, is
called the elastic yield rate of the fluid, and it governs the rate
at which plastic yielding will occur if the strain exceeds kyp.
The expression ‖E‖ is the magnitude of E, which is just the
square root of the sum of the squares of the nine elements of
E. In our simulator, this term is evaluated once for each grid
cell, treating the tensor stored in the cell as a unit. The term is
then multiplied by the time step and added to E. 2

• The third term, −(∇E) ·u, describes the advection of the elas-
tic strain tensor along with the fluid volume. Like velocity,
temperature and smoke density, we solve the advection of
E using the backwards particle trace method. Four particle
traces per cell are needed to advect the tensors since the ele-
ments of E are stored at four different locations. (See figure
11.)

Once the elastic strain tensors have been advected, we extrapolate
tensor values that exist in the fluid into the air buffer. The extrapo-
lation is done in the same manner extrapolation of the velocity field
values. Tensor elements that border fluid cells are left unchanged,
and other tensor values are extrapolated outward from the fluid.

The elastic strain force. The elastic strain in a viscoelastic
fluid exerts a force on the fluid proportional to the divergence
of the elastic strain. The divergence of a tensor is just a vec-
tor that contains the divergence of the columns of the tensor ma-
trix. In other words, if c1, c2 and c3 are the columns of E, then

2[Goktekin et al. 2004] yield the components of E separately, assembling

interpolated tensors at the locations where the components of E are stored

to compute ‖E‖.

∇ ·E = (∇ ·c1, ∇ ·c2, ∇ ·c3). The actual force exerted on the fluid
is given by

Fe = kem ∇ ·E (23)

where kem is a property of the fluid called the elastic modulus.
To evaluate ∇ ·E both forward and backward differences are used.
Backward differences are used to evaluate terms related to diagonal
elements of the tensor, and forward differences are used to evaluate
terms related to off-diagonal elements. For example:

∇ · c1(x,y,z) = (E11(x,y,z)−E11(x−1,y,z)) +
(E21(x,y+1,z)−E21(x,y,z)) +
(E31(x,y,z+1)−E31(x,y,z)).

Note that this is the opposite order from the evaluation of T. Figure
12 summarizes the changes to the basic simulator that are needed
to simulate viscoelastic fluids.

9 Smoke Simulation

It is quite straightforward to modify the basic simulator to handle
smoke and other gaseous phenomena. In this section we describe
how to modify the simulator to animate smoke or steam instead of
liquids. The resulting animation system will be similar to the one
described by [Fedkiw et al. 2001].

9.1 Changes to the Simulator

Changes to the grid. To model smoke, we add a smoke density,
ρs, and temperature, q, to the centers of the MAC grid cells. These
quantities are advected along the velocity field using a backwards
particle trace in exactly the same way as the components of u.

Tracking the smoke volume without particles. Rather than
using particles to track the smoke volume, the smoke density it-
self is used. Smoke is considered to exist for simulation purposes
wherever the smoke density exceeds some small positive constant,
ρ0. Note that smoke could be defined to exist wherever the smoke
density is non zero, but we found this definition to be impractical
because small amounts of smoke leak into a large surrounding vol-
ume during the course of a simulation.

The buffer zone. Just as in the liquid case, we create a buffer
zone of air around the smoke for the smoke to flow into during a
given time step. The algorithm to create the buffer zone proceeds
as in figure 4, except that ρs is used to determine the initial set of
“fluid” cells. Additionally, the width of the buffer zone needed for
smoke simulation is not merely a function of the CFL number, as
in the liquid case. Since smoke has approximately the same density
as the air that surrounds it, the pressure that the surrounding air
exerts on the smoke is important. To account for this effect in our
simulations, we require the air buffer to be at least three grid widths
in size. A final difference between the buffer zone that is created
for smoke and the one created for liquids is that the velocity in the
air buffer is not extrapolated from the velocity within the smoke
volume (i.e. The algorithm in figure 7 is not used.) Instead, the
velocity in the air buffer is allowed to evolve as though it were part
of the smoke volume. When cells are added to the air buffer, their
velocity components are initially set to the prevailing wind velocity.

The pressure equation. When simulating liquids, air cells were
excluded from the pressure calculation. In a smoke simulation,
however, the air buffer forms a “pressure envelope” around the
smoke that must be included in the pressure update. Thus, in a

smoke simulation air cells are assigned a row in matrix A of equa-
tion 13. Vector B in equation 13 is also changed slightly from the
description in equation 14 to

bi(smoke) =
ρh

∆t
(∇ ·ui)− ei patm (24)

where ei is the number of neighbors of cell i that do not exist in the
hashtable grid.

9.2 Smoke Dissipation

We model steam and other mists that evaporate in the air by allow-
ing the smoke density to dissipate over time. At each time step the
dissipation is modeled by changing the density according to

ρnew
s = max (0, ρs − kdiss∆t) (25)

where kdiss is the dissipation rate of the smoke.

9.3 Extra Forces in a Smoke Simulation

Besides the alterations to the basic simulator, we add three extra
forces to the smoke simulator, wind, buoyancy and vorticity con-
finement. We will describe each of these forces in turn.

Wind A simple wind force can be added to the simulation by
pushing the borders of the air buffer towards a prevailing wind ve-
locity. Mathematically, this is done by computing a weighted aver-
age of the cell velocity and the wind velocity at grid cells in the air
buffer that are missing one or more neighbors:

unew = (1− kwind∆t) u + kwind∆t w (26)

where w is the prevailing wind velocity, and kwind is a constant that
determines how fast u will move towards the wind velocity.

The Buoyancy Force [Fedkiw et al. 2001] model the tendency
of smoke to rise and fall in the air with a simple “buoyancy” force
that is calculated using the temperature and density of the smoke.
The force is based on the observation that hot smoke tends to rise,
and dense smoke tends to fall. Combining these two ideas, they
produce the smoke buoyancy model:

Fbuoy = (krise(q−qatm) + k f all(ρs))
g

‖g‖ . (27)

where Fbuoy is the buoyancy force, ρs is the smoke density, q is
the smoke temperature, qatm is the temperature of the surrounding
atmosphere, g is the gravitational force vector, and krise and k f all

are user-defined constants that control the rise and fall of the smoke.

The curl, (∇×). The vorticity confinement force, which we will
describe shortly, uses yet another application of the gradient opera-
tor called the curl or vorticity of a vector field. The curl of a vector
field is defined as the cross product of ∇ and the vector field. The
curl of u is a vector field given by:

∇×u =

(

∂uz

∂y
− ∂uy

∂ z
,

∂ux

∂ z
− ∂uz

∂x
,

∂uy

∂x
− ∂ux

∂y

)

. (28)

Recall that the cross product of two vectors is a third vector that is
perpendicular to the first two. ∇×u is a vector field that is perpen-
dicular to u at every location in space. The physical interpretation
of the new vector field may not be readily apparent, but what it ac-
tually describes is how much and in what direction u is twisting as
you follow its flow lines. Hence, the name “curl”.

Smoke Simulation Algorithm

New Parameters
kwind Wind force coefficient.
krise, k f all Buoyancy force coefficients.
kvort Vorticity confinement coefficient.
ρs The smoke density at the grid cell centers.
q The temperature at the grid cell centers.

Algorithm
1. Calculate the time step, ∆t.
2. Update the grid based on the smoke densities (section 9.1).
3. Advance the velocity field, u.

3a. Apply convection to u.
3b. Apply buoyancy and wind forces.
3c. Apply vorticity confinement force.
3d. Calculate the pressure including the air buffer.
3e. Apply the pressure.
3f. -
3g. Set solid cell velocities.

4. Apply convection to q and ρs and dissipate ρs.

Figure 13: Modifications to the simulator to animate smoke.

Vorticity confinement. A well known problem with fluid dy-
namics solutions like the one outlined in section 4 is that they tend
to dampen any swirling motions in the velocity field. In other
words, the curl of u diminishes too quickly as the simulation pro-
gresses. To counteract the undesired dampening of swirling mo-
tions, [Fedkiw et al. 2001] adopt a technique known as vorticity
confinement from the CFD literature. The idea is to isolate and in-
crease swirling motions in the fluid by amplifying the curl of the
velocity field. During a simulation, the vorticity confinement force
is added as follows:

• The curl of the velocity field, ∇×u, is calculated at the center
of each grid cell and stored in the temporary vector for that
cell. The curl is calculated by first finding an interpolated
velocity on all six faces of the cell. Then central differences
across the cell are used to evaluate the terms of 28.

• The magnitude of the curl is calculated at the center of each
grid cell, creating a new scalar field, n = ‖∇×u‖.

• The gradient direction of n, N = ∇n/‖n‖, is then calculated
using central differences. Note that this is not the same as
equation 4, which uses backwards differences.

• A vorticity confinement force is computed at the center of
each grid cell as follows:

Fvort = kvort (N × (∇×u)). (29)

• Finally, the velocity components on all sides of the cell are
updated by unew = u+∆t Fvort .

Figure 13 summarizes the changes to the basic simulator that are
needed to simulate smoke or steam instead of liquids.

9.4 Rendering Smoke

To visualize the evolving smoke field, we use OpenGL to render
blurry dots at the centers of grid cells that have a non-zero smoke

density. The cells are rendered in back to front in terms of distance
from the viewer, and the blurry dots are rendered as billboards that
are approximately fifty percent larger than the cell width, so that
there will be substantial overlap between them. The transparency
of the dots is modulated using alpha blending, with the alpha value
for a cell being set to max(0, 1−ρs). Figure 14 shows images from
a smoke simulation.

Figure 14: Images from the smoke simulator.

10 Level Sets

Fluids simulated using the Navier-Stokes equations may be bro-
ken into essentially two categories: smoke and liquid. To render
smoke-like fluids, we usually track the density of the fluid as it
flows through its velocity field. Then, using the smoke densities,
we can use CSG techniques to convincingly render the volume of
the fluid. With liquids, however, we are more interested in dis-
playing and tracking only the surface of the liquid. In addition, we
would like the liquid surface to appear similar to liquids in the real
world: generally smooth when there’s not a lot of movement, but
choppy when high velocities are involved.

Probably the most prevalent method for tracking the liquid sur-
face in a fluid flow simulation incorporates a data structure called
a level set. The use of level sets in fluid flow simulations was in-
troduced by [Foster and Fedkiw 2001]. Since then, almost every
advance in computer graphics fluid flow has used some version of
a level set to track a liquid surface.

Unfortunately, literature on level sets has a very specialized vo-
cabulary and implementing a level set surface tracking system can
be very difficult for a student new to the subject. This section pro-
vides the student with a beginner’s guide to implementing a surface
tracking system, so that liquid flow may be convincingly rendered.

10.1 Overview

Before we start looking at how to use a level set, it will help to
have a brief look at what it is and the theory behind it. A level set
is essentially a function of higher dimension used to track a curve
or surface of lower dimension. For example, a function in 3D may
be used to track a curve in 2D. We could write our 3D function
like: z = f (x,y). The term level set refers to a set of points that all
have the same z value. The c-th level set is the curve, whose points
satisfy f (x,y) = c. Usually, we are only interested in the zero level
set of the function. For our system, the zero level set is the liquid
surface that we’re trying to track. In that case, we use a 4D function
to track a zero level set in in 3D.

This discussion raises a valid question: If all we want is the
3D surface, why do we bother with a 4D function? The answer:
the extra dimension simplifies complex topological changes in the
curve or surface. For example, suppose we have two cones placed

side by side, expanding as z increases (see Figure ??). At some
point in the expansion, the two cones join together into a single sur-
face. Consider what happens as we look at the various level sets of
the function. Initially, the two cones appear as single points, then
become two separate circles and eventually combine into a single
large curve. Using the level set idea, tracking the evolution of the
curve is easy.

Now, imagine a different system that explicitly tracks the evolu-
tion of the curves as 2D objects. Throughout the curve evolution
the system will have to detect when the curves collide and figure
out how to combine the two curves into a single large one. The pro-
cessing and detection of those types of changes can quickly become
really complicated. However, with level sets the evolution is much
simpler to compute. With our liquid surface, we want the liquid to
be able to splash away from and then back onto itself, while main-
taining a single surface. So, level sets offer us that property without
having to write code specifically to manage it.

10.2 Building a Useful Level Set Function

At its most basic definition, a level set function is simply a func-
tion that at some value (typically zero) embeds a desired curve or
surface. While this definition is valid, is not particularly useful if
we want to alter the position of the curve or surface. One very use-
ful function that makes it easy to update the surface position of the
level set is the signed distance function.

A signed distance function is simply a scalar distance function
(from the curve or surface), but stores negative distances within the
curve/surface and positive outside of it. To see the usefuleness of
the signed distance function, consider one of the cones in Figure ??.
For that cone, suppose our zero level set is a circle midway through
the cone. Notice that the sides of the cone recede uniformly and
smoothly away from the zero level set curve. So, if we wish to per-
turb a small portion of the level set curve, we can essentially just
translate a portion of the cone down to the zero level set. This is
analogous to moving the function in the direction of the function’s
gradient. When we update a level set curve, we use the function’s
surface gradient to perturb the curve. Thus, to reduce errors in our
update it is very useful to have a function that is smoothly differen-
tiable. A signed distance function fulfills that property and is easily
conceptualized.

In order to create a signed distance function for a curve or sur-
face, we want to use an accurate, yet efficient method to build it. We
could use a chamfer map technique to build the distance field, but
that is probably not accurate or smooth enough. Instead, we’ll use
a method developed specifically for level sets called the fast march-
ing method. Since the direct implementation of this method is not
very explicitly outlined in most texts, Appendix ?? contains spe-
cific details on implementing this method to build a signed distance
function.

10.3 Moving Under an External Velocity

One important operation on level sets is the movement of the func-
tion under some external velocity. In the fluid flow case, that ve-
locity is supplied by the velocity field embedded in the MAC grid.
While we won’t derive the equation for updating the level set under
the velocity field, we will describe its parts and how to use it. The
equation for updating the level set is given by

∂φ

∂ t
+u(x,y,z) ·∇φ = 0. (30)

This equation is also called the simple convection (or advection)
equation. While this expression may appear daunting, it actually
works out to be pretty simple. First, the function that embeds our
level set is denoted by φ , which is actually short for φ(x,y,z)–this

function is a scalar field in 3D. Then,
∂φ
∂ t

is the amount which we
multiply by ∆t (more on this later) in order to update the level set.
You have already been introduced to u(x,y,z), which is the fluid
velocity field. Finally, ∇φ is a vector field as shown in (4).

Before we continue, we should note that (30) excludes a lot of in-
formation about performing the surface update. First, notice that the
expression contains two types of derivatives: spatial and temporal.
The spatial derivatives are in the ∇φ term and the temporal deriva-

tive is the
∂φ
∂ t

term. Furthermore, those derivatives have not been
explicitly discretized for us; i.e., the equation does not describe at
all how the derivatives in it should be computed numerically.

While this may not seem like a very important point at first
glance, it turns out to be extremely important in this case. The
way that the derivatives are discretized ultimately affects whether
the surface will evolve stably or not. In other words, if we calculate
the derivatives in certain ways, the surface will usually fall apart
after a few iterations.

10.4 Approximating Derivatives for Level Set Up-

dates

Since derivative computations are so important in doing a level set
update, a brief discussion of them is in order. Recall that the level
set update combines two kinds of derivatives: spatial and temporal.
In this section we will discuss the techniques that are applied to
each derivative type.

For the spatial derivatives of (30), we must employ a special dis-
cretization called an upwind difference. Upwind differences use ve-
locity field information to choose between backward and forward
differences. If the velocity field is positive at the point we want to
update, we use a backward difference; if it is negative we use a for-
ward difference. If we do not use an upwind difference for ∇φ in
(30), the surface is certain to become unstable.

Generally, higher-order upwind differencing has been used in
past liquid surface tracking systems. These higher-order methods
use various forms of the Taylor series expansion for a function in
order to improve the accuracy of the calculated derivatives. There
are several specific schemes that are typically used, among them
ENO and WENO (essentially non-oscillatory and weighted essen-
tially non-oscillatory) are the most common. However, the cost of
using these techniques is increased computation time. Fortunately,
a new and more accurate method was recently developed [?] that
avoids the use of higher-order upwind differences and this method
(discussed in section 10.7) is recommended for both its speed and
simplicity.

For the temporal derivative,
∂φ
∂ t

, in (30), most systems employ
a higher-order Runge-Kutta interpolation technique like that dis-
cussed in section ??. Most temporal discretization methods re-
quire third-order Runge-Kutta to advance the surface in the veloc-
ity field accurately. However, the new method that we will dis-
cuss in section 10.7 uses a simple first-order Euler timestep (i.e.,

φ n+1 = φ n +∆t
∂φ
∂ t

) to advance the level set surface.

10.5 Reinitialization

After performing a level set update (using the appropriate spatial
and temporal discretizations) an additional step is required before
we may proceed to the next iteration. When the level set surface is
updated under the fluid velocity field, that field defines the motion
of specifically the zero level set and not any of the other level sets
in the level set function. Using the entire fluid velocity on all of
the level sets, does adjust the zero level set correctly, but typically
causes the other level sets embedded in the function to bunch up or
to flatten out. Eventually, these small adjustments cause the surface

of our level set to become less smooth, which can add error to the
update of the zero level set’s position.

The remedy to this bunching and flattening problem is to reini-
tialize the level set function to a signed distance function around the
zero level set of the function. This reinitialization step is quickly
accomplished by finding the zero level set and then rebuilding the
signed distance function around the zero level using the fast march-
ing method (see Appendix ??).

10.6 Data Structures

Now that we have an idea of what level sets are, we should discuss
the best way to represent them. One possibly wasteful way that we
could represent the level set function’s scalar field, would be to store
the entire scalar field in a single, static, 3D array. This organization
has several disadvantages: it is both space and time inefficient and
restricts the liquid flow to a single static area.

A much better way of storing the level set would be to use the
hashtable method discussed in section 3.1. Also, because we are
only interested in tracking the surface of the liquid, we only need a
narrow band of scalar field entries around the liquid surface (usually
six to seven entries is sufficient). This hashtable method allows
our liquid surface to move freely in our virtual environment and is
both time and memory conserving. In addition, if we’ve already
implemented the hash table for the MAC grid, it should be a very
simple matter to adjust it for the level set function grid.

10.7 Fast Particle Level Set Method

While the advantages of using a level set are clear, there are still
some difficulties with using the level set method. Because we are
using a discrete scalar field to represent a continuous function, our
method is subject to aliasing errors. As a result of the discretiza-
tion level set surfaces tend to lose significant volume when moving
through a velocity field. Especially where the surface becomes very
thin.

A method introduced in [Enright et al. 2002] that alleviates this
problem is the Particle Level Set Method. This method tracks the
liquid surface as a level set coupled with marker particles along
the liquid surface. Marker particles are placed on both sides of the
surface and are marked as positive or negative, indicating which
side of the surface the particle is tracking. Each marker particle
also has a radius, such that the particle is tangent to the surface.

To update the surface, both the particles and the surface move
through the velocity field and the particles are used to repair errors
introduced into the liquid surface through the update. [?] combines
the particle level set method with a fast, first-order surface update
and shows that there is little need for higher-order upwind differ-
ences when particles are available to correct errors. Because of its
simplicity, accuracy and speed, we will design our system using
almost exactly the method described in [?].

10.8 Putting it All Together

Now that we’ve discussed the relevant considerations for tracking
the level set surface, we can design an effective system for manag-
ing our liquid surface. If we view our surface tracking system as a
black box from the outside, it has essentially two main functions:
initialization and update of the surface. So, we’ll proceed with the
details of implementing these two functions.

10.8.1 Surface Initialization

The surface initialization step has a solitary goal: to build a narrow
band of a signed distance function around the desired isosurface.
In order to do this, we need to somehow be able to identify the

isosurface we’re interested in. This may be done in several different
ways, but the net result of the operation should be a list of grid
points bordering the desired isosurface. This list will be the input
into the fast marching method, which we’ll use to build the signed
distance function.

One way that we might identify the isosurface would be to start
with an implicit function, like that of a sphere. Then, by sam-
pling the implicit function over a certain volume at the level set grid
points, we could identify the grid points neighboring the zero iso-
surface and add those to our list. The resulting list of points should,
however, form a closed surface for the fast marching method to
work.

After collecting the necessary initial points, we then build the
signed distance function up to a certain distance away using the
fast marching method. Since this method is outlined explicitly in
Appendix ??, it will not be repeated here.

Once the narrow band of grid points has been initialized to a
signed distance function, we randomly place marker particles into
volume of the narrow band around the isosurface. These particles
are used later on in the fast particle level set method (as discussed in
section 10.7). Each randomly placed particle tracks both its position
and its radius. The radius of each particle, rp, is determined using
the following piecewise function:

rp =







rmax if |φ(~xp)| > rmax

|φ(~xp)| if rmin ≤ |φ(~xp)| ≤ rmax

rmin if |φ(~xp)| < rmin

(31)

where φ(~xp) is the tri-linearly interpolated value of the level set
function at the particle position ~xp. rmin and rmax are the minimum
and maximum radii of the particles, set to 0.1h and 0.5h, where h
is the minimum spacing between grid points in the level set func-
tion. Recall that particles are marked as either negative or positive,
depending on the side of the interface on which they are initialized.
To track this attribute, we use the sign bit on the particle radius to
indicate the particle side—i.e., for negative particles we store −rp

and for postive particles we store +rp.
Once the particles and signed distance function have been ini-

tialized, the surface initialization process is complete and the level
set surface is ready to be updated according to the liquid velocity
field.

10.8.2 Updating the Level Set Surface

The following paragraphs outline the details and order of the op-
erations that need to be performed to update the level set surface.
Again, most of this process is taken from [?].

1. Update the Level Set Function — In this step, we do a first-
order accurate update of the level set function, which is represented
in a narrow band around the liquid isosurface. When we do the
update, we exclude the outside border of the narrow band. So, if our
narrow band is six grid points wide on each side of the isosurface,
we only perform the update up to five grid points from the surface.

The surface update is performed using the following equations:

φ n+1
i, j,k = (αβγφ n

r+1,s+1,t+1

+(1−α)βγφ n
r,s+1,t+1

+α(1−β)γφ n
r+1,s,t+1

+αβ (1− γ)φ n
r+1,s+1,t

+(1−α)(1−β)γφ n
r,s,t+1

+(1−α)β (1− γ)φ n
r,s+1,t

+α(1−β)(1− γ)φ n
r+1,s,t

+(1−α)(1−β)(1− γ)φ n
r,s,t),

(32)

where

r = i−
⌈

ui, j,k
∆t
∆x

⌉

, α =
(i−r)∆x−ui, j,k∆t

∆x , (33)

s = j−
⌈

vi, j,k
∆t
∆y

⌉

, β =
(j−s)∆y−vi, j,k∆t

∆y , (34)

t = k−
⌈

wi, j,k
∆t
∆z

⌉

, γ =
(k−t)∆z−wi, j,k∆t

∆w , (35)

and ~u(~xi, j,k) = (ui, j,k,vi, j,k,wi, j,k)–i.e., (ui, j,k,vi, j,k,wi, j,k) are the
components of the interpolated velocity at the level set grid point
(i, j,k).

While these expressions appear complicated, (32) simply boils
down to a linear interpolation of the level set function combined

with the velocity field values. When all has been computed, φ n+1
i, j,k

is the new grid point value at indices (i, j,k) in the narrow band. In
order to correctly produce the updated level set function, a tempo-
rary copy of the narrow band must be made to draw values from.
At the end of this step, the old level set function is replaced with the
newly computed values.

2. Advance the Marker Particles Once the level set function
has been advanced, we advance the marker particles that we placed
around the zero level set. These marker particles are advanced using
RK2, exactly as described in equation 12 (see Step 3a of Section 4).

3. Correct Level Set Errors using the Marker Particles

11 Conclusion

References

CARLSON, M., MUCHA, P. J., VAN HORN, III, R. B., AND

TURK, G. 2002. Melting and flowing. In Proceedings of the
2002 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM Press, 167–174.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Anima-
tion and rendering of complex water surfaces. In Proceedings of
the 29th annual conference on Computer graphics and interac-
tive techniques, ACM Press, 736–744.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual sim-
ulation of smoke. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, ACM Press,
15–22.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, ACM Press, 23–30.

GOKTEKIN, T. G., BARGTEIL, A. W., AND O’BRIEN, J. F. 2004.
A method for animation viscoelastic fluids. In Siggraph 2004
(Update Reference).

HARLOW, F. H., AND WELCH, J. E. 1965. Numerical calculation
of time-dependent viscous incompressible flow of fluid with a
free surface. The Physics of Fluids 8, 2182–2189.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., 121–128.

STEELE, K., CLINE, D., AND EGBERT, P. 2004. Modeling and
rendering viscous liquids. In Computer Animation and Social
Agents (CASA2004) Update Reference.

TESCHNER, M., HEIDELBERGER, B., MUELLER, M., POMER-
ANETS, D., AND GROSS, M. 2003. Optimized spatial hashing
for collision detection of deformable objects. In Proceedings of
Vision, Modeling, Visualization VMV’03, 47–54.

WORLEY, S. 1996. A cellular texture basis function. In Proceed-
ings of the 23rd annual conference on Computer graphics and
interactive techniques, ACM Press, 291–294.

