
Surface Simplification Using Quadric Error Metrics

Michael Garland∗ Paul S. Heckbert†

Carnegie Mellon University

Abstract

Many applications in computer graphics require complex, highly
detailed models. However, the level of detail actually necessary
may vary considerably. To control processing time, it is often desir-
able to use approximations in place of excessively detailed models.

We have developed a surface simplification algorithm which can
rapidly produce high quality approximations of polygonal models.
The algorithm uses iterative contractions of vertex pairs to simplify
models and maintains surface error approximations using quadric
matrices. By contracting arbitrary vertex pairs (not just edges), our
algorithm is able to join unconnected regions of models. This can
facilitate much better approximations, both visually and with re-
spect to geometric error. In order to allow topological joining, our
system also supports non-manifold surface models.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—surface and object representations

Keywords: surface simplification, multiresolution modeling, pair
contraction, level of detail, non-manifold

1 Introduction

Many computer graphics applications require complex, highly de-
tailed models to maintain a convincing level of realism. Conse-
quently, models are often created or acquired at a very high reso-
lution to accommodate this need for detail. However, the full com-
plexity of such models is not always required, and since the compu-
tational cost of using a model is directly related to its complexity, it
is useful to have simpler versions of complex models. Naturally, we
would like to automatically produce these simplified models. Re-
cent work on surface simplification algorithms has focused on this
goal.

As with most other work in this area, we will focus on the simpli-
fication of polygonal models. We will assume that the model con-
sists of triangles only. This implies no loss of generality, since every
polygon in the original model can be triangulated as part of a pre-
processing phase. To achieve more reliable results, when corners of
two faces intersect at a point, the faces should be defined as sharing
a single vertex rather than using two separate vertices which happen
to be coincident in space.

∗garland@cs.cmu.edu; http://www.cs.cmu.edu/∼garland/
†ph@cs.cmu.edu; http://www.cs.cmu.edu/∼ph/

We have developed an algorithm which produces simplified ver-
sions of such polygonal models. Our algorithm is based on the iter-
ative contraction of vertex pairs (a generalization of edge contrac-
tion). As the algorithm proceeds, a geometric error approximation
is maintained at each vertex of the current model. This error approx-
imation is represented using quadric matrices. The primary advan-
tages of our algorithm are:

• Efficiency: The algorithm is able to simplify complex models
quite rapidly. For example, our implementation can create a
100 face approximation of a 70,000 face model in 15 seconds.
The error approximation is also very compact, requiring only
10 floating point numbers per vertex.

• Quality: The approximations produced by our algorithm
maintain high fidelity to the original model. The primary fea-
tures of the model are preserved even after significant simpli-
fication.

• Generality: Unlike most other surface simplification algo-
rithms, ours is able to join unconnected regions of the model
together, a process which we term aggregation. Provided that
maintaining object topology is not an important concern, this
can facilitate better approximations of models with many dis-
connected components. This also requires our algorithm to
support non-manifold1 models.

2 Background and Related Work

The goal of polygonal surface simplification is to take a polygonal
model as input and generate a simplified model (i.e., an approxima-
tion of the original) as output. We assume that the input model (Mn)
has been triangulated. The target approximation (Mg) will satisfy
some given target criterion which is typically either a desired face
count or a maximum tolerable error. We are interested in surface
simplification algorithms that can be used in rendering systems for
multiresolution modeling — the generation of models with appro-
priate levels of detail for the current context.

We do not assume that the topology of the model must be main-
tained. In certain application areas, medical imaging for example,
maintaining the object topology can be essential. However, in appli-
cation areas such as rendering, topology is less important than over-
all appearance. Our algorithm is capable of both closing topological
holes as well as joining unconnected regions.

Many prior simplification algorithms have either implicitly or ex-
plicitly assumed that their input surfaces were, and ought to remain,
manifold surfaces. Let us stress that we do not make this assump-
tion. In fact, the process of aggregation will regularly create non-
manifold regions.

2.1 Surface Simplification

In recent years, the problem of surface simplification, and the more
general problem of multiresolution modeling, has received increas-

1A manifold is a surface for which the infinitesimal neighborhood of ev-
ery point is topologically equivalent to a disk (or half-disk for a manifold
with boundary).

Copyright ©1997 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for
 personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to distribute to lists, requires prior specific
permission and/or a fee.

Copyright Notice
Copyright ©1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Before After

contract

v1

v2
v

Figure 1: Edge contraction. The highlighted edge is contracted
into a single point. The shaded triangles become degenerate and are
removed during the contraction.

ing attention. Several different algorithms have been formulated for
simplifying surfaces. Those algorithms which are most relevant to
our work can be broadly categorized into 3 classes:

Vertex Decimation. Schroeder et al. [9] describe an algorithm
which we would term vertex decimation. Their method iteratively
selects a vertex for removal, removes all adjacent faces, and retri-
angulates the resulting hole. Soucy and Laurendeau [10] described
a more sophisticated, but essentially similar algorithm. While they
provide reasonable efficiency and quality, these methods are not re-
ally suited for our purpose. Both methods use vertex classification
and retriangulation schemes which are inherently limited to mani-
fold surfaces, and they carefully maintain the topology of the model.
While these are important features in some domains, they are restric-
tions for multiresolution rendering systems.

Vertex Clustering. The algorithm described by Rossignac and
Borrel [8] is one of the few capable of processing arbitrary polygo-
nal input. A bounding box is placed around the original model and
divided into a grid. Within each cell, the cell’s vertices are clustered
together into a single vertex, and the model faces are updated ac-
cordingly. This process can be very fast, and can make drastic topo-
logical alterations to the model. However, while the size of the grid
cells does provide a geometric error bound, the quality of the out-
put is often quite low. In addition, it is difficult to construct an ap-
proximation with a specific face count, since the number of faces
is only indirectly determined by the specified grid dimensions. The
exact approximation produced is also dependent on the exact posi-
tion and orientation of the original model with respect to the sur-
rounding grid. This uniform method can easily be generalized to use
an adaptive grid structure, such as an octree [6]. This can improve
the simplification results, but it still does not support the quality and
control that we desire.

Iterative Edge Contraction. Several algorithms have been
published that simplify models by iteratively contracting edges (see
Figure 1). The essential difference between these algorithms lies in
how they choose an edge to contract. Some notable examples of
such algorithms are those of Hoppe [4, 3], Ronfard and Rossignac
[7], and Guéziec [2]. These algorithms all seem to have been de-
signed for use on manifold surfaces, although edge contractions can
be utilized on non-manifold surfaces. By performing successive
edge contractions, they can close holes in the object but they can-
not join unconnected regions.

If it is critical that the approximate model lie within some dis-
tance of the original model and that its topology remain unchanged,
the simplification envelopes technique of Cohen et al. [1] can be
used in conjunction with one of the above simplification algorithms.
As long as any modification made to the model is restricted to lie
within the envelopes, a global error guarantee can be maintained.
However, while this provides strong error limits, the method is in-
herently limited to orientable manifold surfaces and carefully pre-

contract

Before After

v1
v2 v

Figure 2: Non-edge contraction. When non-edge pairs are con-
tracted, unconnected sections of the model are joined. The dashed
line indicates the two vertices being contracted together.

serves model topology. Again, these are often limitations for the
purposes of simplification for rendering.

None of these previously developed algorithms provide the com-
bination of efficiency, quality, and generality that we desire. Vertex
decimation algorithms are unsuitable for our needs; they are careful
to maintain model topology and usually assume manifold geometry.
Vertex clustering algorithms are very general and can be very fast.
However, they provide poor control over their results and these re-
sults can be of rather low quality. Edge contraction algorithms can
not support aggregation.

We have developed an algorithm which supports both aggrega-
tion and high quality approximations. It possesses much of the gen-
erality of vertex clustering as well as the quality and control of itera-
tive contraction algorithms. It also allows faster simplification than
some higher quality methods [3].

3 Decimation via Pair Contraction

Our simplification algorithm is based on the iterative contraction of
vertex pairs; a generalization of the iterative edge contraction tech-
nique used in previous work. A pair contraction, which we will
write (v1,v2)→ v̄, moves the vertices v1 and v2 to the new posi-
tion v̄, connects all their incident edges to v1, and deletes the vertex
v2. Subsequently, any edges or faces which have become degenerate
are removed. The effect of a contraction is small and highly local-
ized. If (v1,v2) is an edge, then 1 or more faces will be removed
(see Figure 1). Otherwise, two previously separate sections of the
model will be joined at v̄ (see Figure 2).

This notion of contraction is in fact quite general; we can con-
tract a set of vertices into a single vertex: (v1,v2, . . . , vk)→ v̄. This
form of generalized contraction can express both pair contractions
as well as more general operations such as vertex clustering. How-
ever, we use pair contraction as the atomic operation of our algo-
rithm because it is the most fine-grained contraction operation.

Starting with the initial model Mn, a sequence of pair contractions
is applied until the simplification goals are satisfied and a final ap-
proximation Mg is produced. Because each contraction corresponds
to a local incremental modification of the current model, the algo-
rithm actually generates a sequence of models Mn,Mn−1, . . . ,Mg.
Thus, a single run can produce a large number of approximate mod-
els or a multiresolution representation such as a progressive mesh
[3].

3.1 Aggregation

The primary benefit which we gain by utilizing general vertex pair
contractions is the ability of the algorithm to join previously uncon-
nected regions of the model together. A potential side benefit is that
it makes the algorithm less sensitive to the mesh connectivity of the
original model. If in fact two faces meet at a vertex which is dupli-
cated, the contraction of that pair of vertices will repair this short-
coming of the initial mesh.

Figure 3: On the left is a regular grid of 100 closely spaced cubes.
In the middle, an approximation built using only edge contractions
demonstrates unacceptable fragmentation. On the right, the result
of using more general pair contractions to achieve aggregation is an
approximation much closer to the original.

In some applications, such as rendering, topology may be less im-
portant than overall shape. Consider a shape such as that shown in
Figure 3 which is made up of 100 closely spaced cubes in a regu-
lar grid. Suppose we wanted to construct an approximation of the
model on the left for rendering at a distance. Algorithms based on
edge contraction can close holes in objects, but they can never join
disconnected components. In an algorithm using only edge con-
traction, the individual components are individually simplified into
nothing, as in the model in the middle. Using pair contraction, the
individual components can be merged into a single object, as in the
model on the right. The result is a much more faithful approxima-
tion.

Allowing aggregation also requires us to support non-manifold
surfaces. At the instant when two separate regions are joined, a non-
manifold region is quite likely to be created. It would require a great
deal of care and effort to ensure that a contraction never created a
non-manifold region without severely limiting the kinds of contrac-
tions that we could perform.

3.2 Pair Selection

We have chosen to select the set of valid pairs at initialization time,
and to consider only these pairs during the course of the algorithm.
Our decision is based on the assumption that, in a good approxima-
tion, points do not move far from their original positions.

We will say that a pair (v1,v2) is a valid pair for contraction if
either:

1. (v1,v2) is an edge, or

2. ‖v1 − v2‖ < t, where t is a threshold parameter

Using a threshold of t = 0 gives a simple edge contraction algo-
rithm. Higher thresholds allow non-connected vertices to be paired.
Naturally, this threshold must be chosen with some care; if it is too
high, widely separated portions of the model could be connected,
which is presumably undesirable, and it could create O(n2) pairs.

We must track the set of valid pairs during the course of iterative
contraction. With each vertex, we associate the set of pairs of which
it is a member. When we perform the contraction (v1,v2) → v̄,
not only does v1 acquire all the edges that were linked to v2, it also
merges the set of pairs from v2 into its own set. Every occurrence of
v2 in a valid pair is replaced by v1, and duplicate pairs are removed.

4 Approximating Error With Quadrics

In order to select a contraction to perform during a given iteration,
we need some notion of the cost of a contraction. To define this cost,
we attempt to characterize the error at each vertex. To do this, we
associate a symmetric 4×4 matrix Q with each vertex, and we define
the error at vertex v= [vx vy vz 1]T to be the quadratic form1(v)=

vTQv. In Section 5, we will describe how the initial matrices are
constructed. Note that the level surface 1(v) = ε, which is the set
of all points whose error with respect to Q is ε, is a quadric surface.

For a given contraction (v1,v2)→ v̄, we must derive a new ma-
trix Q̄ which approximates the error at v̄. We have chosen to use the
simple additive rule Q̄ = Q1 +Q2.

In order to perform the contraction (v1,v2)→ v̄, we must also
choose a position for v̄. A simple scheme would be to select either
v1, v2, or (v1 + v2)/2 depending on which one of these produces
the lowest value of 1(v̄). However, it would be nice to find a po-
sition for v̄ which minimizes 1(v̄). Since the error function 1 is
quadratic, finding its minimum is a linear problem. Thus, we find
v̄ by solving ∂1/∂x = ∂1/∂y = ∂1/∂z = 0. This is equivalent2 to
solving: q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

0 0 0 1

v̄ =

 0
0
0
1

for v̄. The bottom row of the matrix is empty because v̄ is an homo-
geneous vector — its w component is always 1. Assuming that this
matrix is invertible, we get that

v̄ =

 q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

0 0 0 1

−1 0

0
0
1

 (1)

If this matrix is not invertible, we attempt to find the optimal vertex
along the segment v1v2. If this also fails, we fall back on choosing
v̄ from amongst the endpoints and the midpoint.

4.1 Algorithm Summary

Our simplification algorithm is built around pair contractions and
error quadrics. The current implementation represents models us-
ing an adjacency graph structure: vertices, edges, and faces are all
explicitly represented and linked together. To track the set of valid
pairs, each vertex maintains a list of the pairs of which it is a mem-
ber. The algorithm itself can be quickly summarized as follows:

1. Compute the Q matrices for all the initial vertices.

2. Select all valid pairs.

3. Compute the optimal contraction target v̄ for each valid pair
(v1,v2). The error v̄T(Q1+Q2)v̄ of this target vertex becomes
the cost of contracting that pair.

4. Place all the pairs in a heap keyed on cost with the minimum
cost pair at the top.

5. Iteratively remove the pair (v1,v2) of least cost from the heap,
contract this pair, and update the costs of all valid pairs involv-
ing v1.

The only remaining issue is how to compute the initial Q matrices
from which the error metric1 is constructed.

2You can verify this for yourself by taking partial derivatives of

vTQv = q11x2 + 2q12xy+ 2q13xz+ 2q14x+ q22 y2

+ 2q23 yz+ 2q24 y+ q33z2 + 2q34z+ q44

Figure 4: A sequence of approximations generated using our algorithm. The original model on the left has 5,804 faces. The approximations
to the right have 994, 532, 248, and 64 faces respectively. Note that features such as horns and hooves continue to exist through many simpli-
fications. Only at extremely low levels of detail do they begin to disappear.

5 Deriving Error Quadrics

To construct our error quadrics, we must choose a heuristic to char-
acterize the geometric error. We have selected a heuristic which is
quite similar to the one given by Ronfard and Rossignac [7]. Fol-
lowing [7], we can observe that in the original model, each vertex
is the solution of the intersection of a set of planes — namely, the
planes of the triangles that meet at that vertex. We can associate a
set of planes with each vertex, and we can define the error of the
vertex with respect to this set as the sum of squared distances to its
planes:

1(v) = 1([vx vy vz 1]T) =
∑

p∈planes(v)

(pTv)2 (2)

where p = [a b c d]T represents the plane defined by the equation
ax+ by+ cz+ d = 0 where a2 + b2 + c2 = 1. This approximate
error metric is similar to [7], although we have used a summation
rather than a maximum over the set of planes. The set of planes at a
vertex is initialized to be the planes of the triangles that meet at that
vertex. Note that if we were to track these plane sets explicitly, as [7]
did, we would propagate planes after a contraction (v1,v2)→ v̄ us-
ing the rule: planes(v̄)= planes(v1)∪ planes(v2). This can require
a sizeable amount of storage that does not diminish as simplification
progresses.

The error metric given in (2) can be rewritten as a quadratic form:

1(v) =
∑

p∈planes(v)

(vTp)(pTv)

=
∑

p∈planes(v)

vT(ppT)v

= vT

(∑
p∈planes(v)

Kp

)
v

where Kp is the matrix:

Kp = ppT =

 a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2

This fundamental error quadric Kp can be used to find the squared
distance of any point in space to the plane p. We can sum these fun-
damental quadrics together and represent an entire set of planes by
a single matrix Q.

We implicitly track sets of planes using a single matrix; instead
of computing a set union (planes(v1) ∪ planes(v2)) we simply add
two quadrics (Q1 + Q2). If the sets represented by Q1 and Q2 in
the original metric are disjoint, the quadric addition is equivalent to
the set union. If there is some overlap, then a single plane may be
counted multiple times. However, any single plane can be counted
at most 3 times since each plane is initially distributed only to the

vertices of its defining triangle. This may introduce some impreci-
sion into the error measurement, but it has major benefits: the space
required to track a plane set is only that required for a 4×4 symmet-
ric matrix (10 floating point numbers), and the cost of updating the
approximation is only that for adding two such matrices. If we are
willing to sacrifice some additional storage, it would even be possi-
ble to eliminate this multiple counting using an inclusion-exclusion
formula.

Thus, to compute the initial Q matrices required for our pair con-
traction algorithm, each vertex must accumulate the planes for the
triangles which meet at that vertex. For each vertex, this set of
planes defines several fundamental error quadrics Kp. The error
quadric Q for this vertex is the sum of the fundamental quadrics.
Note that the initial error estimate for each vertex is 0, since each
vertex lies in the planes of all its incident triangles.

5.1 Geometric Interpretation

As we will see, our plane-based error quadrics produce fairly high
quality approximations. In addition, they also possess a useful geo-
metric meaning3.

The level surfaces of these quadrics are almost always ellipsoids.
In some circumstances, the level surfaces may be degenerate. For
instance, parallel planes (e.g., around a planar surface region) will
produce level surfaces which are two parallel planes, and planes
which are all parallel to a line (e.g., around a linear surface crease)
will produce cylindrical level surfaces. The matrix used for find-
ing optimal vertex positions (Eq. 1) will be invertible as long as the
level surfaces are non-degenerate ellipsoids. In this case, v̄ will be
at the center of the ellipsoid.

6 Additional Details

The general algorithm outlined so far performs well on most mod-
els. However, there are a few important enhancements which im-
prove its performance on certain types of models, particularly planar
models with open boundaries.

Preserving Boundaries. The error quadrics derived earlier do
not make any allowance for open boundaries. For models such as
terrain height fields, it is necessary to preserve boundary curves
while simplifying their shape. We might also wish to preserve dis-
crete color discontinuities. In such cases, we initially label each
edge as either normal or as a “discontinuity”. For each face sur-
rounding a particular discontinuity edge, we generate a perpendic-
ular plane running through the edge. These constraint planes are
then converted into quadrics, weighted by a large penalty factor, and

3Kalvin and Taylor [5] describe a somewhat similar use of quadrics to
represent plane sets. They were tracking sets of planes which fit a set of
points within some tolerance. They used ellipsoids in plane-space to rep-
resent the set of valid approximating planes.

Model Faces t Init (s) Simplify (s)

Bunny 69,451 0 3.3 12.0
Crater Lake 199,114 0 10.6 36.0

Cow 5,804 0 0.22 0.69
Cube Grid 1,200 0.12 0.25 0.17

Foot 4,204 0 0.16 0.41
Foot 4,204 0.318 0.43 0.76

Figure 5: Sample running times. All data reflects the time needed
to make a 10 face approximation of the given model. Initialization
time includes selecting valid pairs, computing initial error matrices,
and choosing contraction targets. Simplification time includes the
iterative contraction of pairs.

added into the initial quadrics for the endpoints of the edge. We have
found that this works quite well.

Preventing Mesh Inversion. Pair contractions do not neces-
sarily preserve the orientation of the faces in the area of the contrac-
tion. For instance, it is possible to contract an edge and cause some
neighboring faces to fold over on each other. It is usually best to try
to avoid this type of mesh inversion. We use essentially the same
scheme as others have before ([7] for example). When considering
a possible contraction, we compare the normal of each neighboring
face before and after the contraction. If the normal flips, that con-
traction can be either heavily penalized or disallowed.

6.1 Evaluating Approximations

In order to evaluate the quality of approximations produced by our
algorithm, we need an error measurement which is a bit more rig-
orous than the heuristic error measurement employed by the algo-
rithm itself. We have chosen a metric which measures the average
squared distance between the approximation and the original model.
This is very similar to the Edist energy term used by Hoppe et al. [4].
We define the approximation error Ei = E(Mn,Mi) of the simplified
model Mi as:

Ei = 1
|Xn| + |Xi|

(∑
v∈Xn

d2(v,Mi)+
∑
v∈Xi

d2(v,Mn)

)

where Xn and Xi are sets of points sampled on the models Mn and Mi

respectively. The distance d(v,M) = minp∈M ‖v− p‖ is the mini-
mum distance from v to the closest face of M (‖ · ‖ is the usual Eu-
clidean vector length operator). We use this metric for evaluation
purposes only; it plays no part in the actual algorithm.

7 Results

Our algorithm can produce high fidelity approximations in fairly
short amounts of time. Figure 5 summarizes the running time4 of
our current implementation using the models shown in this paper.
Figure 4 shows a sample sequence of approximations generated by
our algorithm. This entire sequence of cows was constructed in
about a second. Notice that features such as horns and hooves re-
main recognizable through many simplifications. Only at extremely
low levels of detail do they begin to disappear.

As described earlier, our algorithm attempts to optimize the
placement of vertices after contractions. Figure 6 summarizes the
effect of this policy on approximations for a representative model
(the cow model of Fig. 4). At extremely low levels of detail, the

4This data was collected on an SGI Indigo2 with a 195 MHz R10000 pro-
cessor and 128 Mbytes of memory.

Faces (i) Fixed (Ei) Optimal (Ei) Reduction

10 0.0062 0.0054 13.4%
100 0.00032 0.00025 21.7%
500 2.4e-05 1.3e-05 47.6%

1000 5.7e-06 3.4e-06 40.3%
2000 1.2e-06 7.9e-07 32.4%
3000 3.6e-07 2.6e-07 28.2%

Figure 6: Effect of optimal vertex placement. Choosing an opti-
mal position, rather than a fixed choice amongst the endpoints and
midpoint, can significantly reduce approximation error. Approxi-
mations are of cow model using t = 0.

effect is modest. However, at more reasonable levels of detail the
effect is substantial; optimal vertex placement can reduce the over-
all error by as much as 50%. In our experiments, we have also found
that using optimal vertex placement tends to produce more well-
shaped meshes.

Figures 8–13 demonstrate the performance of our algorithm on
much larger models. Figure 9 represents a significant simplifica-
tion (1.4%) of the original, but notice that all the major details of
the original remain. In particular, notice that the contours on the in-
terior of the ear and the large contours around the rear leg have been
preserved. Figure 10 presents an even more drastic approximation:
100 faces or 0.14% of the original size. While most of the detail of
the model has disappeared, the basic structure of the object is still
intact; the major features such as the head, legs, tail, and ears are all
apparent, albeit highly simplified. Figure 12 shows a very densely
tessellated terrain model, and Figure 13 shows a highly simplified
version. While the small scale texture of the terrain has largely dis-
appeared, all the basic features of the terrain remain. Also note that
the open boundary has been properly preserved. Without the bound-
ary constraints described earlier, the boundary would have been sig-
nificantly eroded.

Figure 11 illustrates the nature of the error quadrics accumulated
during simplification. The level surface vTQv= ε is shown for each
vertex. Each level surface is an ellipsoid centered around the corre-
sponding vertex. The interpretation of these ellipsoids is that a ver-
tex can be moved anywhere within its ellipsoid and have an error
less than ε. The significant feature of the ellipsoids is that they con-
form to the shape of the model surface very nicely. They are large
and flat on mostly planar areas such as the middle of the hind leg,
and they are elongated along discontinuity lines such as the contours
through the ear and along the bottom of the leg. In some sense, these
ellipsoids can be thought of as accumulating information about the
shape of the local surface around their vertex.

Figures 14–17 demonstrate the real benefits which aggregation
via pair contractions can provide. The original model consists of
the bones of a human’s left foot. There are many separate bone
segments, some of which even interpenetrate (obviously an error
in model reconstruction). Three approximations are compared: one
built by uniform vertex clustering, one built with edge contractions
alone, and one built with pair contractions. When edge contractions
alone are used, the small segments at the ends of the toes collapse
into single points; this creates the impression that the toes are slowly
receding back into the foot. On the other hand, using the more gen-
eral pair contractions allows separate bone segments to be merged.
As you can see in Figure 17, the toes are being merged into single
long segments. Figure 19 shows some of the pairs initially selected
as valid. Notice how they span the gaps between bone segments.
Finally, Figure 18 shows another illustration of the level surfaces
of the error quadrics accumulated during simplification (this is the
model seen in Figure 16).

The benefits of aggregation are not solely visual. Aggregation
can also produce objectively lower approximation error. Figure 7

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.5 1 1.5 2

A
pp

ro
xi

m
at

io
n

E
rr

or

Pair Distance Threshold (t)

250 Face Approximation

Figure 7: The effect of pair thresholds. Approximation error E250

is shown as a function of t for a 250 face approximation of the foot
model (Fig. 14). Pair contractions resulting in aggregation can sig-
nificantly reduce approximation error.

shows the error E250 for 250 face approximations of the foot model
using various values of t. A fairly wide range of values all produce
objectively better approximations than are achieved by the edge
contraction only approximation (t = 0). Notice, however, that in-
creasing t does not always improve the approximation. This is due
to the nature of our quadric error metric. Locally, the distance to a
set of planes is a reasonable approximation of the distance to a set
of faces. However, because planes have infinite extent and faces do
not, the error metric becomes less reliable as we move farther away.

8 Discussion

Our algorithm provides a mix of efficiency, quality, and generality
not found in earlier algorithms. While certain other algorithms are
faster or generate higher quality approximations than ours, they typ-
ically do not meet the capability of our algorithm in all three areas.
The only algorithm capable of simplifying arbitrary polygonal mod-
els, vertex clustering [8], does not reliably produce high quality ap-
proximations. None of the higher quality methods available [2, 7, 3]
support aggregation. Both [2] and [3] seem to be significantly more
time consuming than our algorithm. The results of [7] are most sim-
ilar to our own because we use a very similar error approximation.
However, our system uses a more efficient means to track plane sets,
and it incorporates some enhancements such as boundary preserva-
tion.

There remain various aspects of our algorithm that could be im-
proved upon. We have used a fairly simple scheme for selecting
valid pairs. It is quite possible that a more sophisticated adaptive
scheme could produce better results. We have not addressed the is-
sue of surface properties such as color. One possible solution is to
treat each vertex as a vector (x, y, z, r, g, b), construct 7×7 quadrics,
and simplify. We believe this could work well, but the added size
and complexity make it less attractive than the basic algorithm.

Although it generally performs well, our algorithm has a couple
of clear weaknesses. First, as mentioned earlier, measuring error as
a distance to a set of planes only works well in a suitably local neigh-
borhood. Second, the information accumulated in the quadrics is es-
sentially implicit, which can at times be problematic. Suppose we
join together two cubes and would like to remove the planes associ-
ated with the now defunct interior faces. Not only is it, in general,
difficult to determine what faces are defunct, there is no clear way to
reliably remove the appropriate planes from the quadrics. As a re-
sult, our algorithm does not do as good a job at simplification with

aggregation as we would like.

9 Conclusion

We have described a surface simplification algorithm which is capa-
ble of rapidly producing high fidelity approximations of polygonal
models. Our algorithm uses iterative pair contractions to simplify
models and quadric error metrics to track the approximate error of
the model as it is being simplified. The quadrics stored with the fi-
nal vertices can also be used to characterize the overall shape of the
surface.

Our algorithm has the ability to join unconnected sections of
models while still maintaining fairly high quality results. While
most previous algorithms are also inherently limited to manifold
surfaces, our system is quite capable of handling and simplifying
non-manifold objects. Finally, our algorithm provides a useful mid-
dle ground between very fast, low-quality methods such as vertex
clustering [8] and very slow, high-quality methods such as mesh op-
timization [3].

References

[1] Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg
Turk, Hans Weber, Pankaj Agarwal, Frederick Brooks, and
William Wright. Simplification envelopes. In SIGGRAPH ’96
Proc., pages 119–128, Aug. 1996. http://www.cs.unc.edu/∼geom/
envelope.html.

[2] André Guéziec. Surface simplification with variable tolerance.
In Second Annual Intl. Symp. on Medical Robotics and Com-
puter Assisted Surgery (MRCAS ’95), pages 132–139, Novem-
ber 1995.

[3] Hugues Hoppe. Progressive meshes. In SIGGRAPH ’96 Proc.,
pages 99–108, Aug. 1996. http://www.research.microsoft.com/
research/graphics/hoppe/.

[4] Hugues Hoppe, Tony DeRose, Tom Duchamp, John Mc-
Donald, and Werner Stuetzle. Mesh optimization. In
SIGGRAPH ’93 Proc., pages 19–26, Aug. 1993. http://
www.research.microsoft.com/research/graphics/hoppe/.

[5] Alan D. Kalvin and Russell H. Taylor. Superfaces:polygonal
mesh simplification with bounded error. IEEE Computer
Graphics and Appl., 16(3), May 1996. http://www.computer.org/
pubs/cg&a/articles/g30064.pdf.

[6] David Luebke and Carl Erikson. View-dependent simplifica-
tion of arbitrary polygonal environments. In SIGGRAPH 97
Proc., August 1997.

[7] Rémi Ronfard and Jarek Rossignac. Full-range approximation
of triangulated polyhedra. Computer Graphics Forum, 15(3),
Aug. 1996. Proc. Eurographics ’96.

[8] Jarek Rossignac and Paul Borrel. Multi-resolution 3D approx-
imations for rendering complex scenes. In B. Falcidieno and
T. Kunii, editors, Modeling in Computer Graphics: Methods
and Applications, pages 455–465, 1993.

[9] William J. Schroeder, Jonathan A. Zarge, and William E.
Lorensen. Decimation of triangle meshes. Computer Graph-
ics (SIGGRAPH ’92 Proc.), 26(2):65–70, July 1992.

[10] Marc Soucy and Denis Laurendeau. Multiresolution surface
modeling based on hierarchical triangulation. Computer Vi-
sion and Image Understanding, 63(1):1–14, 1996.

Figure 8: Original bunny model with 69,451 triangles. Rendered
using flat shading just as in approximations below.

Figure 9: An approximation using only 1,000 triangles (generated
in 15 seconds).

Figure 10: An approximation using only 100 triangles (generated in
15 seconds).

Figure 11: 1,000 face approximation. Error ellipsoids for each ver-
tex are shown in green.

Figure 12: Terrain model of Crater Lake (199,114 faces).

Figure 13: Simplified model with 999 faces (took 46 seconds).

Figure 14: Original. Bones of a human’s left foot (4,204 faces).
Note the many separate bone segments.

Figure 15: Uniform Vertex Clustering. 262 face approximation
(11×4×4 grid). Indiscriminate joining destroys approximation
quality.

Figure 16: Edge Contractions. 250 face approximation. Bone seg-
ments at the ends of the toes have disappeared; the toes appear to be
receding back into the foot.

Figure 17: Pair Contractions. 250 face approximation (t= 0.318).
Toes are being merged into larger solid components. No receding
artifacts. This model now contains 61 non-manifold edges.

Figure 18: Level surfaces of the error quadrics at the vertices of the
approximation shown in Figure 16.

Figure 19: Pairs selected as valid during initialization (for Fig. 17).
Red pairs are edges; green pairs are non-edges.

