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Polygonal models currently dominate inter-
active computer graphics. This is chiefly
because of their mathematical simplicity: polygonal
models lend themselves to simple, regular rendering
algorithms that embed well in hardware, which has in

This article surveys polygonal
simplification algorithms,
identifies the issues in
picking an algorithm, relates
the strengths and
weaknesses of different
approaches, and describes

several published algorithms.

turn led to widely available polygon
rendering accelerators for every
platform. Unfortunately, the com-
plexity of these models—measured
by the number of polygons—seems
to grow faster than the ability of our
graphics hardware to render them
interactively. Put another way, the
number of polygons we want always
seems to exceed the number of poly-
gons we can afford.

Polygonal simplification tech-
niques (see Figure 1) offer one solu-
tion for developers grappling with
complex models. These methods
simplify the polygonal geometry of
small, distant, or otherwise unim-
portant portions of the model, seek-

ing to reduce the rendering cost without a significant
loss in the scene’s visual content. This is at once a very
current and a very old idea in computer graphics. As
early as 1976, James Clark described the benefits of rep-
resenting objects within a scene at several resolutions,’
and flight simulators have long used hand-crafted mul-
tiresolution airplane models to guarantee a constant
frame rate. Recently, a flurry of research has targeted
generating such models automatically. If you’re consid-
ering using polygonal simplification to speed up your
3D application, this article should help you choose
among the bewildering array of published algorithms.

The first questions
The first step in picking the right simplification algo-
rithm is defining the problem. Ask yourself the follow-

24 May/June 2001

David P. Luebke
University of Virginia

ing questions. (Note that Table 1 gives some informal
and highly subjective recommendations for develop-
ers, organized according to the criteria I present in this
section.)

Why do | need to simplify polygonal objects?

What’s your goal? Are you trying to eliminate redun-
dant geometry? For example, the volumetric isosurfaces
generated by the marching cubes algorithm® tile the
model’s flat regions with many small, coplanar trian-
gles. Merging these triangles into larger polygons can
often decrease the model complexity drastically with-
out introducing any geometric error. Similarly, you may
need to subdivide a model for finite-element analysis;
afterwards a simplification algorithm could remove
unnecessary geometry.

Or are you trying to reduce model size, perhaps cre-
ating downloadable models for a Web site? Here the
primary concern becomes optimizing bandwidth,
which means minimizing storage requirements. A sim-
plification algorithm can take the original highly
detailed model—whether created by a CAD program,
laser scanner, or other source—and reduce it to a band-
width-friendly level of complexity. If reducing the size
required to store or transmit your 3D models is impor-
tant, you should also investigate algorithms for geo-
metric compression (see the “Further Reading” sidebar
onp. 26).

Or are you trying to improve runtime performance by
simplifying the polygonal scene being rendered? The
most common use of polygonal simplification is to gen-
erate levels of detail (LODs) of the objects in a scene. By
representing distant objects with a lower LOD and near-
by objects with a higher LOD, applications from video
games to CAD visualization packages can accelerate ren-
dering and increase interactivity. Similar techniques let
applications manage the rendering complexity of flying
over a large terrain database. This leads naturally to the
next important question.
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What are my models like?

No algorithm today excels at simplifying all models.
Some approaches best suit curved, organic forms, while
others work best at preserving mechanical objects with
sharp corners, flat faces, and regular curves. Many mod-
els, such as radiositized scenes or scientific visualization
data sets, have precomputed colors or lighting that must
be considered. Some scenes, such as terrain data sets
and volumetric isosurfaces from medical or scientific
visualization, comprise a few large, high-complexity,
individual objects. The monsters in a video game, on the
other hand, might consist of multiple objects of moder-
ate complexity, mostly in isolation. As a final example,
an automobile engine CAD model involves large assem-
blies of many small objects. Which simplification algo-
rithm you choose depends on which of these
descriptions applies to your models.

What matters to me most?

Ask yourself what you care about in a simplification
algorithm. Do you need to preserve and regulate geo-
metric accuracy in the simplified models? According to
what criterion? Some algorithms control the Hausdorff
distance of the simplified vertices or surface to the orig-
inal. (Informally, two point sets A and B are within Haus-
dorff distance d of each other if every point in A is within
distance d of a point in B, and vice versa.) Other algo-
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rithms bound the volumetric deviation of the simplified
mesh from the original. Some algorithms preserve the
model’s topological genus; others attempt to reduce the
genus in a controlled fashion.2

Do you simply want high visual fidelity? This unfor-
tunately is much harder to pin down; perception is more
difficult to quantify than geometry. Nonetheless, some
algorithms empirically provide higher visual fidelity
than others do: one measures the simplification against
rendered images* and another bounds, in pixels, the

Table 1. Assorted recommendations for “The First Questions” section.

1 Managing model complexity by
varying the level of detail used for
rendering small or distant objects.
Polygonal simplification methods

can create multiple levels of detail

Questions and Answers

Why do [ need to simplify polygonal objects?
Eliminate redundant geometry

Recommendation

Decimation? excels at this.

Reduce model size

For a one-shot application, use a high-fidelity algorithm like appearance-
preserving simplification (APS)? or image-driven simplification (IDS).* Also
consider geometry compression techniques (see the “Further Reading” sidebar).

Improve runtime performance
(by managing levels of detail)

Depends, see below.

What are my models like?
Complex organic forms

Decimation is often used, for example, for medical datasets, but quadric error
metrics (QEM)® provide better fidelity at drastic rates.

Mechanical objects

Progressive meshes® for fidelity; vertex clustering for speed and simplicity.

Lots of textures or precomputed lighting APS preserves fidelity best, with guaranteed bounds on deviation.

A few high-complexity objects

Use a view-dependent algorithm such as progressive meshes or hierarchical
dynamic simplification (HDS).”

Multiple moderately complex objects

Use LODs. QEM s the best overall algorithm for producing LODs.

Large assemblies of many small objects

Merge objects into hierarchical assemblies using a topology-tolerant algorithm
such as QEM or HDS.

So complex they don’t fit in memory

Out-of-core simplification® is your best bet.

What matters to me most?
Geometric accuracy

Use simplification envelopes (SE)’ for manifold models, otherwise use QEM.

Visual fidelity

APS provides strong fidelity guarantees but is limited on most current
hardware. IDS is driven by rendered images and has high visual fidelity.

Preprocess time

QEM provides high fidelity at high speed.

Drastic simplification

QEM if view-independent simplification suffices, otherwise use HDS.

Completely automatic

HDS works well for this.

Simple to code

Use publicly available code if possible, otherwise code up vertex clustering.
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Further Reading

A number of excellent surveys review the field of
polygonal simplification. For example, Cignoni et al.!
supplied some comparative performance statistics, while
Heckbert and Garland? and Puppo and Scopigno?
summarized many of the methods not mentioned here. A
tutorial by De Floriani et al.* provides a nice overview of
LOD techniques in both surface and volume modeling.

Since polygonal simplification methods reduce the
amount of geometry required to represent a model, they
can are a form of geometry compression. Simplification
provides lossy compression: simplified LODs require less
memory to store and less bandwidth to deliver across a
network, but at the cost of lower fidelity. Since 1995,
researchers have proposed many geometry-compression
techniques—both lossy and lossless—and the state of the
art is rapidly advancing. Developers interested in reducing
their 3D models’ storage or bandwidth requirements may
wish to investigate this burgeoning field. A full survey lies
beyond the scope of this article, but a brief list of important
papers follows (for more detail, see Taubin and Rossignac’s
excellent overview?):

m Geometry compression.® This seminal paper introduced the
generalized triangle mesh representation, which caches the
most recent n vertices for reference by triangles. The algo-
rithm also optimizes the encoding of normals using a table-
based approach and applies standard compression
techniques to colors and coordinates.

m Geometric compression through topological surgery.” This
work focuses on compressing connectivity and coordinate
information using a vertex spanning tree. It forms the basis
for 3D geometry compression in the MPEG-4 standard.

W Progressive forest split compression.® This algorithm combines
aspects of progressive meshes and topological surgery, pro-
viding a highly efficient encoding of models that may be
transmitted progressively across a network. Each stage of
decompression doubles the number of vertices by splitting
each vertex into two and stitching together the split regions
according to an encoded triangulation.

m Edgebreaker.’ This algorithm uses a finite-state machine to
traverse and label triangles in a manifold mesh, compress-

ing the triangle connectivity of zero-genus (that is, no holes)
objects to less than 2 bits per triangle.

m Progressive geometry compression.'® This recent and sophis-

ticated progressive coding algorithm uses semiregular mesh-
es, wavelet transforms, and zero-tree coding to achieve
extremely high compression rates with excellent visual fideli-
ty. The algorithm, designed for densely sampled meshes
produced by geometry scanning, doesn’t attempt to recre-
ate the connectivity or vertex locations of the original mesh,
focusing instead on the underlying surface’s shape.
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visual disparity between an object and its simplification.

Is preprocess time an issue? For models containing
thousands of parts and millions of polygons, creating
LODs becomes a batch process that can take hours or
days to complete. Depending on the application, such
long preprocessing times may be a slight inconvenience
or a fundamental handicap. In a design-review setting,
for instance, CAD users may want to visualize their revi-
sions in the context of the entire model several times a
day. Hours of preprocessing prevent the rapid turn-
around desirable in this scenario. On the other hand,
when creating LODs for a video game or a product
demonstration, it makes sense to take the time neces-
sary to get the highest quality simplifications.

If runtime performance is crucial or your models are
extremely complex, you may need an algorithm capable
of drastic simplification. As the following sections
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explain, drastic simplification may require drastic mea-
sures such as view-dependent simplification and topol-
ogy-reducing simplification. If you need to simplify many
different models, a completely automatic algorithm may
be most important. Perhaps—Ilet’s face it—you just want
something simple to code. Once you decide what mat-
ters to you most, you're ready to pick an algorithm.

Different kinds of algorithms, and why
you'd want to use them

The computer graphics literature is replete with excel-
lent simplification algorithms. Researchers have pro-
posed dozens of approaches, each with strengths and
weaknesses. Here, I attempt a useful taxonomy for sim-
plification algorithms, listing some important ways algo-
rithms can differ or resemble each other and describing
what these mean to the developer.



Topology

The treatment of mesh topology during simplification
provides an important distinction among algorithms.
First, let me introduce a few terms. In the context of polyg-
onal simplification, topology refers to the connected
polygonal mesh’s structure. The genus is the number of
holes in the mesh surface. For example, a sphere and a
cube have a genus of zero, while a doughnut and a cof-
fee cup have a genus of one. The local topology of a face,
edge, or vertex refers to the connectivity of that feature’s
immediate neighborhood. The mesh forms a 2D manifold
if the local topology is everywhere equivalent to a disc—
that is, if the neighborhood of every feature consists of a
connected ring of polygons forming a single surface (see
Figure 2). In a triangulated mesh displaying manifold
topology, exactly two triangles share every edge, and
every triangle shares an edge with exactly three neigh-
boring triangles. A 2D manifold with boundary permits
boundary edges, which belong to only one triangle.

Manifold meshes result in well-behaved models. Vir-
tually any simplification algorithm can successfully
operate on any manifold object. Manifold meshes are
also desirable for many other applications, such as finite-
element analysis and radiosity. Some algorithms and
modeling packages guarantee manifold output. For
example, the marching-cubes algorithm constructs
manifold volumetric isosurfaces. Unfortunately, in actu-
al practice many models aren’t perfectly manifold, with
topological flaws such as cracks, T-junctions, and non-
manifold points or edges (see Figure 3). Such defects
are particularly problematic in CAD, which by defini-
tion involves handmade models.

A topology-preserving simplification algorithm pre-
serves manifold connectivity at every step. Such algo-
rithms don’t close holes in the mesh and therefore
preserve the overall genus. Because no holes appear or
disappear during simplification, the simplified object’s
visual fidelity tends to be relatively good. This constraint
limits the simplification possible, however, since objects
of a high genus can’t be simplified below a certain num-
ber of polygons without closing holes in the model (see
Figure 4). Moreover, a topology-preserving approach

2 A 2D mani-
fold with a
boundary
(boundary
edges in green).
One or two
triangles share
each edge and a
connected ring
of triangles
shares each
vertex.

(a) (b) (©

3 Examples of nonmanifold meshes: (a) An edge shared by three triangles,
(b) a vertex shared by two otherwise unconnected sets of triangles, and (c)
a T-vertex.

requires beginning with a mesh with manifold topology.
Some algorithms are topology tolerant—they ignore
regions in the mesh with nonmanifold local topology,
leaving those regions unsimplified. Other algorithms,
faced with nonmanifold regions, may simply fail.
Topology-modifying algorithms don’t necessarily pre-
serve manifold topology. The algorithms can therefore
close up holes in the model and aggregate separate
objects into assemblies as simplification progresses, per-
mitting drastic simplification beyond the scope of topol-
ogy-preserving schemes. This drastic simplification

4 Preserving genus limits drastic simplification. The original model of a brake rotor with (a) 4,736 triangles and 21 holes is simplified
with a topology-preserving algorithm using (b) 1,006 triangles and 21 holes and a topology-modifying algorithm with (c) 46 triangles
and one hole. Model courtesy of the Alpha_1 Project, University of Utah.
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5 The vertex-merge operation mesh that can be recursively subdi-
clusters multiple vertices (green) Vertex merge vided to closely approximate the ini-
together into a single representa- . tial model. This approach works
tive vertex (orange), eliminating best when the base model is easily
those triangles (aqua) whose corner found. For example, the base model

vertices are merged.

Edge collapse

\_/

Vertex split

6 The edge-collapse operation merges exactly two vertices that share an
edge. This eliminates two triangles from the mesh (one if the edge lies on a
boundary). A vertex split is the dual of an edge collapse, introducing two
triangles.

often comes at the price of poor visual fidelity, with dis-
tracting popping artifacts caused by holes appearing
and disappearing from one LOD to the next. Some topol-
ogy-modifying algorithms don’t require valid topology
in the initial mesh, which greatly increases their utility
in real-world CAD applications. Some topology-modi-
fying algorithms attempt to regulate the change in topol-
ogy but most are topology insensitive, paying no heed to
the initial mesh connectivity.

As a rule, topology-preserving algorithms work best
when visual fidelity is crucial or with an application such
as finite-element analysis, in which surface topology can
affect results. Preserving topology also simplifies some
applications, such as multiresolution surface editing,
which require a correspondence between an object’s
high- and low-detail representations. Real-time visual-
ization of complex scenes, however, requires drastic sim-
plification and here topology-modifying algorithms
have the edge. Either way, pick a topology-tolerant algo-
rithm unless you're certain that your models will always
have valid manifold topology.

Mechanism

Nearly every simplification technique in the literature
uses some variation or combination of four basic poly-
gon removal mechanisms: sampling, adaptive subdivi-
sion, decimation, and vertex merging. Because the
mechanism you use may affect an algorithm’s charac-
teristics, these are worth a few comments.

m Sampling algorithms sample the initial model’s geom-
etry, either with points on the model’s surface or vox-
els superimposed on the model in a 3D grid. These
are among the more elaborate and difficult to code
approaches. They may have trouble achieving high
fidelity since high-frequency features are inherently
difficult to sample accurately. These algorithms usu-
ally work best on smooth organic forms with no sharp
corners.

m Adaptive subdivision algorithms find a simple base
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for a terrain is typically a rectangle.

Achieving high fidelity on general

polygonal models requires creating
a base model that captures the original model’s
important features, which can be tricky. Adaptive sub-
division methods preserve the surface topology,
which may limit their capacity for drastic simplifica-
tion. On the other hand, they suit multiresolution sur-
face editing well, because changes made at low levels
of subdivision propagate naturally to higher levels.

m Decimation techniques iteratively remove vertices or
faces from the mesh, retriangulating the resulting
hole after each step. These algorithms are relatively
simple to code and can be very fast. Most use strictly
local changes that tend to preserve the genus, which
again could restrict drastic simplification ability, but
these algorithms excel at removing redundant geom-
etry such as coplanar polygons.

m Vertex-merging schemes operate by collapsing two or
more vertices of a triangulated model together into a
single vertex, which in turn can be merged with other
vertices. Merging a triangle’s corners eliminates it,
decreasing the total polygon count (see Figure 5). Ver-
tex merging is a simple and easy-to-code mechanism,
but algorithms use techniques of varying sophistication
to determine which vertices to merge in what order.
Accordingly, vertex-merging algorithms range from
simple, fast, and crude to complex, slow, and accurate.
Edge-collapse algorithms (see Figure 6), which always
merge two vertices sharing an edge, tend to preserve
local topology, but algorithms permitting general ver-
tex-merge operations can modify topology and aggre-
gate objects, enabling drastic simplification of complex
objects and assemblies of objects

Static, dynamic, and view-dependent
simplification

The traditional approach to accelerating rendering
with polygonal simplification creates several discrete
versions of each object in a preprocess, each at a differ-
ent level of detail. At runtime, rendering algorithms
choose the appropriate LOD to represent the object.
Because distant objects use much coarser LODs, the total
number of polygons is reduced and rendering speed
increased. Because we compute LODs offline during pre-
processing, this approach can be called static polygonal
simplification.

Static simplification has many advantages. Decou-
pling simplification and rendering makes this the sim-
plest model to program. The simplification algorithm
generates LODs without regard to real-time rendering
constraints, and the rendering algorithm simply choos-
es which LODs to render. Furthermore, modern graph-
ics hardware lends itself to the multiple model versions
created by static simplification, because each LOD can
be converted during preprocessing to triangle strips and
compiled as a separate display list. Rendering such dis-



7 Two examples of view-dependent simplification, with the view frustum in yellow. A high-resolution terrain near
the viewer is simplified aggressively as distance increases (left). A sphere is simplified aggressively in interior and
backfacing regions, while high fidelity is preserved along the silhouette (right).

play lists will usually be much faster than rendering the
LODs as an unordered list of polygons.

Dynamic polygonal simplification departs from the tra-
ditional static approach. Whereas a static simplification
algorithm creates individual LODs during the prepro-
cessing stage, a dynamic simplification system creates
a data structure encoding a continuous spectrum of
detail. The desired LOD can be extracted from this struc-
ture at runtime. A major advantage of this approach is
better granularity. Since the algorithm specifies the LOD
for each object exactly, rather than choosing from a few
precreated options, it uses no more polygons than nec-
essary. This frees up more polygons for rendering other
objects. Better granularity thus leads to better use of
resources and higher overall fidelity for a given polygon
count. Dynamic simplification also supports progressive
transmission of polygonal models, in which a base
model is transmitted followed by a stream of refine-
ments to be integrated dynamically.®

View-dependent simplification extends dynamic sim-
plification by using view-dependent criteria to select the
most appropriate LOD for the current view. In a view-
dependent system, a single object can span multiple lev-
els of simplification. For instance, nearby portions of the
object may appear at a higher resolution than distant
portions, or silhouette regions of the object may appear
at a higher resolution than interior regions (see Figure
7). By allocating polygons where they’re most needed,
view-dependent simplification optimizes the distribu-
tion of this scarce resource.

Indeed, complex models representing physically large
objects often can’t be adequately simplified without view-
dependent techniques. Terrain models are a classic
example. Large terrain databases are well beyond the
interactive rendering abilities of even high-end graphics
hardware, but creating traditional LODs doesn’t help.
The viewpoint is typically quite close to part of the ter-
rain and distant from other parts, so a high LOD will pro-
vide good fidelity at unacceptable frame rates, while a
low LOD will provide good frame rates but terrible fideli-
ty. Breaking up the terrain into smaller chunks, each

comprising multiple LODs, addresses both problems but
introduces discontinuities between chunks. These dis-
continuities appear as cracks when two adjacent chunks
are represented at different LODs. A view-dependent
simplification system, however, can use a high LOD to
represent the terrain near the viewpoint and a low LOD
for parts distant, with a smooth degradation of detail
between. Not surprisingly, early work on view-depen-
dent simplification focused on terrains.*®

The static simplification approach of creating multi-
ple discrete LODs in a preprocess is simple and works
best with most current graphics hardware. Dynamic
simplification supports the progressive transmission of
polygonal models and provides better granularity,
which in turn can provide better fidelity. View-depen-
dent simplification can provide even better fidelity for
a given polygon count and can handle models (such as
terrains) containing complex individual objects that are
physically large with respect to the viewer. An obvious
disadvantage of view-dependent systems is the
increased runtime load of choosing and extracting an
appropriate LOD. If the rendering system is CPU bound,
this additional load will decrease the frame rate, cutting
into the speedup provided by regulating LODs.

A brief catalog of algorithms

Several published algorithms follow, each classified
according to their underlying mechanism; how they
treat topology; and whether they use static, dynamic,
or view-dependent simplification. In some cases, I
describe a family of algorithms, with reference to papers
that improve or extend the original published algorithm.
The intent of this section isn’t to provide an exhaustive
list of work in the field of polygonal simplification, nor
to select the best papers, but to briefly describe a few
important algorithms that span the taxonomy present-
ed. You may choose to implement one of the algorithms
here (or download the code, if available), choose anoth-
er algorithm from the literature, or come up with your
own. Hopefully, this article will help you make an
informed decision.

IEEE Computer Graphics and Applications
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The decimation algorithm, designed to
reduce isosurfaces containing millions of
polygons, is quite fast. It's also topology
tolerant, accepting models with
nonmanifold vertices but not attempting

to simplify around those vertices.

Triangle mesh decimation

Schroeder, Zarge, and Lorenson published one of the
first algorithms to simplify general polygonal models
and coined the term decimation for iterative removal of
vertices.? Schroeder’s decimation scheme is designed
to operate on the output of the marching cubes algo-
rithm for extracting isosurfaces from volumetric data
and is still commonly used for this purpose. Marching
cubes output is often heavily overtessellated, with
coplanar regions divided into many more polygons than
necessary, and Schroeder’s algorithm excels at remov-
ing this redundant geometry.

The algorithm operates by making multiple passes
over all the vertices in the model. During a pass, the
algorithm considers deleting each vertex. If the vertex
can be removed without violating the neighborhood’s
local topology, and if the resulting surface would lie
within a user-specified distance of the unsimplified
geometry, the algorithm deletes the vertex and all its
associated triangles. This leaves a hole in the mesh,
which is then retriangulated. The algorithm continues
to iterate over the vertices in the model until it can’t
remove any more vertices.

The vertices of a model simplified by the decimation
algorithm are a subset of the original model’s vertices.
This property is convenient for reusing normals and tex-
ture coordinates at the vertices, but it can limit the fideli-
ty of the simplifications since minimizing the geometric
error introduced by the simplified approximation to the
original surface can require changing the vertices’ posi-
tions.® The decimation algorithm, designed to reduce
isosurfaces containing millions of polygons, is quite fast.
It’s also topology tolerant, accepting models with non-
manifold vertices but not attempting to simplify around
those vertices. Schroeder, Zarge, and Lorenson have
since developed a topology-modifying algorithm. ™ Pub-
lic-domain decimation code is available as part of the
Visualization Tool Kit at http://www.kitware.
com/vtk.html.

Vertex clustering

This vertex-merging algorithm, first proposed by
Rossignac and Borrel,® is topology insensitive, neither
requiring nor preserving valid topology. The algorithm
can therefore deal robustly with degenerate models with
which other approaches have little or no success. The
Rossignac-Borrel algorithm begins by assigning an
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importance to each vertex. Vertices attached to large
faces and vertices of high curvature are considered more
important than vertices attached to small faces and ver-
tices of low curvature. Next, the algorithm overlays a
3D grid on the model and collapses all vertices within
each cell of the grid to the single most important vertex
within the cell. The grid’s resolution determines the
quality of the resulting simplification; a coarse grid will
aggressively simplify the model whereas a fine grid will
perform only minimal reduction. During the clustering
process, triangles whose corners are collapsed together
become degenerate and disappear.

Low and Tan'® introduced a different clustering
approach called floating-cell clustering. This technique
ranks the vertices by importance, and a cell of user-spec-
ified size is centered on the most important vertex. The
algorithm collapses all vertices falling within the cell to
the representative vertex and filters out degenerate tri-
angles as in the Rossignac—Borrel scheme. The most
important remaining vertex becomes the center of the
next cell, and the process repeats. Eliminating the
underlying grid greatly reduces the simplification’s sen-
sitivity to the model’s position and orientation. Low and
Tan also improved on the criteria used for calculating
vertex importance. Recently, Lindstrom extended the
Rossignac-Borrel algorithm in a different direction,
describing an out-of-core implementation that requires
only enough memory to store the final (simplified)
mesh.® Lindstrom also used Garland and Heckbert’s
quadric error metric (described later) to place the rep-
resentative vertex for each cell.

One unique feature of the Rossignac-Borrel algo-
rithm is the fashion in which it renders triangles with
merged corners. Reasoning that a triangle with two
corners collapsed is a line and a triangle with three cor-
ners collapsed is a point, Rossignac and Borrel chose
to render such triangles using the graphics hardware
line and point primitives. Thus, a simplification of a
polygonal object will generally be a collection of poly-
gons, lines, and points. The resulting simplifications
are therefore more accurate from a schematic than a
strictly geometric standpoint. For the purposes of dras-
tic simplification, however, the lines and points can
contribute significantly to the recognizability of the
object. Low and Tan extended this concept, using thick
lines and a dynamically assigned normal to give a cylin-
der-like appearance to degenerate triangles collapsed
to lines.

The original Rossignac-Borrel algorithm and Lind-
strom’s out-of-core extension, which cluster vertices to
a 3D grid, are extremely fast and run in O(n) time for n
vertices. The Low—Tan variation is also quite fast, though
ranking the vertices by importance slows the algorithm
to O(nlgn). The methods do suffer some disadvantages.
Since the algorithms don’t preserve topology and don’t
guarantee the amount of error introduced by the sim-
plified surface, the resulting simplifications are often
less pleasing visually than those of slower algorithms.
Also, it’s difficult to specify the output of these algo-
rithms, since the only way to predict how many trian-
gles an LOD will have using a specified grid resolution
is to perform the simplification.



Multiresolution analysis of arbitrary meshes

This adaptive subdivision algorithm by Eck et al.”
uses a compact wavelet representation to guide a recur-
sive subdivision process. Multiresolution analysis, or
MRA, adds or subtracts wavelet coefficients to interpo-
late smoothly between LODs. This process is fast enough
to do at runtime, enabling dynamic simplification. By
using enough wavelet coefficients, the algorithm can
guarantee that the simplified surface lies within a user-
specified distance of the original model.

This work’s chief contribution is that it provides a
method for finding a simple base mesh that exhibits sub-
division connectivity, so that recursive subdivision will
recover the original mesh. As previously mentioned,
finding a base mesh is simple for terrain data sets but
difficult for general polygonal models of arbitrary topol-
ogy. MRA creates the base mesh by growing Voronoi-
like regions across the original surface’s triangles. When
these regions can’t grow anymore, the Voronoi sites
form a Delauney-like triangulation, and the triangula-
tion forms the base mesh.

This algorithm possesses the disadvantages of strict
topology-preserving approaches. Manifold topology is
absolutely required in the input model, and the original
object’s shape and genus limit the potential for drastic
simplification. The fidelity of the resulting simplifica-
tions is quite high for smooth, organic forms. However,
the algorithm is fundamentally a low-pass filtering
approach and has difficulty capturing sharp features in
the original model unless the features happen to fall
along a division in the base mesh.®

Voxel-based object simplification
Topology-preserving algorithms must retain the orig-
inal object’s genus, which often limits their ability to per-
form drastic simplification. Topology-insensitive
approaches such as the Rossignac-Borrel algorithm
don’t suffer from these constraints but reduce the topol-
ogy of their models haphazardly and unpredictably.
Voxel-based object simplification by He et al.!! is an
intriguing attempt to simplify topology in a gradual and
controlled manner using a signal processing approach.
The algorithm begins by sampling a volumetric rep-
resentation of the model, superimposing a 3D grid of
voxels over the polygonal geometry. It assigns each voxel
avalue of 1 or 0, according to whether the sample point
of that voxel lies inside or outside the object. Next, the
algorithm applies a low-pass filter and resamples the
volume. The result is another volumetric representation
of the object with a lower resolution. Sampling theory
guarantees that small, high-frequency features will be
eliminated in the low-pass-filtered volume. The algo-
rithm then applies marching cubes to generate a sim-
plified polygonal model. Because marching cubes can
create redundant geometry, He et al. used a standard
topology-preserving algorithm as a postprocess.
Unfortunately, high-frequency details such as sharp
edges and squared-off corners seem to contribute great-
ly to the perception of shape. As a result, the voxel-based
simplification algorithm performs poorly on models
with such features. This greatly restricts its usefulness on
mechanical CAD models. Moreover, the algorithm as

|
Quadric error metrics provide a fast, simple
way to guide the simplification process
with relatively minor storage costs. The
resulting algorithm is extremely fast. The
visual fidelity of the resulting

simplifications tends to be quite high.

originally presented isn’t topology tolerant, since decid-
ing whether sample points lie inside or outside the object
requires well-defined, closed-mesh objects with mani-
fold topology.

Simplification envelopes

Cohen et al.? introduced simplification envelopes to
guarantee fidelity bounds while enforcing global and
local topology. The simplification envelopes of a surface
consist of two offset surfaces, or copies of the surface off-
set no more than some distance € from the original sur-
face. The outer envelope displaces each vertex of the
original mesh along its normal by €, while the inner
envelope displaces each vertex by —e. The envelopes
aren’t allowed to self-intersect; where the curvature
would create such a self-intersection, the algorithm
decreases ¢ in the local neighborhood.

Once created, these envelopes can guide the simpli-
fication process. Cohen et al. describe two decimation
approaches that iteratively remove triangles or vertices
and retriangulate the resulting holes. By keeping the
simplified surface within the envelopes, these algo-
rithms can guarantee that the simplified surface never
deviates by more than € from the original surface and
that the surface doesn’t self-intersect. The resulting sim-
plifications tend to have excellent fidelity.

Where fidelity and topology preservation are crucial,
simplification envelopes prove an excellent choice. The
€ error bound is also an attractive feature of this
approach, providing a natural means for calculating LOD
switching distances. However, the strict preservation of
topology and the careful avoidance of self-intersections
curtail the approach’s capability for drastic simplifica-
tion. The construction of offset surfaces also requires an
orientable manifold, and topological imperfections in
the initial mesh can hamper or prevent simplification.
Finally, the algorithms for simplification envelopes are
intricate—writing a robust system based on simplifica-
tion envelopes seems a substantial undertaking. Fortu-
nately, Cohen et al. posted their implementation at
http://www.cs.unc.edu/~geom/envelope.html.

Appearance-preserving simplification

This rigorous algorithm by Cohen, Olano, and
Manocha?® takes the error-bounding approach of sim-
plification envelopes a step further, providing the best
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8 Texture coordinate deviation.
The original model (left, 1740
polygons) has a checkerboard
texture applied. Simplifying to a
single pixel tolerance without tak-
ing texture deviation into effect
(middle, 108 polygons) results in an
accurate silhouette but noticeable
texture distortion. Applying the
texture deviation metric (right, 434
polygons) guarantees texture as
well as silhouette correctness.

Courtesy Jon Cohen, Johns Hopkins University

guarantees on fidelity of any simplification algorithm.
Fidelity is expressed in terms of maximum screenspace
deviation, meaning that the simplification’s appearance
when rendered should deviate from the original’s
appearance by no more than a user-specified number
of pixels. The authors identified three attributes that
affect the simplification’s appearance:

m Surface position: the coordinates of the vertices.

m Surface color: the color field across the mesh.

m Surface curvature: the field of normal vectors across
the mesh.

Algorithms that guarantee a limit on the deviation of
surface position (such as simplification envelopes) may
nonetheless introduce errors in surface color and cur-
vature that exceed that limit. For example, simplifying
a texture-mapped surface can introduce more distor-
tion in the texture map than in the actual geometry (see
Figure 8). Appearance-preserving simplification decou-
ples surface position from color and curvature by stor-
ing the latter in texture and normal maps (a normal map
resembles a bump map), respectively. The model then
reduces to a simple polygonal mesh with texture coor-
dinates, from which the simplification algorithm com-
putes LODs. The simplification process thus filters
surface position, while the graphics hardware filters
color and curvature information at runtime by MIP map-
ping the texture and normal maps.

The simplification process uses edge collapses, guid-
ed by a texture deviation metric that bounds the devia-
tion of a mapped attribute value from its correct position
on the original surface. The algorithm applies this devi-
ation metric to both the texture and normal maps; edge
collapses that cause surface color, normals, or position
to shift by more than the maximum user-specified dis-
tance € aren’t allowed. Of course, this requirement con-
strains the degree of simplification possible, making
appearance-preserving simplification less suitable for
drastic simplification.

Although texture-mapping graphics hardware is com-
monplace, hardware support for normal- or bump-map-
ping is just beginning to appear in consumer-level
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systems. Appearance-preserving simplification is thus
most useful today on models that don’t require dynamic
lighting, such as radiositized datasets. In the near future,
as more sophisticated shading becomes ubiquitous in
hardware, appearance-preserving simplification could
become the standard for high-fidelity simplification.

Quadric error metrics

This vertex-merging algorithm by Garland and Heck-
bert® strikes perhaps the best balance yet between speed,
fidelity, and robustness. The algorithm proceeds by iter-
atively merging pairs of vertices, which need not be con-
nected by an edge. Candidate vertex pairs include all
vertex pairs connected by an edge, plus all vertex pairs
separated by less than a user-specified distance thresh-
old t. The algorithm’s major contribution is a new way
to represent the error introduced by a sequence of ver-
tex merge operations, called the quadric error metric. A
vertex’s quadric error metric is a 4 x 4 matrix that rep-
resents the sum of the squared distances from the ver-
tex to the planes of neighboring triangles. Because the
matrix is symmetric, 10 floating-point numbers suffice
to represent the geometric deviation introduced during
the course of the simplification.

The error introduced by a vertex-merge operation can
be quickly derived from the sum of the quadric error
metrics of the vertices being merged and that sum will
become the merged vertex’s quadric error metric. At the
beginning of the algorithm, all candidate vertex pairs
are sorted into a priority queue according to the error
calculated for merging them. The algorithm removes
the vertex pair with the lowest merge error from the top
of the queue and merges it. The algorithm then updates
the errors of all vertex pairs involving the merged ver-
tices and repeats the process.

Quadric error metrics provide a fast, simple way to
guide the simplification process with relatively minor
storage costs. The resulting algorithm is extremely fast.
The visual fidelity of the resulting simplifications tends
to be quite high, even at drastic levels of simplification.
Because disconnected vertices closer than t may merge,
the algorithm doesn’t require manifold topology. This
lets holes close and objects merge, enabling more dras-



tic simplification than topology-preserving schemes.

One disadvantage of the algorithm is that the number
of candidate vertex pairs, and hence the algorithm’s run-
ning time, approaches O (n?) as t approaches the model’s
size. Erikson and Manocha'® proposed an adaptive
threshold selection scheme that addresses this problem.
They also improved fidelity for certain models by incor-
porating a surface-area metric, and addressed the lack of
support for shading attributes (color, normal, and tex-
ture coordinates) in the original Garland-Heckbert algo-
rithm. Garland and Heckbert also described an extension
for color in a later paper,' but Hoppe probably present-
ed the best extension of quadrics to handle attributes.?
All told, the simple-to-implement quadric-error-metrics
algorithm may be the best combination of efficiency,
fidelity, and generality currently available for creating
LODs. Even better, Garland and Heckbert released their
implementation as a software package called QSlim,
available at http://graphics.cs.uiuc.edu/~garland/
software/qgslim.html.

Image-driven simplification

This unique algorithm by Lindstrom and Turk* was
the first to address simplification directly in terms of how
the simplified model will look when rendered. Like the
quadric-error-metrics algorithm, simplification occurs
through a sequence of edge collapse operations. The
unique feature of image-driven simplification is the error
metric used to order the edge collapses. While all other
simplification algorithms to date use some form of geo-
metric criteria—possibly modified to account for color,
normal, and texture coordinate distortion—Lindstrom
and Turk used a purely image-based metric.

Put briefly, we can determine the cost of an edge col-
lapse operation by performing the collapse and render-
ing the model from multiple viewpoints. The algorithm
compares the rendered images to images of the original
model and sums up the mean-square error in luminance
across all pixels of all images. It sorts all edges under
consideration into a priority queue according to the total
error they induce in the images and chooses the edge
collapse that induces the least error. The algorithm then
reevaluates and resorts nearby edges into the queue and
continues the process.

Evaluating an edge collapse is clearly an expensive
step. Rendering the entire model for every edge and
from many viewpoints—Lindstrom and Turk used 20
viewpoints in their implementation—would be almost
prohibitively expensive, even with hardware-accelerat-
ed rendering. To reduce the cost, Lindstrom and Turk
exploited the fact that a typical edge collapse affects only
a small region of the screen and thus a small fraction of
the total triangles. They used a clever scheme for
“unrendering” and rerendering the affected triangles,
based on spatial hash tables that record the position of
each triangle within each image. In this way, only a
small portion of the triangles need be rendered per
image to evaluate each edge collapse.

Using an image-based metric addresses several
thorny problems in polygonal simplification. Most
geometry-based algorithms that account for surface
attributes such as color and texture coordinates use an

arbitrary user-specified weighting to determine the rel-
ative importance of preserving these attributes versus
preserving geometric fidelity. Evaluating each simplifi-
cation operation according to its effect on a rendered
image provides a direct, natural way to balance geo-
metric and shading properties. Other advantages of the
image-based approach include high-fidelity preserva-
tion of silhouette regions coupled with drastic simplifi-
cation of unseen model geometry, and simplification
sensitivity to artifacts caused by shading interpolation as
well as to the content of texture maps across the surface.

The primary disadvantage of the image-driven
approach for many developers will undoubtedly be the
algorithm’s speed. Despite the optimizations men-
tioned, reducing a model comprising tens of thousands
of polygons to a few hundred polygons could take
hours. To address this, Lindstrom and Turk performed
two passes, presimplifying the model with a fast geom-
etry-driven algorithm before applying image-driven
simplification. Still, the image-driven stage ranges from
several minutes to a few hours, much slower than the
fastest geometry-driven algorithms. Depending on the
application, however, the high visual quality of the
resulting simplifications will undoubtedly be worth the
wait to some developers.

Progressive meshes

A progressive mesh represents polygonal models as a
sequence of edge collapses. Hoppe introduced progres-
sive meshes as the first dynamic simplification algorithm
for general polygonal manifolds® and later extended
them to support view-dependent simplification.? A pro-
gressive mesh consists of a simple base mesh, created
by a sequence of edge collapse operations and a series of
vertex split operations. A vertex split (vsplit) is the dual
of an edge collapse (ecol). Each vsplit replaces a vertex
by two edge-connected vertices, creating one addition-
al vertex and two additional triangles. The vsplit oper-
ations in a progressive mesh correspond to the
edge-collapse operations used to create the base mesh.
Applying every vsplit to the base mesh will recapture
the original model exactly; applying a subset of the
vsplits will create an intermediate simplification. In fact,
the stream of vsplit records encodes a continuum of sim-
plifications from the base mesh up to the original model.
The vsplit and ecol operations are fast enough to apply
at runtime, supporting dynamic and view-dependent
simplification.

Along with the new representation, Hoppe described
a careful simplification algorithm that explicitly mod-
els mesh complexity and fidelity as an energy function
to be minimized. The algorithm evaluates all edges that
can be collapsed according to their effect on this ener-
gy function and sorts them into a priority queue. The
energy function can then be minimized in a greedy fash-
ion by performing the ecol operation at the head of the
queue, which will decrease the energy function. The
algorithm then reevaluates and resorts nearby edges
into the queue. This process repeats until topological
constraints prevent further simplification. The remain-
ing edges and triangles comprise the base mesh, and the
sequence of ecol operations performed becomes (in
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reverse order) the hierarchy of vsplit operations.

Hoppe introduced a nice framework for handling sur-
face attributes of a progressive mesh during simplifica-
tion. He categorized such attributes as discrete
attributes—associated with faces in the mesh and scalar
attributes—associated with corners of the faces in the
mesh. Common discrete attributes include material and
texture identifiers; common scalar attributes include
color, normal, and texture coordinates. Hoppe also
described how to model some of these attributes in the
energy function, letting normals, color, and material
identifiers guide the simplification process.

Hoppe described three view-dependent simplifica-
tion criteria. A view frustum test aggressively simplifies
regions of the mesh out of view, a backfacing test aggres-
sively simplifies regions of the mesh not facing the view-
er, and a screenspace error threshold guarantees that
the geometric error in the simplified mesh is never
greater than a user-specified screenspace tolerance.
Because the algorithm measures deviation tangent to
the surface separately from deviation perpendicular to
the surface, silhouette preservation falls out of this error
test naturally. Clever streamlining of the math involved
makes these tests surprisingly efficient. Hoppe reported
that evaluating all three criteria, which share several
subexpressions, takes only 230 CPU cycles on average.

The assumption of manifold topology is latent in the
progressive mesh structure, which may be a disadvan-
tage for some applications. Preserving topology prevents
holes from closing and objects from aggregating, which
can limit drastic simplification, and representing non-
manifold models as a progressive mesh might present
difficulties. Still, the progressive mesh representation
provides a powerful and elegant framework for polygo-
nal simplification. Hoppe’s energy-minimization
approach produces high-fidelity simplifications but is
relatively slow and seems somewhat intricate to code.
Note, however, that any algorithm based on edge col-
lapses can be used to generate a progressive mesh. For
example, the quadric-error-metrics approach would be
afast and simple-to-code alternative. Although the pro-
gressive mesh code isn’t publicly available, Hoppe pub-
lished a paper describing its efficient implementation
in some detail.*

Hierarchical dynamic simplification

This vertex-merging approach by Luebke and Erik-
son’ was another of the first to provide a view-depen-
dent simplification of arbitrary polygonal scenes.
Hierarchical dynamic simplification (HDS) resembles
progressive meshes in many ways, with a hierarchy of
vertex merges applied selectively at runtime to effect
view-dependent simplification. The approaches differ
mostly in emphasis: progressive meshes emphasize
fidelity and consistency of the mesh, whereas HDS
emphasizes speed and robustness. Rather than repre-
senting the scene as a collection of objects, each at sev-
eral LODs, in the HDS algorithm the entire model
comprises a single, large data structure. This structure
is the vertex tree, a hierarchy of vertex clusters that HDS
queries to generate a simplified scene.

The system is dynamic. For example, clusters to be col-
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lapsed or expanded can be chosen continuously based
on their projected size. As the viewpoint shifts, the
screenspace extent of some nodes in the vertex tree will
become small. These nodes can be folded into their par-
ent nodes, merging vertices together and removing some
now-degenerate triangles. Other nodes will increase in
apparent size and will be unfolded into their constituent
child nodes, introducing new vertices and triangles.

Different folding criteria can be plugged into the HDS
framework as callbacks that fold and unfold the appro-
priate nodes. Demonstrated criteria include a screen-
space error threshold, a silhouette test, and a triangle
budget. The screenspace error threshold monitors the
projected extent of vertex clusters and folds nodes small-
er than some number of pixels on the screen. The sil-
houette test uses a precalculated cone of normals to
determine whether a vertex cluster currently lies on the
silhouette, then tests clusters on the silhouette against a
tighter screenspace threshold than clusters in the interi-
or. Finally, HDS implements triangle-budget simplifica-
tion by maintaining a priority queue of vertex clusters.
The cluster with the largest screenspace error is unfold-
ed and its children placed in the queue. This process
repeats until unfolding a cluster would violate the trian-
gle budget.

Because constructing the vertex tree disregards tri-
angle connectivity, HDS neither requires nor preserves
manifold topology. Since the vertex tree spans the entire
scene, objects may be merged as simplification proceeds.
Together, these properties make HDS topology tolerant
and suitable for drastic simplification. HDS’ structures
and methods are also simple to code. On the other hand,
the fidelity of the resulting simplifications tends to be
lower than the fidelity of more careful algorithms.
Again, it’s important to emphasize that any algorithm
based on vertex merging (including those using edge
collapses) can be used to construct the HDS vertex tree.

This algorithm has been implemented as a public-
domain library called VDSIlib that provides a framework
for view-dependent simplification, using user-defined
callbacks to control the construction, simplification,
culling, and rendering of the vertex tree. VDSIib is avail-
able at http://vdslib.virginia.edu.

Issues, trends, and recommendations

The field of polygonal simplification seems to be
approaching maturity. For example, researchers are
converging on vertex merging as the underlying mech-
anism for polygon reduction. Hierarchical vertex-merg-
ing representations such as progressive meshes and the
HDS vertex tree provide general frameworks for exper-
imenting with different simplification strategies, includ-
ing view-dependent criteria. Settling on this emerging
standard will let the simplification field make faster
strides in other important issues, such as determining a
common error metric.

The lack of an agreed-upon definition of fidelity seri-
ously hampers comparison of results among algorithms.
Most simplification schemes use some sort of distance-
or volume-based metric in which fidelity of the simpli-
fied surface is assumed to vary with the distance of that
surface from the original mesh. Cignoni et al.*



described a nice tool called Metro, available at http://
vcg.iei.pi.cnr.it/metro.html, for measuring and visual-
izing this sort of geometric fidelity.

Probably the most common use of polygonal simpli-
fication, however, is to speed up rendering for visual-
ization of complex databases. For this purpose, the most
important measure of fidelity isn’t geometric but per-
ceptual: Does the simplification look like the original?
To date, only Cohen’s appearance-preserving simplifi-
cation® and Lindstrom’s image-driven simplification*
attempt to address this question. Perceptual metrics and
perceptually driven simplification seem like crucial top-
ics for further research.

Dozens of simplification algorithms have been pub-
lished over the last few years and dozens more have
undoubtedly been whipped up by developers who were
unaware of, or confused by, the plethora of polygonal
simplification techniques. Hopefully this article will help
developers consider the right issues and pick an algo-
rithm that best suits their needs. |
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