
A Short Survey of Mesh Simplification Algorithms

Jerry O. Talton III

University of Illinois at Urbana-Champaign

1. INTRODUCTION

The problem of approximating a given input mesh with a less complex but geo-
metrically faithful representation is well-established in computer graphics. Given
the visual complexity required to create realistic-looking scenes, simplification ef-
forts can be essential to efficient rendering. Level-of-detail representations figure
prominently in real-time applications such as virtual reality, terrain modeling, and
scientific visualization, and as a result there is significant demand for effective al-
gorithms for mesh simplification.

Numerous such algorithms have been proposed, and generically they can be said
to vary widely in approach, efficiency, quality, and generality. Some techniques offer
efficient processing but produce simplified meshes which are visually undesirable.
Others create more pleasing approximations but are slow and difficult to implement.
Some algorithms go to great lengths to preserve the topology of the input mesh
while others alter it arbitrarily. Many methods are restricted to or only perform
well on manifold surfaces. In practice, which algorithm is best suited to perform a
given simplification depends heavily on the characteristics of the input mesh and
the desired attributes of the approximation.

In this paper, I give a basic overview of the components of some of the most
common mesh simplification algorithms and evaluate their strengths and deficien-
cies. Readers seeking a more detailed survey of the subject are referred to [Garland
1999a] and those looking for a comprehensive treatment might begin with [Luebke
et al. 2002].

2. DEFINITIONS

Before we can discuss simplification algorithms we must first define some basic
terms. We define a mesh exactly as in [Hoppe et al. 1993] to be a pair (V,K)
where V =

{
vi ∈ R3 | i ∈ {1, . . . ,m}

}
is a set of vertex positions and K is a sim-

plicial complex representing the connectivity of the mesh. K consists of a set of
vertices {1, . . . ,m} together with a set of non-empty subsets of the vertices called
the simplices of K. Every set consisting of exactly one vertex is a simplex in K, and
every non-empty subset of a simplex in K is again a simplex in K. The 0-simplices
V̄ = {i} ∈ K are called the vertices of the mesh, the 1-simplices Ē = {i, j} ∈ K are
called edges, and the 2-simplices F̄ = {i, j, k} ∈ K are called faces. We call these
vertices, edges, and faces the elements of the mesh.

To facilitate later discussion, we also define the cofaces of a simplex s ∈ K by
C(s) = {s′ ∈ K |s ⊆ s′}. By this definition, the set of edges and faces incident on

Email: talton@uiuc.edu Address: 201 N. Goodwin Ave., Urbana IL, 61801

Course Notes for CS 598 MJG, October 2004

2 · J. Talton

a vertex form the cofaces of that vertex, and the set of faces adjacent to an edge
form the cofaces of that edge.

This definition is particularly nice because it provides an elegant formulation
that separates the topological structure of a mesh from its geometric properties
while still allowing meshes to be arbitrarily ill-formed. Besides mandating that a
mesh be conforming, the only other restriction it imposes is that meshes must be
composed of triangular faces, which causes no loss of generality since every planar
polygon can be triangulated. This generality is necessary since the meshes created
by laser scanning and those designed by artists (the two most common forms of
mesh generation) are often severely non-manifold. It is important to keep this fact
firmly in mind as we examine simplification strategies and techniques.

One important aspect we have overlooked in our definition is that meshes typi-
cally have associated attributes. It is not at all uncommon, for example, for each
vertex in a given mesh to have an associated normal vector, color value, and set of
texture coordinates. We will largely ignore this problem and concentrate instead
on geometric simplification. It is worth noting, however, that many simplification
algorithms can be logically extended to handle mesh attributes in addition to geo-
metric and topological properties (see [Garland and Heckbert 1998], [Garland and
Zhou 2005]) and many others deal with such attributes explicitly (see [Hoppe 1996],
[Hoppe 1998], [Cohen et al. 1998]).

3. LOCAL SIMPLIFICATION STRATEGIES

Simplification strategies may be broadly grouped into two categories: local strate-
gies that iteratively simplify the mesh by the repeated application of some local
operator, and global strategies that are applied to the input mesh as a whole. Lo-
cal strategies are by far the most common and so we will concern ourselves primarily
with them.

Local simplification strategies are generally greedy. Typically, they define some
mesh operation S that, when applied to a mesh M , acts on a small collection of its
elements and produces a new mesh M̄ with fewer elements. By repeated application
of S, a mesh may be simplified arbitrarily. In order to determine the mesh elements
to which S should be applied on a given iteration, S may be associated with an error
function (or cost function) that measures the amount of error the operation will
introduce into the approximation. By computing the error associated with every
possible application of S at a particular iteration, the algorithm can apply the
one with minimal cost. This type of heuristic is quite reasonable for simplification
problems, and in practice these methods work well.

One nice property of local iterative algorithms is that they allow the user to
specify the desired attributes of the target approximating mesh with a high degree
of precision. For example, the user may allow the algorithm to run until the mesh
contains k faces, or until the error at a given vertex exceeds some threshold ε.
Global strategies, in contrast, are less amenable to this type of specificity.

3.1 Vertex Decimation

Vertex decimation, first proposed in [Schroeder et al. 1992], operates on a single
vertex by deleting that vertex and re-tessellating the resulting hole. Typically some
classification scheme based on the adjacency information of the selected vertex is
Course Notes for CS 598 MJG, October 2004.

J. Talton · 3

Fig. 1. The edge contraction operation [Hoppe 1993].

used to determine the manner in which this re-tessellation proceeds. Because such
classifications are fundamentally topological in nature, this re-tessellation procedure
need not alter the topology of the input mesh. In addition, vertex decimation
algorithms do not require their input to be manifold, although they are generally
incapable of simplifying around non-manifold vertices.

The error associated with a particular decimation typically depends on the clas-
sification of the vertex being decimated. For the general case of a manifold vertex
{i} not near a boundary, [Schroeder et al. 1992] consider the set of planes formed
by the triangles in N(i) and compute a single approximating plane based on the
area-weighted average of the triangle normals nk, centers xk, and areas Ak:

n =
∑

k Aknk∑
k Ak

n̂ =
n
|n|

x =
∑

k Akxk∑
k Ak

They then calculate the distance from vertex {i} to this plane by |n̂ · (vi − x)|
and define this quantity to be the cost associated with the decimation. This metric
ensures that vertices in smooth regions will be decimated before vertices that define
sharp features.

In practice, simplification schemes based on vertex decimation excel at eliminat-
ing extraneous geometry, such as is typically found in meshes generated by the
marching cubes algorithm described in [Lorensen and Cline 1987], where large pla-
nar regions may be subdivided into many redundant triangles. [Schroeder 1997]
implemented a robust vertex decimation algorithm in the Visualization ToolKit,
which is freely available from http://public.kitware.com/VTK/.

3.2 Edge Contraction

Edge contraction, originally proposed in [Hoppe et al. 1993], is the most common
simplification operation. An edge contraction operates on a single edge {i, j} and
contracts that edge to a single vertex {h}, updating all edges previously incident
on {i} and {j} to reference {h}. On a manifold mesh without boundary, each edge
contraction will collapse precisely two faces (see Fig. 1). Edge contractions can
alter the topology of a mesh, since repeatedly contracting all the edges around a
hole will eventually close it. In addition, edge contractions may in principle be
applied indiscriminately to edges containing non-manifold vertices.

For a given contraction {i, j} → {h}, it is not immediately clear what value
should be assigned to vh, i.e. where the resulting vertex should be placed. Obvious
choices such as vh = vi, vh = vj , or vh = (vi + vj)/2 are convenient, but can

Course Notes for CS 598 MJG, October 2004.

4 · J. Talton

Fig. 2. A sequence of approximations generated by [Garland and Heckbert 1997].

easily be shown to be non-optimal. Rather than placing vh arbitrarily, it is sensible
instead to consider the error function associated with the contraction operation and
attempt to minimize its value over the space of possible vertex placements. Once
the optimal target position has been computed for every possible contraction, the
contraction with the smallest associated error can be selected and applied.

Obviously this minimization process will be completely dependent on the choice of
error function, so many such functions have been proposed in the literature. [Hoppe
1996] described a complex metric involving four separate terms, the first measuring
the distance of vh to the original mesh, the second penalizing contractions that
fail to preserve the mesh’s sharp features, the third accounting for the accuracy
of the mesh’s scalar attributes, and the last a spring term intended to regularize
the minimization problem. This metric gives very nice results, but computing
the optimal target position for a given contraction is a non-linear problem and
is in practice very inefficient (not to mention difficult to code). In addition, the
formulation of this error function essentially restricts its application to manifold
meshes, even though edge contractions themselves impose no such restrictions.

[Ronfard and Rossignac 1996] proposed a simpler measure of error. Given a
contraction {i, j} → {h} they define the local geometric error to be the maximum
squared distance between vh and the planes defined by the triangles in C(i)

⋃
C(j).

Their algorithm initially sets vh = vi, and then a relaxation step occurs to repo-
sition the vertex more optimally. To avoid error propagation, each new vertex
inherits the plane equations from the cofaces of the two merged vertices when a
contraction is performed. This strategy penalizes movement away from the surface
of the mesh and automatically preserves a mesh’s sharp features.

[Garland and Heckbert 1997] observed that, given a single plane (n, d), one can
express the squared distance from the plane to a point x by:

Error(x) = xT Ax + 2bT x + c (1)

where the collection (A,b, c) = (nnT , dn, d2) is the fundamental quadric of the
plane (n, d). Furthermore, they showed that quadrics are additive: given a set of
planes {(nk, dk)} evaluating (1) with (A,b, c) = (

∑
nknT

k ,
∑

dknk,
∑

d2
k) yields

the sum of the squared distances between x and each of the planes. Since (1) is
a quadratic function, it is well know that its minimum will occur at vh = −A−1b
with associated minimum value −bT A−1b + c.

These properties allow for an extremely efficient iterative edge contraction algo-
rithm that works on non-manifold geometry, produces high-fidelity approximations,
and requires progressively less memory with each iteration. When a contraction
{i, j} → {h} is performed, the quadric associated with the new vertex {h} is sim-
ply the sum of the quadrics associated with {i} and {j}. [Heckbert and Garland
Course Notes for CS 598 MJG, October 2004.

J. Talton · 5

1999] showed that, under the L2 metric, this strategy produces provably optimal
triangulations in the limit as the number of triangles goes to infinity and their
area goes to zero. [Garland 1999b] presented a more complete description of the
algorithm, and [Garland and Zhou 2005] described a generalized version for higher
dimensions. In practice, this method of simplification is probably the best tradeoff
between computational efficiency, geometric fidelity, and topological generality.

3.3 Appearance-Preserving Simplification

A completely different approach to determining the error associated with a given
simplification operation was described in [Cohen et al. 1998]. Their metric, which
is appearance-based, measures the amount of deviation caused by the operation in
the screen-space (pixelized) representation of the mesh. Their algorithm functions
by decoupling surface position from color and curvature information and storing
the latter two quantities in texture and normal maps. A traditional geometric
simplification algorithm can then be employed to filter the surface position, while
a hardware-based approach is used to filter the color and normal information, re-
sulting in simplified representations that are nearly visually indistinguishable from
the original. However, the algorithm requires a parameterization of the mesh in
order to function, which, if not already present in the form of texture coordinates,
must be computed. [Lindstrom and Turk 2000] described a more general image-
based simplification strategy that does not require specialized hardware or software
algorithms.

4. GLOBAL SIMPLIFICATION STRATEGIES

As we previously mentioned, global strategies are far from prevalent in the simpli-
fication literature. Nonetheless, they are worth a brief examination.

4.1 Vertex Clustering

The method of vertex clustering was originally proposed by [Rossignac and Borrel
1993] to handle meshes of arbitrary topological structure. In their algorithm, each
vertex in the input mesh is assigned a weight based on its perceptual importance:
vertices adjacent to triangles with large faces and those in areas of high curvature are
weighted more heavily than vertices in smooth regions adjacent to smaller triangles.
Next, a bounding box is placed around the mesh and subdivided into a three-
dimensional grid. Finally, all the vertices in a given grid cell are clustered to the
position of the vertex with maximum weight. Degenerate geometry may then be
removed, although the authors proposed a novel visualization of certain degenerate
faces and edges in an effort to enhance the recognizability of their simplified meshes.
The algorithm is extremely efficient and simple to implement, and the level of
simplification may be controlled (although with some difficulty) by choosing the
resolution of the overlaid grid. However, vertex clustering can drastically alter the
topology of the input mesh in an unpredictable manner, and in practice does not
produce very faithful geometric approximations at low levels of detail.

4.2 Shape Approximation

[Cohen-Steiner et al. 2004] cast mesh simplification as a global optimization prob-
lem. They employ a variational partitioning scheme to segment the input mesh into

Course Notes for CS 598 MJG, October 2004.

6 · J. Talton

Fig. 3. Variational shape approximation from [Cohen-Steiner et al. 2004].

a set of non-overlapping connected regions, and then fit a locally-approximating
plane (or shape proxy) to each one. The vertices on the original mesh that coincide
with the intersection of three or more shape proxies are retained and re-triangulated.
An iterative edge contraction process is subsequently applied to eliminate excess
geometry and produce the resulting simplified mesh. Although the process is not
particularly efficient, it produces approximations that are slightly more accurate
than those in [Garland and Heckbert 1998] as measured by the authors’ proposed
L2,1 metric.

5. RELATED TOPICS

While not simplification strategies in and of themselves, there are a two related
topics that bear mentioning.

5.1 Progressive Meshes

As we have already seen, the simplification strategy proposed in [Hoppe 1996] is
less practical than more recent methods. Nonetheless, another contribution of the
paper is still extremely significant. A progressive mesh stores an arbitrary mesh M̄
as a much coarser mesh M0 together with a series of n records indicating how to
incrementally refine M0 back into the original mesh Mn = M̄ . Each of these n
records stores a vertex split which is the inverse of an edge contraction. These splits
and contractions may be used to smoothly transform between any of the mesh’s
representations M i ←→M j either by performing each split (or contraction) incre-
mentally or by simultaneously moving many vertices. Progressive meshes are im-
plemented in Microsoft’s DirectX API and are extremely useful for view-dependent
level-of-detail applications [Hoppe 1997].

5.2 Simplification Envelopes

[Cohen et al. 1996] described simplification envelopes as a generalization of offset
surfaces intended to assist other simplification algorithms. Simplification envelopes
allow the generation of approximations that are guaranteed not to deviate from the
original surface by more than some ε while preserving global topology. An outer
envelope is formed by displacing each vertex along its normal by some δ and an
inner envelope is formed by displacing by −δ. The value of δ is adaptively updated
in areas of high curvature to ensure that the envelopes do not self-intersect. Once
calculated, a simplification algorithm can guarantee a tight bound on the fidelity of
its representations by ensuring that no simplification operation causes a vertex or
Course Notes for CS 598 MJG, October 2004.

J. Talton · 7

Fig. 4. Inner and outer simplification envelopes from [Cohen et al. 1996].

edge to move outside the region defined by the envelopes. In practice simplification
envelopes can be quite useful, but their construction requires the input mesh to be
an orientable manifold and their careful preservation of topology and avoidance of
self-intersection limits their ability to assist in drastic simplifications. [Zelinka and
Garland 2002] described a more general method called permission grids that pro-
vides tight error bounds on arbitrary triangulated meshes while allowing topological
changes during simplification.

REFERENCES

Cohen, J., Olano, M., and Manocha, D. 1998. Appearance-perserving simplification. In Pro-
ceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM

Press, 115–122.

Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P., Brooks, F., and

Wright, W. 1996. Simplification envelopes. In Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques. ACM Press, 119–128.

Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. ACM

Trans. Graph. 23, 3, 905–914.

Garland, M. 1999a. Multiresolution modeling: Survey and future opportunities.

Garland, M. 1999b. Quadric-based polygonal surface simplification. Ph.D. thesis, Carnegie
Mellon University.

Garland, M. and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In
Proceedings of the 24th annual conference on Computer graphics and interactive techniques.

ACM Press/Addison-Wesley Publishing Co., 209–216.

Garland, M. and Heckbert, P. S. 1998. Simplifying surfaces with color and texture using
quadric error metrics. 263–270.

Garland, M. and Zhou, Y. 2005. Quadric based surface simplification in any dimension. ACM

Trans. Graph. 24, 2.

Heckbert, P. and Garland, M. 1999. Optimal triangulation and quadric-based surface simpli-
fication. Journal of Computational Geometry: Theory and Applications 14, 1-3 (November),
49–65.

Hoppe, H. 1996. Progressive meshes. In Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques. Computer Graphics.

Hoppe, H. 1997. View-dependent refinement of progressive meshes. Computer Graphics 31, An-
nual Conference Series, 189–198.

Hoppe, H. 1998. Efficient implementation of progressive meshes. Computers and Graphics 22, 1,

27–36.

Course Notes for CS 598 MJG, October 2004.

8 · J. Talton

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1993. Mesh opti-

mization. Computer Graphics 27, Annual Conference Series, 19–26.

Lindstrom, P. and Turk, G. 2000. Image-driven simplification. ACM Trans. Graph. 19, 3,
204–241.

Lorensen, W. E. and Cline, H. E. 1987. Marching cubes: A high resolution 3d surface con-

struction algorithm. In Proceedings of the 14th annual conference on Computer graphics and
interactive techniques. ACM Press, 163–169.

Luebke, D., Watson, B., Cohen, J. D., Reddy, M., and Varshney, A. 2002. Level of Detail

for 3D Graphics. Elsevier Science Inc.

Ronfard, R. and Rossignac, J. 1996. Full-range approximations of triangulated polyhedra. In
Proceedings of Eurographics. Vol. 15. C–67.

Rossignac, J. and Borrel, P. 1993. Multi-resolution 3d approximations for rendering complex

scenes. In Geometric Modeling in Computer Graphics, B. Falcidieno and T. Kunii, Eds. Springer

Verlag, Genova, Italy, 455–465.

Schroeder, W. J. 1997. A topology modifying progressive decimation algorithm. In IEEE
Visualization. 205–212.

Schroeder, W. J., Zarge, J. A., and Lorensen, W. E. 1992. Decimation of triangle meshes.

In Proceedings of the 19th annual conference on Computer graphics and interactive techniques.
ACM Press, 65–70.

Zelinka, S. and Garland, M. 2002. Permission grids: Practical, error-bounded simplification.

Transactions on Graphcs 21, 2 (April).

Course Notes for CS 598 MJG, October 2004.

