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Figure 1: Three examples produced with our incompressible simulation: (Left) 2M particles splashing against the simulation boundaries.
(Center) Close-up view of a wave tank. (Right) A fluid represented by 700k particles colliding with cylinder obstacles.

Abstract

We present a novel, incompressible fluid simulation method based
on the Lagrangian Smoothed Particle Hydrodynamics (SPH) model.
In our method, incompressibility is enforced by using a prediction-
correction scheme to determine the particle pressures. For this,
the information about density fluctuations is actively propagated
through the fluid and pressure values are updated until the targeted
density is satisfied. With this approach, we avoid the computational
expenses of solving a pressure Poisson equation, while still being
able to use large time steps in the simulation. The achieved results
show that our predictive-corrective incompressible SPH (PCISPH)
method clearly outperforms the commonly used weakly compress-
ible SPH (WCSPH) model by more than an order of magnitude
while the computations are in good agreement with the WCSPH
results.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation.

Keywords: fluid simulation, SPH, incompressibility

1 Introduction and Previous Work

Enforcing incompressibility in fully particle-based fluid simula-
tions represents the most expensive part of the whole simulation
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process and thus renders particle methods less attractive for high
quality and photorealistic water animations. In the context of
Smoothed Particle Hydrodynamics (SPH), two different strategies
have been pursued to model incompressibility. First, the weakly
compressible SPH (WCSPH) method has been used where pressure
is modeled using a stiff equation of state (EOS), and second, incom-
pressibility has been achieved by solving a pressure Poisson equa-
tion. Although both methods satisfy incompressibility, the compu-
tational expenses of simulating high resolution fluid animations are
too large for practical use.

In the standard SPH and WCSPH model the particle pressures are
determined by an EOS. The characteristics of this equation and
the stiffness parameter determine the speed of the acoustic waves
in a medium. The EOS-based SPH with low stiffness accord-
ing to [Desbrun and Cani 1996] was used in a series of papers to
simulate water [Müller et al. 2003; Adams et al. 2007], multiple
fluids [Müller et al. 2005; Solenthaler and Pajarola 2008], fluid-
solid coupling [Müller et al. 2004b; Lenaerts et al. 2008], melting
solids [Müller et al. 2004a; Keiser et al. 2005; Solenthaler et al.
2007], and fluid control [Thürey et al. 2006]. In contrast to the
standard SPH formulation, WCSPH uses a stiff EOS [Monaghan
2005; Becker and Teschner 2007; Becker et al. 2009] resulting
in acoustic waves traveling closer to their real speed through the
medium. Typically, the stiffness value is chosen so large that the
density fluctuations do not exceed 1%. The required stiffness value
to achieve this, however, is difficult or even impossible to deter-
mine before running the simulation. Consequently, an animator
cannot get around extensive testing and parameter tuning. Another
drawback is that WCSPH imposes a severe time step restriction as
the stiffness of the fluid usually dominates the Courant-Friedrichs-
Levy (CFL) condition. Thus the computational cost increases with
decreasing compressibility – since higher stiffness requires smaller
time steps, making it infeasible to simulate high resolution fluids
within reasonable time.

Rather than simulating acoustic waves, incompressibility in La-
grangian methods can be enforced by solving a pressure projection
similar to Eulerian methods (e.g. [Enright et al. 2002]). These in-
compressible SPH (ISPH) methods first integrate the velocity field
in time without enforcing incompressibility. Then, either the inter-
mediate velocity field [Cummins and Rudman 1999], the resulting
variation in particle density [Shao 2006], or both [J. Liu and Oka
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2005; Hu and Adams 2007; Losasso et al. 2008] are projected onto
a divergence-free space to satisfy incompressibility through a pres-
sure Poisson equation. With these ISPH methods density fluctua-
tions of 1% to 3% have been reported. A problem with these meth-
ods, however, is the complexity to formulate and solve the equation
system on unstructured particle configurations. Although ISPH al-
lows larger time steps than WCSPH, the computational cost per
physics step is much higher. A Poisson solver was also used in [Pre-
moze et al. 2003] for the particle method Moving-Particle Semi-
Implicit (MPS), increasing the cost per physics time step enor-
mously. In contrast to the fully Lagrangian models, [Zhu and Brid-
son 2005] propose to use an auxiliary background grid to simplify
the equation system to a sparse set of linear equations which can be
efficiently solved. A similar hybrid solver for vorticity confinement
is presented in [Selle et al. 2005]. In [Losasso et al. 2008], a two-
way coupled level set method with an SPH solver is introduced to
simulate dense and diffuse water volumes. They demonstrate how
to enforce incompressibility and target the particle number density
with a single Poisson solve.

In this paper, we propose a novel, fully Lagrangian, incompressible
SPH method featuring the advantages of both WCSPH and ISPH in
one model, namely low computational cost per physics update and
large time steps. Our method makes use of a prediction-correction
scheme which propagates the estimated density values through the
fluid and updates the pressures in such a way that incompressibility
is achieved. The propagation stops as soon as a previously user-
defined density variation limit is reached for each individual parti-
cle. We will show in this paper that our new predictive-corrective
incompressible SPH (PCISPH) method outperforms WCSPH by
more than an order of magnitude while the computations are in
good agreement with the WCSPH results. The efficiency of our
method enables an animator to produce high-resolution fluid ani-
mations within reasonable time without compressibility artifacts.

2 PCISPH Model

2.1 Basic SPH / WCSPH Algorithm

In SPH, liquids are approximated by artificial, slightly compress-
ible fluids. The basic SPH method is summarized in Algorithm 1.
In each physics update, the local neighborhood Ni of each particle
i is found and then used to evaluate the density, pressure, and the
resulting forces acting on each particle [Monaghan 1992]. The den-
sity ρi of particle i at location xi can be found by summing up the
weighted contributions of the neighboring particles j

ρi = m
X
j

W (xij , h), (1)

where m is the particle mass (we assume that all particles have
equal masses), W is the weighting kernel with smoothing length h,
and xij = xi − xj . The pressure pi of a particle is then derived
from the EOS according to [Batchelor 1967]

pi =
kρ0

γ
((
ρi
ρ0

)γ − 1),

where k is a stiffness parameter and ρ0 the reference density. [Des-
brun and Cani 1996] use a γ of 1 and a small value for k, while in
WCSPH (e.g. [Monaghan 2005]) γ is set to 7 and k is chosen so
that the speed of sound is large enough to keep the density fluctu-
ations small (∼1%). Note that the CFL condition [Courant et al.
1967] requires smaller time steps for stiffer fluids which increases
the overall computation cost tremendously when simulating water.
The pressure force field is directly derived from the Navier-Stokes

Algorithm 1 SPH / WCSPH
1 while animating do
2 for all i do
3 find neighborhoods Ni(t)
4 for all i do
5 compute density ρi(t)
6 compute pressure pi(t)
7 for all i do
8 compute forces Fp,v,g,ext(t)
9 for all i do

10 compute new velocity vi(t+ 1)
11 compute new position xi(t+ 1)

Algorithm 2 PCISPH
1 while animating do
2 for all i do
3 find neighborhoods Ni(t)
4 for all i do
5 compute forces Fv,g,ext(t)
6 initialize pressure p(t) = 0.0
7 initialize pressure force Fp(t) = 0.0
8 while (ρ∗err(t+ 1) > η) || (iter < minIterations) do
9 for all i do

10 predict velocity v∗i (t+ 1)
11 predict position x∗i (t+ 1)
12 for all i do
13 predict density ρ∗i (t+ 1)
14 predict density variation ρ∗err(t+ 1)
15 update pressure pi(t)+= f(ρ∗err(t+ 1))
16 for all i do
17 compute pressure force Fp(t)
18 for all i do
19 compute new velocity vi(t+ 1)
20 compute new position xi(t+ 1)

equations and given by

Fpi = −m2
X
j

(
pi
ρ2
i

+
pj
ρ2
j

)∇W (xij , h).

In our implementation, we use the viscous force and weighting ker-
nels presented in [Monaghan 1992].

2.2 PCISPH Algorithm

To avoid the time step restriction of WCSPH we propose to
use a prediction-correction scheme based on the SPH algorithm
(PCISPH). In our method, the velocities and positions are tem-
porarily forwarded in time and the new particle densities are es-
timated. Then, for each particle, the predicted variation from the
reference density is computed and used to update the pressure val-
ues, which in turn enter the recomputation of the pressure forces.
Similar to a Jacobi iteration for linear systems, this process is it-
erated until it converges, i.e. until all particle density fluctuations
are smaller than a user-defined threshold η (for example 1%). Note
that this is a nonlinear problem since we include collision handling
and updated kernel values in our iteration process. As a final step,
the velocities and positions of the next physics update step are com-
puted. The PCISPH method is illustrated in Algorithm 2.

2.3 Pressure Derivation

One of the main difficulties is to derive the pressure change from the
predicted density variation (line 15 of Algorithm 2). This pressure
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update is executed in each iteration, reducing the density fluctua-
tion of the particle. The aim is to find a pressure p which changes
the particle positions in such a way that the predicted density corre-
sponds to the reference density. Over the course of this section, a set
of approximations will be made to derive a simple update rule for
the pressure (Equations 8 to 10). Although the approximations in-
crease the number of convergence iterations which are needed until
the desired density fluctuation limit is reached, they keep the final
pressure update rule simple and thus efficient to compute.

For a given kernel smoothing length h, the density at a point in
time t+ 1 is computed using the SPH density summation equation
analogously to Equation 1

ρi(t+ 1) = m
X
j

W (xi(t+ 1)− xj(t+ 1))

= m
X
j

W (xi(t) + ∆xi(t)− xj(t)−∆xj(t))

= m
X
j

W (dij(t) + ∆dij(t))

where dij(t) = xi(t)− xj(t), and ∆dij(t) = ∆xi(t)−∆xj(t).
Assuming that ∆dij is relatively small, the first order Taylor ap-
proximation can be applied to the term W (dij(t) + ∆dij(t)) re-
sulting in

ρi(t+ 1) = m
X
j

W (dij(t)) +∇W (dij(t)) ·∆dij(t)

= m
X
j

W (xi(t)− xj(t)) +

m
X
j

∇W (xi(t)− xj(t)) · (∆xi(t)−∆xj(t))

= ρi(t) + ∆ρi(t).

In this equation, the term ∆ρi(t) is unknown and, as we show later,
a function of p which we are looking for. After reformulation and
using Wij = W (xi(t)− xj(t)) we get

∆ρi(t) = m
X
j

∇Wij · (∆xi(t)−∆xj(t))

= m
“X

j

∇Wij∆xi(t)−
X
j

∇Wij∆xj(t)
”

= m
“

∆xi(t)
X
j

∇Wij −
X
j

∇Wij∆xj(t)
”

(2)

∆x can be derived from the time integration scheme (Leap-Frog).
Neglecting all forces but the pressure force we get

∆xi = ∆t2
Fpi
m
. (3)

If we make the simplistic assumption that neighbors have equal
pressures p̃i and that the density corresponds to the rest density ρ0

(according to the incompressibility condition), this results in

Fpi = −m2
X
j

(
p̃i
ρ2
0

+
p̃i
ρ2
0

)∇Wij = −m2 2p̃i
ρ2
0

X
j

∇Wij . (4)

Inserting Equation 4 into Equation 3 we get

∆xi = −∆t2m
2p̃i
ρ2
0

X
j

∇Wij . (5)

Due to the pressure pi of particle i the position of a neighboring
particle changes by ∆xj|i. As the pressure forces are symmetric,
particle j gets the following contribution from i

Fpj|i = m2(
p̃i
ρ2
0

+
p̃i
ρ2
0

)∇Wij = m2 2p̃i
ρ2
0

∇Wij ,

and the position of j changes by

∆xj|i = ∆t2m
2p̃i
ρ2
0

∇Wij . (6)

Note that we only consider the effect of the central particle i here,
i.e. ∆xj = ∆xj|i. Equation 5 and Equation 6 can now be inserted
into Equation 2 resulting in

∆ρi(t) = m
“
−∆t2m

2p̃i
ρ2
0

X
j

∇Wij ·
X
j

∇Wij −X
j

(∇Wij ·∆t2m
2p̃i
ρ2
0

∇Wij)
”

= ∆t2m2 2p̃i
ρ2
0

“
−
X
j

∇Wij ·
X
j

∇Wij −X
j

(∇Wij · ∇Wij)
”

After solving for p̃i we get

p̃i =
∆ρi(t)

β(−
P
j ∇Wij ·

P
j ∇Wij −

P
j(∇Wij · ∇Wij))

(7)

where β is

β = ∆t2m2 2

ρ2
0

.

The meaning of Equation 7 is that a pressure p̃i is needed to achieve
a change in density of ∆ρi(t). As we know the predicted density
error ρ∗erri

= ρ∗i − ρ0 of a particle, we can thus reverse that error
by applying a pressure of

p̃i =
−ρ∗erri

β(−
P
j ∇Wij ·

P
j ∇Wij −

P
j(∇Wij · ∇Wij))

.

This formula shows problems in situations where i is suffering from
particle deficiency in the neighborhood resulting in falsified values.
To circumvent that problem, we precompute a single scaling factor
δ according to the following formula which is evaluated for a pro-
totype particle with a filled neighborhood. The resulting value is
then used for all particles. Finally, we end up with the following
equations which are used in the PCISPH method

δ =
−1

β(−
P
j ∇Wij ·

P
j ∇Wij −

P
j(∇Wij · ∇Wij))

(8)

and
p̃i = δρ∗erri

. (9)

Since we repeat the prediction-correction step as long as the incom-
pressibility condition is not yet satisfied, the correction pressures of
the individual iterations are accumulated as indicated on line 15 of
Algorithm 2

pi+= p̃i. (10)

2.4 Implementation

2.4.1 Neighborhood Approximation

Before predicting the density ρ∗i (t + 1) of a particle (line 13 of
Algorithm 2), the neighborhood should be recomputed using the
predicted positions x∗(t + 1). However, for efficiency reasons we
reuse the current neighbors Ni(t) at time t and only recompute the
distances and the kernel values. This approximation leads to small
errors in the density and pressure estimates. In the case of density
overestimation the final real densities show lower fluctuations than
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the requested threshold η. In the opposite case – density underes-
timation – the correction loop might be aborted prematurely. Such
situations are not yet handled in the current implementation but can
be avoided by using sufficiently small time steps, or by recomputing
the neighborhoods in these particular situations.

2.4.2 Information Propagation

To limit temporal fluctuations in the resulting pressure field we
found it advantageous to employ a minimum number of iterations
in the pressure update loop. This gives the particles enough time to
propagate information about predicted particle locations. We found
a minimum of 3 iterations generally sufficient to achieve a low level
of pressure fluctuations.

3 Results

3.1 Performance Comparison

We set up a test scene (Figure 2) to compare the simulation times
and visual results of both the commonly used WCSPH and our new
PCISPH method. The performance measurements and simulation
data are summarized in Table 1. All timings are given for an Intel
Core2 2.66 GHz CPU.

We executed different simulation runs with varying particle resolu-
tions (10k and 100k) and varying error threshold η (1% and 0.1%)
which defines the maximally allowed density fluctuation from the
reference density. The 10k and 100k examples have corresponding
scene setups but different fluid discretizations, meaning that a par-
ticle in the 10k example represents a larger fluid volume than one
in the 100k example. Since in SPH a particle always needs to have
around 30-40 neighbors, the support radius has to be increased with
increasing particle volume, which in turn influences the time step
size. The time step is set according to a CFL condition where the
force terms, the stiffness parameter k, and the viscous term are in-
volved [Monaghan 1992]. While in WCSPH the time step is domi-
nated by k, it has no influence in PCISPH and can be omitted. Thus,
for low viscosity fluids, the time step in PCISPH is dominated by
the force terms, allowing significantly larger time steps than those
used in WCSPH. The stiffness parameter k of WCSPH was de-
termined by testing in such a way that η was satisfied, which was
k = 7 ·104 for η = 1%, and k = 6 ·106 for η = 0.1%. In contrast,
PCISPH does not have to cope with finding an appropriate stiffness
value since the desired η can be specified directly. In the case of
η=1%, the time step of PCISPH is determined to be in fact 35 times
larger than the one of WCSPH. With a smaller η the difference
is even larger, η = 0.1% leads to an increase of the time step for
PCISPH by a factor of 151. While in WCSPH the computation time
per simulation step stays more or less constant, it varies in PCISPH
since the time per simulation step depends on the number of ex-
ecuted convergence iterations. Therefore, we compare the overall
computation time of WCSPH and PCISPH over the entire simu-
lated time period. Although the cost per physics time step is higher
with PCISPH than WCSPH, the overall speed-up over WCSPH still
reaches a factor of 15 and 16 for η = 1% and 55 for η = 0.1%,
respectively.

3.2 Convergence Analysis

In the previously described test scenes, the average number of con-
vergence iterations executed per physics step is between 3.24 and
4.46. Note that the particle resolution has no effect on the average
number of iterations. For the simulation run with 100k particles
the average number of iterations is plotted over time in Figure 3(a).
The end time of 8s corresponds to the simulated real time.

(a) Average number of convergence iterations over time. After
8s of simulated real time, an average of 3.49 is reached.
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(b) Several convergence examples at different points in time t.

Figure 3: Convergence statistics of the 100k particles simulation
shown in Table 1 and Figure 2.

The peaks indicate particle collisions with the ground and the side
walls as in such situations larger density errors are predicted. Fig-
ure 3(b) shows several examples of the convergence within a single
physics update step. It can be seen that the density error is approx-
imately halved after the first iteration and continuously reduced in
the following iterations until the error drops below η. In our expe-
rience this algorithm proved to be very robust and we did not en-
counter any divergence problems. However, it is likely that certain
particle configurations exist that might show such problems.

3.3 Visual Result

The physical behavior and visual results of WCSPH and PCISPH
are compared in Figure 2. It can be seen that the PCISPH compu-
tations are in full agreement with the WCSPH results with only
very minor detail differences. The comparison of WCSPH and
PCISPH using a simulation time constraint of 298min is shown in
Figure 4. While with PCISPH a resolution of 100k particles can
be simulated within the given time (see the corresponding entry in
Table 1), with WCSPH the resolution has to be reduced to 17k par-
ticles. The lower resolution leads to less surface details and notably
damped fluid movement. A higher resolution example computed
with PCISPH is shown in Figure 1 (center and right) and Figure 5
where a wave generator agitates a water body consisting of 700k
particles to interact with cylindrical obstacles in a tank. In Figure 1
(left) and Figure 6, 2M particles are used to simulate the collapsing
column example with PCISPH. In both of these simulations, a η of
1% is enforced which eliminates compression artifacts and enables
realistic wave breaking and splashing behavior. In all examples, the
surface of the fluid is reconstructed and rendered with the raytracing
approach presented in [Solenthaler et al. 2007].
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Model η [%] #p k ∆t [s] ∆t ratio [s] avgIterations tsim [min] speed-up
WCSPH 1.0 10k 7·104 3.78e-5 - - 142.05 -
PCISPH 1.0 10k - 0.0013 35 3.24 9.37 15.2
WCSPH 1.0 100k 7·104 1.78e-5 - - 4941.5 -
PCISPH 1.0 100k - 0.00062 35 3.49 297.7 16.6
WCSPH 0.1 10k 6·106 4.08e-6 - - 1327.66 -
PCISPH 0.1 10k - 0.00062 151.96 4.46 23.97 55.39

Table 1: Comparison of WCSPH and PCISPH. The stiffness value k of WCSPH is chosen so that the density fluctuation percentage is below
η, and the time step size is determined according to the CFL condition. With our PCISPH method and η=1%, a speed-up of a factor of 15
and 16 over WCSPH is reached. By restricting the error to η=0.1%, PCISPH reduces the computation time by a factor of 55.

Figure 2: Side-by-side comparison of a fluid discretized by 100k particles and simulated with WCSPH (upper row) and PCISPH (lower row),
respectively. The computations correspond to the statistics given in Table 1 for the 100k particles simulation.

Figure 4: Comparison of WCSPH (left, 17k particles) and PCISPH
(right, 100k particles) with equal computation times.

4 Conclusion

We proposed a novel incompressible SPH solver which combines
the advantages of both WCSPH and ISPH in one model, namely
low computational cost per physics update and large time steps.
Our method includes a convergence loop which is executed in each
physics update step consisting of a prediction and correction itera-
tion. In each convergence iteration, the new particle positions and
their densities are predicted and the variations from the reference
density are computed. We have derived a formulation which relates
the density fluctuation and the pressure, to reduce the density errors
and to approach incompressibility. With this method, we gained a
speed-up of more than an order of magnitude over the commonly
used WCSPH method and we showed that the simulation results are
in agreement with WCSPH.

One issue of the current implementation is the neighborhood ap-

proximation which can lead to underestimated density errors abort-
ing the convergence loop prematurely as we have discussed in Sec-
tion 2.4.1. This problem can be addressed by detecting such sit-
uations and adapting the time step size or recomputing the neigh-
bors in this particular simulation step. Besides that, our current im-
plementation does not yet account for the particle deficiency near
boundaries. In these situations, density values are falsified and
compression artifacts can occur. The inclusion of ghost particles
in the density computation or the use of the corrected SPH formu-
lation as described in [Becker et al. 2009] can solve this problem.
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SOLENTHALER, B., SCHLÄFLI, J., AND PAJAROLA, R. 2007.
A unified particle model for fluid-solid interactions. Journal of
Computer Animation and Virtual Worlds 18, 1, 69–82.
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