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Course Abstract

In this course, we describe the fundamentals of light transport and techniques for computing the
global distribution of light in a scene. The main focus will be on the light transport simulation
since the quality and efficiency of a photo-realistic renderer is determined by its global illumina-
tion algorithm. We explain the basic principles and fundamentals behind algorithms such as sto-
chastic ray tracing, path tracing, light tracing and stochastic radiosity.
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Syllabus

The course syllabus assumes a half-day course (2 modules of 1.75 hours each). The 1st module focuses on
the fundamentals of all global illumination algorithms, and can serve as an introduction for designing you
own global illumination program. The 2nd module is more of a case study for a specific family of global
illumination algorithms: stochastic radiosity. The 2nd module also concludes with an overview of recent
advances and trends in global illumination research.

1st module (105 minutes)

Introduction (5 minutes): Philip Dutré

Radiometry (40 minutes): Kavita Bala

Nature of light, and how to model light in computer graphics
Radiometric quantities (radiance, irradiance, flux)
Bidirectional reflectance distribution functions
Transport equations and rendering equation; particle model of light

General Strategies for Solving the Rendering Equation (60 minutes): Philip Dutré

Introduction to the Monte Carlo method
Monte Carlo integration applied to the rendering equation: path tracing
Next Event Estimation (explicit light source sampling)
General path generation strategies

2nd module (105 minutes)

Stochastic Radiosity (65 minutes): Philippe Bekaert

Radiosity equations – how to derive them from the rendering equation
Stochastic relaxation methods for radiosity
Random walk methods (particle tracing, density estimation)
Variance reduction techniques and hierarchical refinement

Future Trends (30 minutes): Kavita Bala

Summary Statement (10 minutes): Philip Dutré

Prerequisites
A basic understanding of classic photo-realistic rendering algorithms, such as basic ray tracing and radios-
ity is assumed. Knowledge of probability theory will be very helpful. Some familiarity with transport equa-

tions and radiometry will be useful, but is not necessary.
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GoalsGoals

• Fundamental understanding of global illumination 
algorithms

• How to design a GI algorithm?

• Understanding advantages and disadvantages of GI 
algorithms

The goal of this course is to offer a fundamental understanding of global 
illumination algorithms.

More specifically, we will explain how one can design a global illumination 
algorithm, starting from the fundamental light transport equations. This approach 
differs from the more traditional ad-hoc approaches, where people start from a basic 
ray tracer, and then add more effects on a ‘menu’ basis.

Looking at global illumination algorithms this way, it is easier to look at specific 
advantages and disadvantages of different approaches.
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Global Illumination?Global Illumination?
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reflection
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shadow
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shadow
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Global Illumination?Global Illumination?

causticscaustics

(F. Suykens 2001 - rendered with RenderPark)

transparencytransparency
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What will be covered?What will be covered?

• “What is the Rendering Equation?”

•radiometry, brdf, ...

• “How to design global illumination algorithms?”

•case study: stochastic radiosity

• “What are current trends in GI research?”

This course will cover the following topics:

- Radiometry and the rendering equation. The rendering equation is the fundamental 
transport equation that describes light transport in a three-dimensional scene. It is a 
recursive integral equation, which is difficult to solve analytically. So numerical 
techniques need to be used.

- Starting from the rendering equation, we can design global illumination algorithms 
based on the general notion of path transport. Different choices give rise to different 
algorithms, each with their own error characteristics.

- An important case study is the class of stochastic radiosity methods. Employing 
stochastic relaxation methods or random walks, they can provide much better 
convergence than the more classic finite element techniques
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What will not be covered?What will not be covered?

• Nuts and Bolts:

•“How to intersect a ray with a procedural surface?”
•“What is the best acceleration structure for ray 

tracing?”

• How to use existing “global illumination” or 
“photorealistic” rendering software.

•E.g. Mentalray, Lightwave, RenderMan ...

We will not cover any lower-level functionality needed to write and design global 
illumination algorithms. Basic operations such as ray-geometry intersection tests, or 
acceleration structures for speeding up ray-casting, are not the focus of this course.

Also, we will not focus on how to use existing software packages that can render 
photo-realistic images. 
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Photo-realistic Rendering FrameworkPhoto-realistic Rendering Framework

Acquisition

Modeling

Measurements

Global
Illumination
Algorithms

Tone
Mapping
Operators

Light
Transport

Visual
Display Observer

Human
Perception

Geometry
BRDFs
Lights

Textures

Radiometric
Values

Image

The general framework for a photo-realistic rendering system can be composed of 
four parts:
- Acquisition of data (measurements of geometry and materials)
- Light transport simulation (global illumination algorithms)
- Visual Display (tone mapping operators)
- Human observer
This course focuses on the global illumination part. We will touch on some of the 
other parts, but will not go into any detail.

This framework for photorealistic rendering is described in more detail in:
Donald P. Greenberg, Kenneth Torrance, Peter Shirley, James Arvo, James
Ferwerda, Sumanta Pattanaik, Eric Lafortune, Bruce Walter, Sing-Choong Foo, and 
Ben Trumbore. A framework for realistic image synthesis. In Turner Whitted, 
editor, SIGGRAPH 97 ConferenceProceedings, Annual Conference Series, pages 
477--494. ACM SIGGRAPH, Addison Wesley, August 1997. 
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Structure of the courseStructure of the course

• Part 1: Radiometry

• Part 2: General Strategies for designing GI 
algorithms

• Part 3: Case Study: Stochastic Radiosity

• Part 4: Trends and Future Research
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The Rendering EquationThe Rendering Equation

MotivationMotivation

eye

scene

???
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OutlineOutline

• Light Model

• Radiometry

• Materials: Interaction with light

• Rendering equation

Light ModelsLight Models

• Geometric Optics
• Emission, Reflection / Refraction, Absorption

• Wave Model
• Maxwell’s Equations

• Object size comparable to wavelength

• Diffraction & Interference, Polarization

• Quantum Model
• Fluorescence, Phosphorescence
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Geometric Optics: PropertiesGeometric Optics: Properties

• Light travels in straight lines

• Rays do not interact with each other

• Rays have color(wavelength), intensity

EmissionEmission
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• Interface between 2 materials

• Specular reflections and refractions
• One direction

Reflections/RefractionsReflections/Refractions

refractionreflection

θθ iθ

tθ

Realistic Reflections/RefractionsRealistic Reflections/Refractions

refractionreflection
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AbsorptionAbsorption

heat

Geometric Optics: other effectsGeometric Optics: other effects

• Participating Media

• Varying index of refraction
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Radiometry: radianceRadiometry: radiance

• Radiometry: Measurement of light energy

• Radiance: radiant energy density
• x is position, Θ is direction

• Varies with position and direction: 5D function

Θ

x

RadianceRadiance

• Radiance               is the power
• Per unit projected surface area

• Per unit solid angle

•

• units: Watt / m2.sr

• Wavelength dependence

• Important quantity

dA⊥

Θ

x
Θ

⊥=Θ→
ωddA
PdxL
2

)(

)( Θ→xL
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Why is radiance important?Why is radiance important?

• Invariant along a straight line (in vacuum)

x1

x2

Θ

x

Why is radiance important? Why is radiance important? 

• Response of a sensor (camera, human 
eye) is proportional to radiance

• Pixel values in image are proportional to 
radiance received from that direction

eye
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Radiance: Projected areaRadiance: Projected area

dA dA

θ

cosθdA

•

• Why per unit projected surface area?

Θ
⊥=Θ→
ωddA
PdxL
2

)(

θ

Example: Diffuse emitterExample: Diffuse emitter

• Diffuse emitter: light source with equal 
radiance everywhere

dAdxLP
Area

Angle
Solid

⋅⋅⋅Θ→= ∫ ∫ Θωθcos)(
Θ

⊥=Θ→
ωddA
PdxL
2

)(

∫ ∫ Θ⋅=
Area

Angle
Solid

ddAL ωθcos

π⋅⋅= AreaL
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Sun Example: radianceSun Example: radiance

Power: 3.91 x 1026 W
Surface Area: 6.07 x 1018 m2

Radiance = Power/(Surface Area.π)

Power     = Radiance.Surface Area.π

Radiance = 2.05 x 107 W/ m2.sr 

Sun ExampleSun Example

Same radiance on Earth and Mars?
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Sun Example: Power on EarthSun Example: Power on Earth

Power reaching earth on a 1m2 square:

∫ ∫ Θ⋅=
Area

Angle
Solid

ddALP ωθcos

∫ ∫ Θ=
Area

Angle
Solid

ddALP ω

Assume coscosθθ = 1 (sun in zenith)= 1 (sun in zenith)

Sun Example: Power on EarthSun Example: Power on Earth

Power = Radiance.Area.Solid Angle

Solid Angle = Projected AreaSun/(distanceearth_sun)2

= 6.7 10-5 sr

P = (2.05 x 107 W/ m2.sr)  x (1 m2 ) x (6.7 10-5 sr) 
= 1373.5 Watt
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Sun Example: Power on MarsSun Example: Power on Mars

Power = Radiance.Area.Solid Angle

Solid Angle = Projected AreaSun/(distancemars_sun)2

= 2.92 10-5 sr

P = (2.05 x 107 W/ m2.sr)  x (1 m2 ) x (2.92 10-5 sr) 
= 598.6 Watt

Materials - Three FormsMaterials - Three Forms

Ideal diffuse 
(Lambertian)
Ideal diffuse 
(Lambertian)

Ideal
specular

Ideal
specular

Directional
diffuse

Directional
diffuse
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• Bidirectional Reflectance Distribution 
Function

BRDFBRDF

)(
)(),(

Ψ←
Θ→

=Θ→Ψ
xdE
xdLxfr

DetectorDetectorLight Light 
SourceSource

NN

Θ

x

Ψ

ΨΨΨ←
Θ→

=
ωdNxL

xdL
x ),cos()(
)(

BRDF special case: ideal diffuseBRDF special case: ideal diffuse

Pure LambertianPure Lambertian

π
ρd

r xf =Θ→Ψ ),(

10 ≤≤ dρ
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Properties of the BRDFProperties of the BRDF

•Reciprocity:

• Therefore, notation:

),(),( Ψ→Θ=Θ→Ψ xfxf rr

),( Θ↔Ψxfr

Properties of the BRDFProperties of the BRDF

• Bounds:

∞≤Θ↔Ψ≤ ),(0 xfr

1),cos(),( ≤ΘΘ↔ΨΨ∀ ∫
Θ

ΘωdNxf xr

• Energy conservation:
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• Goal: 
• Describe radiance distribution in the scene

• Assumptions:
• Geometric Optics

• Achieve steady state

Light TransportLight Transport

Radiance represents equilibriumRadiance represents equilibrium

• Radiance values at all points in the scene 
and in all directions expresses the 
equilibrium

• 4D function: only on surfaces
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Rendering Equation (RE)Rendering Equation (RE)

• RE describes energy transport in a scene

• Input:
• light sources

• geometry of surfaces

• reflectance characteristics of surfaces

• Output: value of radiance at all surface 
points and in all directions

Rendering EquationRendering Equation

)( Θ→xLe

Le

x

)( Θ→xL

L

x

Θ

=

=

+

+ )( Θ→xLr

Lr

x
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Rendering EquationRendering Equation

)( Θ→xLe

Le

x

)( Θ→xL

L

x

Θ

=

=

+

+

Lr

x

x

x

Rendering EquationRendering Equation

)( Θ→xLe

Le

x

)( Θ→xL

L

x

Θ

=

=

+

+

Lr

x

)( Ψ←xL ...∫
hemisphere
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Rendering EquationRendering Equation

ΨΨΨ←Θ↔Ψ=Θ→ ωdNxLxfxdL xr ),cos()(),()(

ΨΨΨ←Θ↔Ψ=Θ→ ∫ ωdNxLxfxL x
hemisphere

rr ),cos()(),()(

)(
)(),(

Ψ←
Θ→

=Θ↔Ψ
xdE
xdLxfr

)(),()( Ψ←Θ↔Ψ=Θ→ xdExfxdL r

Rendering EquationRendering Equation

)( Θ→xLe

Le

x

)( Θ→xL

L

x

Θ

=

=

+

+

Lr

x

)( Ψ←xL ΨΨΘ↔Ψ ωdxfr ),cos(),( xN∫
hemisphere

• Applicable for each wavelength
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Rendering EquationRendering Equation

+Θ→=Θ→ )()( xLxL e

x ΨΨΘ↔ΨΨ←∫ ωdxfxL
hemisphere

r ),cos(),()( xN

incoming radiance

SummarySummary

• Geometric Optics

• Goal: 
• to compute steady-state radiance values in scene

• Rendering equation: 
• mathematical formulation of problem



Radiometry & The Rendering Equation

Global illumination algorithms solve for the equilibrium distribution of light energy in a scene. This chap-
ter presents key concepts and definitions required to formulate the global illumination problem. First, we
give the basic assumptions that rendering algorithms make about the behavior of light. Then, we present
radiometric terms and define the bidirectional reflectance distribution function (BRDF), which captures the
interaction of light with surfaces. Finally, we present the rendering equation, a mathematical formulation of
the problem that global illumination algorithms must solve.

1. Model of light

Light is electromagnetic radiation produced by accelerating a charge. Light can be produced in different
ways; for example, by thermal sources such as the sun, or by quantum effects such as fluorescence where
materials absorb energy at some wavelength and emit it at some other wavelength. There are several mod-
els that attempt to explain the behavior of light: 

• Geometric Optics Model

In this model, light is assumed to travel through transparent media along rays. This model captures
effects such as emission, reflection, transmission (or refraction). This is the most commonly used model
in computer graphics. 

• Wave model

The wave model is described by Maxwell’s equations and captures effects that arise because light inter-
acts with objects of size comparable to the wavelength of light. This model explains effects such as dif-
fraction, interference, polarization and dispersion. However, these effects are typically too detailed for
the purposes of image generation in computer graphics and are generally ignored.

• Quantum model

The quantum mechanics model is the fundamental model of light that captures effects such as fluores-
cence and phosphorescence. However, this model is also too detailed and is generally not considered in
computer graphics. 

The geometric optics model is the most commonly used model in computer graphics and the model we are
going to use in this course. We deal with a subset of the behavior exhibited by light: emission, reflection
and transmission.

In this chapter we make several assumptions to formulate the rendering equation. We ignore the light
energy that is absorbed at surfaces and dissipated as heat. We also ignore effects due to the transmission of
light through participating media and media with varying indices of refraction. Additionally, we assume
that light propagates instantaneously through vacuum. 

2. Radiometry

Radiometry is the area of study involved in the physical measurement of light. This section gives a brief
overview of the radiometric units that will be used in this course.



2.1 Radiometric Terms

Radiance Power or Flux
The fundamental radiometric quantity is Radiant Power, also called Flux. Radiant Power, often denoted
as , is expressed in Watt (Joule/sec), and expresses how much total energy flows from/to/through a sur-
face per unit time. For example, we can say that a light source emits 100 Watts radiant power, or that 50
Watts radiant power is incident on a desk. Note that we do not specify how large the surface of the light
source or desk is, nor do we specify the distance to/from the source.

Irradiance
Irradiance (E) is the incident radiant power on a surface, per unit surface area. It is expressed as Watt/m2.

For example, if 50 Watt radiant power is incident on a surface which has an area of 1.25 m2, the irradiance
at each surface point is 40 Watt/m2 (if the incident power is uniformly distributed over the surface).

Radiant Exitance or Radiosity
Radiant Exitance (M), also called Radiosity (B), is the exitant radiant power per unit surface area, and is
also expressed as Watt/m2.

For example, a light source emitting 100 Watt, which has an area of 0.1 m2, has a radiant exitance of 1000
Watt/m2 in each point of its surface (if the emitting power is uniform over the area of the light source).

Radiance
Radiance (L) is the most important quantity in radiometry. Radiance is flux per unit projected area per unit
solid angle (Watt/sr.m2)

Intuitively, radiance expresses how much power arrives at (or leaves from) a certain point on a surface, per
unit solid angle, and per unit area. But this definition does not consider the regular notion of area; rather it
considers the area projected perpendicular to the direction we are interested in. Intuitively, this can be
understood by considering the power that arrives at a normal incident angle. If that power were now to
arrive at a grazing angle, the energy is ‘smeared out’ over a larger surface. Therefore, we must take the
larger area into account, and that is where the cosine term comes from.

Notations:

: radiance leaving point x in direction Θ
: radiance arriving at point x from direction Θ

Φ

E
Φ
A
----=

M B
Φ
A
----= =

L
d

2Φ
dωdA

⊥-----------------
d

2Φ
dωdA θcos
---------------------------= =

L x Θ→( )
L x Θ←( )



Relationships between radiometric units
In the above definitions, we assumed finite surfaces and finite solid angles. However, we can also define
radiometric quantities as continuous functions defined for each point in space and each direction (where
appropriate):

Flux: 

Irradiance: 

Radiant exitance or radiosity: 

Radiance: 

Reversing the above differentiations:

2.2 Properties of radiance

An important property of radiance is its invariance along straight paths (in vacuum). The radiance leaving
point x directed towards point y is equal to the radiance arriving at point y from the direction in which point
x is observed. In other words: . This can be proved by computing the energy trans-
port between two differential surface areas.

From the definition of radiance, the total (differential) power which is leaving differential surface area
, and which is arriving at , can be written as:

where  is the direction pointing from x to y, and  is the solid angle under which  is seen from x.
The power that arrives at area  from area  can be expressed in a similar way:

Energy incident on a surface: perpendicular and under angle θ.

area A

Acosθ

θ

Φ x Θ→( )

E x Θ←( ) Φ x Θ←( )d
dA

----------------------------=

B x Θ→( ) Φ x Θ→( )d
dA

----------------------------=

L x Θ→( ) d
2Φ x Θ→( )

dωdA
⊥-------------------------------

d
2Φ x Θ→( )
dωdA θcos

-------------------------------= =

Φ L x Θ→( ) θdωΘdAcos
Ω

∫
A
∫=

E x( ) L x Θ←( ) θdωΘcos
Ω
∫=

B x( ) L x Θ→( ) θdωΘcos
Ω
∫=

L x y→( ) L y x←( )=

dAx dAy

d
2Φ L x y→( ) θxcos dω

xy
dAx=

xy dω
xy

dAy
dAy dAx



We can also write the differential solid angles as follows:

If we assume that no energy loss occurs between the two differential surfaces (as is the case in vacuum),
and that there are no external light sources adding to the power arriving at , then from the conservation
of energy, all energy that leaves the surface  in the direction of the surface  must arrive at the sur-
face :

and thus:

So, radiance does not attenuate with distance, and is invariable along straight paths of travel. If we allow a
participating medium that can absorb and scatter energy to be present between the surfaces, the above prop-
erty of radiance is no longer valid.

From the above observation, it follows that once incident or exitant radiance at all surface points is known,
the radiance distribution for all points in a three-dimensional scene is also known. Almost all algorithms
used in global illumination limit themselves to computing the radiance values at surface points (still assum-
ing the absence of any participating media). Radiance at surface points is referred to as surface radiance by
some authors, whereas radiance for general points in three-dimensional space sometimes is called field
radiance.

Another important property of radiance is that most light receivers, such as cameras or the human eye, are
sensitive to radiance. The response of these sensors is proportional to the radiance incident upon them; the
constant of proportionality depends on the geometry of the sensor. 

Together, these two properties of radiance explain why the perceived color or brightness of an object does
not change with distance. 

Energy transport between two differential surfaces.

x

y

θx

θy

rxy

nx

ny

d
2Φ L y x←( ) θycos dω

yx
dAy=

dω
xy

θycos dAy

rxy
2

------------------------= dω
yx

θxcos dAx

rxy
2

------------------------=

dAy
dAx dAy

dAy

L x y→( ) θxcos dω
xy

dAx L y x←( ) θycos dω
yx

dAy=

L x y→( ) θxcos
θycos dAy

rxy
2

------------------------dAx L y x←( ) θycos
θxcos dAx

rxy
2

------------------------dAy=

L x y→( ) L y x←( )=



Wavelength dependency

All of the above measures and quantities are not only dependent on position and direction, but are also
dependent on the wavelength of the light energy under consideration. Thus, radiance values are normally
specified for all possible wavelength values. The measures defined above are to be considered as integrated
functions over the wavelength domain covering visible light. However, in papers and publications, it is
often implicitly assumed that the wavelength dependency is part of the equations, and is not mentioned
explicitly.

2.3 Examples

Example 1: Diffuse Emitter

A diffuse emitter, by definition, emits equal radiance in all directions from all its surface points:

Thus, for a diffuse surface, the radiance equals the flux divided by the area, divided by π. Using the above
equations, it is straightforward to write down a relationship between the power, radiance and radiosity of a
diffuse surface:

Example 2: Non-diffuse emitter

Suppose we have a square area light source with area 10cm by 10cm. Each point on the light source emits
radiance according to the following distribution over its hemisphere:

 (Watt/sr.m2)

Remember that the radiance function is defined for all directions on the hemisphere, and all points on a sur-
face. This specific distribution is equal for all points on the light source, but there is a fall-off as the direc-
tion is further away from the normal at each surface point. This figure gives a plot of the radiance in one
plane, perpendicular to the surface:

The radiosity for each point can be computed as follows:

L x Θ→( ) L=

Φ L x Θ→( ) θdωΘdAxcos
Ω
∫

A
∫=

L θdωΘdAxcos
Ω
∫

A
∫=

L dAx
A
∫ 

  θdωΘcos
Ω

∫ 
 =

πLA=

Φ LAπ BA= =

L x Θ→( ) 6000 θ cos=



The power for the whole light source can be computed as follows:

Example 3

Consider the radiance output from the Sun arriving at the Earth and Mars. Assume the sun is a uniform dif-
fuse emitter. Using the equation from Example 1:

Two-dimensional plot of emitted radiance according to cosine distribution.

θ

normal

x

B x( ) L x Θ→( ) θdωΘcos
Ω
∫=

6000 θ cos2 dωΘ
Ω
∫=

6000 θdωΘ cos2∫=

6000 θ cos2 θdθdϕsin

0

π 2⁄

∫
0

2π

∫=

6000 2π θ cos3

3
----------------–

0

π 2⁄
⋅ ⋅=

4000π Watt/m
2

12566 Watt/m
2

= =

Φ L x Θ→( ) θdωΘdAxcos
Ω
∫

A
∫=

L x Θ→( ) θdωΘcos
Ω
∫ 

  dAx
A
∫=

B x( )dAx∫=

4000π Watt/m
2

0.1 m
2

0.1 m
2⋅ ⋅=

125.66 Watt=

Φ LAπ=



The total power emitted by the sun is 3.91(1026) Watt, and the surface area of the sun is 6.07(1018) m2.
Therefore, the radiance equals:

Given a 1m x 1m patch on the surface of the earth, the power arriving at that patch is given as:

Assume that the sun is at its zenith, therefore, 

The solid angle subtended by the sun as seen from Earth is:

sr

So the total power incident on the patch equals:

Given a 1m x 1m patch on the surface of Mars, the power arriving at that patch can be computed in the
same way. The solid angle subtended by the Sun as seen from Mars equals:

sr

Therefore the power incident on a patch on Mars is given by:

Thus, even though the radiance of the sun is invariant along rays and does not drop off with distance, the
solid angle measure ensures that the power arriving at the Earth and Mars does drop off with distance
squared.

3. The Bidirectional Reflectance Distribution Function (BRDF)

Materials interact with light in different ways, and different materials have different appearances given the
same lighting conditions. Some materials appear as mirrors, others appear as diffuse surfaces. The reflec-
tance properties of a surface are described by a reflectance function, which models the interaction of light
reflecting at a surface.

The bidirectional reflectance distribution function (BRDF) is the most general expression of reflectance of
a material, at least at the level of detail we wish to consider. The BRDF is defined as the ratio between dif-
ferential radiance reflected in an exitant direction, and incident irradiance through a differential solid angle;
or more precisely, the BRDF is defined as the derivative of reflected radiance to incident irradiance.
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The BRDF has some interesting properties:

1. The BRDF can take any positive value, and varies with wavelength.

The value of the BRDF will remain unchanged if the incident and exitant directions are interchanged.
This property is also called Helmholtz reciprocity, a principle which says that paths followed by light
can be reversed.

Because of the reciprocity property, we will use a double arrow to indicate the fact that the two direc-
tions may be freely interchanged: .

2. Generally, the BRDF is anisotropic. That is, if the surface is rotated about the surface normal, the value
of  will change. However, there are many materials which are isotropic and where the value of 
does not depend on the specific orientation of the underlying surface.

3. The value of the BRDF for a specific incident direction is not dependent on the possible presence of
irradiance along other incident angles. Therefore, the BRDF, as defined above, behaves as a linear func-
tion with respect to all incident directions. In order to know the total reflected radiance due to some irra-
diance distribution over the hemisphere around an opaque, non-emissive surface point, we have to
integrate the BRDF equation  over the surrounding hemisphere. This provides us with the following
equation, referred to as the reflectance equation:

where  is the cosine of the angle formed by the vectors  and Θ.

Depending on the nature of the BRDF, the material will appear as a diffuse surface, or a mirror, or a glossy surface, or
it may exhibit any behaviour described by the BRDF. The more common encountered types of BRDF, as used in
photo-realistic rendering, are listed below:

Geometry for the BRDF

fr x Θi, Θr→( )
L x Θr→( )d

dE x Θi←( )
-----------------------------

L x Θr→( )d

L x Θi←( ) θidωΘi
cos

-----------------------------------------------------= =

Θr

Θi
nx

θi

x

θrL x Θr→( )d
dE x Θi←( )

fr x Θ, i Θr→( ) fr x Θ, r Θi→( )=

fr x Θ, i Θr↔( )

fr fr

dL x Θr→( ) fr x Θ, i Θr→( )dE x Θi←( )=

L x Θr→( ) fr x Θ, Θr↔( )dE x Θ←( )
Ωx

∫=

L x Θr→( ) fr x Θ, Θr↔( )L x Θ←( ) nx Θ,( )dωΘcos

Ωx

∫=

nx Θ,( )cos nx



Diffuse surfaces

Some materials reflect light in a uniform way over the entire reflecting hemisphere. That is, given an irradi-
ance distribution, the reflected radiance is independent of the exitant direction. Such materials are called
diffuse reflectors, and the value of their BRDF is constant for all values of . To an observer, a diffuse
material looks the same from all possible directions. For a pure Lambertian surface: 

The reflectance  represents the fraction of incident energy that is reflected at the surface. For physically
based materials,  varies from 0 to 1.

Specular surfaces

Other materials can be considered as perfectly specular surfaces and only reflect light in one specific direc-
tion. According to Snell’s law the incident and exitant direction make equal angles to the surface’s normal.
The BRDF of a perfectly specular surface can be described with the proper use of δ-functions. A perfect
specular surface has only one exitant direction for which the BRDF is different from 0, which implies that
the value of the BRDF along that direction is infinite. 

Glossy surfaces

Most surfaces, however, are neither ideally diffuse nor ideally specular, but exhibit a combination of both
reflectance behaviors; these surfaces are called glossy surfaces. Their BRDF is often difficult to model with
analytical formulae. 

Transparent surfaces

Strictly speaking, the BRDF is defined over the entire sphere of directions (4π steradians) around a surface
point. This is important for transparent surfaces, since these surfaces can ‘reflect’ light over the entire
sphere. The ‘transparent’ side of the BRDF can also behave as a diffuse, specular or glossy surface,
depending on the transparency characteristics of the material. In this text, we will limit ourselves to non-
transparent surfaces, and to BRDFs defined only over the reflecting side of the sphere. However, one has to
be careful when assuming properties about the transparent side of the BRDF. Some characteristics, such as
the reciprocity condition specified earlier, may not be true with transparent surfaces. In most texts, the term
BSDF (Bidirectional Scattering Function) is used, to denote the reflection and transparent parts together.

In global illumination algorithms, one often uses empirical models to characterize the BRDF. Great care
must be taken to make certain that these empirical models indeed make up a good and acceptable BRDF.
More specifically, the following conditions must be met to make the empirical model physically plausible:

Diffuse and glossy surfaces
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• Due to the conservation of energy, the total amount of power reflected over all directions must be less
than or equal to the total amount of power incident on the surface (excess power is transformed into heat
or other forms of energy). For any distribution of incident radiance  over the hemisphere, the
total incident power per surface area is the total irradiance over the hemisphere:

The total reflected power  is a double integral over the hemisphere: suppose we have a distribution of

exitant radiance  at a surface. The total power per unit surface area leaving the surface is:

From the definition of the BRDF we know:

Integrating this equation to find the value for  and combining it with the expression for 
gives us:

The BRDF satisfies the constraint of energy conservation for reflectance at a surface point if, for all pos-

sible incident radiance distributions , the following inequality holds:

This inequality must be true for any incident radiance function. Suppose we take an appropriate δ-func-
tion for the incident radiance distribution, such that the integrals become simple expressions:

then the above equation can be simplified to:

This is a necessary condition for energy conservation, since it expresses the inequality for a specific
incident radiance distribution. It is also a sufficient condition, since incident radiance from two different
directions does not influence the value of the BRDF, and thus conservation of energy is valid for any
combination of incident radiance values. If the value of the BRDF is dependent on the intensity of the
incoming light, one has to check the more elaborate inequality. A BRDF which is dependent on the
value of incident radiance is not uncommon at all. Light striking a surface changes the temperature of
that surface, and the perceived color of an object depends on its temperature. Such behavior of BRDFs
is usually not considered in photo-realistic rendering.
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• The empirical model for the BRDF must also obey Helmholtz reciprocity. This is an important con-
straint for some algorithms, especially those that compute the distribution of light energy by considering
paths starting from the light sources and paths starting from the observer at the same time. Such algo-
rithms explicitly assume that light paths can be reversed, and therefore the model for the BRDF should
reflect this property.

Glassner[Glas95] presents an overview of several BRDF models used in computer graphics. The most
commonly used model is the Phong model which is computationally efficient, but is not physically based
since it does not satisfy the energy conservation property described above. To date the most comprehensive
model is the He[He92] model which includes effects such as subsurface scattering and surface anisotropy;
however, it is computationally very inefficient. Instead, people use models such as the Cook-Tor-
rance[Cook81] which is physically based and uses microfacets to explain the reflectance behavior of light,
or the Ward model [Ward92] which is a popular empirically based model. 

4. The Rendering Equation (RE)

This section presents the rendering equation, a mathematical formulation of the steady-state distribution of
energy in a scene with no participating media. As mentioned before, we assume that this steady-state equi-
librium distribution of light energy is achieved instatantaneously.

The rendering equation specifies the outgoing radiance at a point x in a direction Θ:  in terms of
the emitted radiance at that point, , and the reflected radiance at that point . From
the conservation of energy,

From the definition of the BRDF we have 

Therefore, one formulation of the rendering equation is:
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Spherical Geometry & Coordinates

1. General Concepts

In rendering, we often want to work with functions defined over a hemisphere (one-half of a sphere). A
hemisphere is a two-dimensional surface, where each point on the surface defines a direction. Spherical
coordinates parametrize the hemisphere such that mathematical operations become possible. In spherical
coordinates, each direction is represented by two angles. The first angle, , indicates the azimuth, the sec-
ond angle, , indicates the elevation. Using the notation that capital Greek letters represent directions, we
can say that direction .

The range of the angles is given by:

 is measured starting from the normal vector at point x (the direction perpendicular to the surface on
which x is located),  is measured w.r.t an arbitrary axis located in the tangent plane to the surface.

So far we have defined points - or directions - on the hemisphere. If we want full spherical coordinates,
where we can specify every point in space (and not only points on the hemisphere), we not only need a
direction, but also a distance r along this direction. A point is then defined by three coordinates .
Transforming between Cartesian and full spherical coordinates is straightforward using elementary trigo-
nometry:

or:

Hemispherical coordinates.
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Rendering algorithms typically integrate functions over directions incident at a given surface point; there-
fore, these algorithms usually use hemispherical coordinates without the distance parameter. 

2. Solid Angle

If we want to integrate functions over the hemisphere (e.g. we want to compute all incident light at a sur-
face point), we need a measure on the hemisphere. This measure is the solid angle.

A finite solid angle is defined as follows: measure the given area on the sphere, and divide by the radius
squared. In the figure below, solid angle  equals its subtended area A divided by the radius squared. If

, the solid angle is simply the surface area on the hemisphere.

The concept of solid angle is completely analogous to angles in 2D. Since the area of a hemisphere equals
, the solid angle covered by the entire hemisphere is ; the solid angle covered by a complete

sphere is . Solid angles are dimensionless, but are expressed in steradians (sr). Note that the solid angle
is not dependent on the shape of surface A. To compute the solid angle subtended by an arbitrary surface or
object in space, seen from a specific point, we first project that surface on the hemisphere centered at that
point, and compute the solid angle of the projection.

The solid angle is only dependent on the area of the projection, and does not depend on the shape. There-
fore, two objects with different shapes can still subtend the same solid angle.

For small surfaces, we can use an approximation to compute the solid angle subtended by a surface or
object:  is called the projected surface area. It is an approximation of the projected area of A on a
hemisphere.

3. Integration over hemispheres

Just as differential surface areas or differential volumes can be defined in Cartesian XY or XYZ space to
integrate functions, we can define differential solid angles to integrate functions in hemispherical space.
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However, unlike differential areas/volumes in Cartesian space, there is a complication that arises in hemi-
spherical space: for a constant  near the horizon, the ‘area’ on the hemisphere ‘sweeped’ out by some dif-
ferential  is much larger than the area sweeped out for a constant  near the pole. The differential solid
angle takes this into account, by using a compensating factor .

A differential solid angle, centered around direction , is written as: 

Integrating a function  over the hemisphere can then be written as:

E.g. 1: Computing the area of the hemisphere:

Finite solid angle subtended by an arbitrary surface.

Approximation of the solid angle subtended by small surfaces.
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E.g. 2: Integrating a cosine distribution over the hemisphere

In rendering, we will often make use of a transformation that switches between integrals over the hemi-
sphere and integrals over surfaces. For example, if we want to compute all incident light at a point due to a
distant light source, we can integrate over all directions within the total solid angle subtended by the light
source, or we can integrate over the actual area of the light source. In order to carry out this transformation,

Differential solid angle on the hemisphere.
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we have to know what the relationship is between a differential solid angle and a differential surface area
on a distant surface. We use the approximation for small surfaces, which is the exact formula in the case of
differential surfaces:

The differential solid angle  around direction  is transformed to a differential surface  around
surface point y. Therefore, any integral over the hemisphere can also be written as an integral over surfaces
visible in each direction as follows:

Solid angle - differential area transformation.

x

y
ny

θ

rxy

direction Θ

solid angle dωΘ

dA

dωΘ
θdAcos

rxy
2

-------------------=

dωΘ Θ dA

f Θ( )dωΘ
Ω
∫ f y( ) θcos

rxy
2

------------dA

A

∫=



Monte Carlo Integration

1. Terms and definitions

A random variable describes the possible outcomes of an experiment. Associated with a random variable y
is a probability distribution function . This function gives the probability with which an event occurs
with an outcome lower than or equal to the value of y.

 is a non-decreasing function, and is non-negative over the entire domain of the random variable.
Associated with a probability distribution function  is a probability density function (PDF) . If

 is continuous over the domain of the random variable, the PDF can be written as the derivative of the
distribution. Given a PDF, we can always construct the corresponding probability distribution function by
integrating the PDF:

Intuitively, one can say that  is the probability that the value of the random variable will be equal to
x. A PDF has the following properties:

The probability of the event for which the value of the random variable is situated between two values a
and b is given by:

A sample can be generated according to a given distribution by applying the inverse cumulative distribu-
tion function to a uniformly generated random variable u over the  interval. The resulting sample is
then computed as . This is a well-known method of generating random samples, and is graphically
represented in the figure below. This method can only be used however, when the inverse of the probability
distribution function is known.

In most cases, it is not possible to derive an analytical formula for the inverse of the cumulative distribution
function. An alternative is to use rejection sampling. This technique raises the dimension of the sampled
particles by one, and generates uniform sample points over a bounding box which totally encloses the PDF.
For a one-dimensional PDF, whose maximum value over the domain  to be sampled is M, a pair

 is uniformly generated over the rectangle . In order to become a distribution for x
according to the PDF , the sampled pair is rejected if , and is accepted otherwise. The distri-
bution of the accepted samples x is equal to the PDF .
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Still another alternative is to use a numerical table, which is constructed by approximating the distribution
function by a piecewise linear function. This method, however, is not widely used, except perhaps when
the PDF to be sampled is extracted from measured data.

The expected value of a random variable is the mean value obtained by performing an infinite number of
experiments. Mathematically, the expected value of a random variable x ( ) with PDF  can be
expressed as:

More generally, if we want to compute the expected value of a function of a random variable:

The variance of a random variable is a measure of the mean square deviation from the expected value.
Variance is defined as the expected value of the squared distance between the outcome of an experiment
and its expected value:

Generating sample points according to F(x).

Rejection sampling.
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A well-known expression for the variance can easily be derived:

The definitions and terms used for probability functions can easily be expanded to higher dimensions.

2. Basic Monte Carlo Integration

Suppose we want to numerically integrate a function  over an integration domain D, i.e., we want to
compute the value of the integral I:

where d is the dimension of the integration domain. Deterministic quadrature formulas would construct a
number of sample points, and use the function values at those points to compute an estimate of I. Monte
Carlo integration basically uses the same approach, but uses a stochastic process to generate the sample
points. It is easy to imagine that we are able to generate N sample points  ( ) distributed uni-
formly over the domain D. The mean of the evaluated function values  multiplied by the area of the
integration domain, provides us with an unbiased estimator for I:

An estimator is said to be unbiased if its expected value equals the exact result of the expression we want to
estimate by means of the stochastic process. The above estimator  is indeed unbiased, because its
expected value equals the value of I. This can be proven easily: the PDF is uniform over the entire domain,
and must thus be equal to:

It is now straightforward to compute the expected value of :

σ2
f x( )[ ] E f x( ) E f x( )[ ]–( )2[ ]=

σ2
f x( )[ ] E f x( )2[ ] E f x( )[ ] 2

–=

f x( )

I f x( ) xd

D

∫=

D α1…β1[ ] α 2…β2[ ] …× αd…βd[ ]××= α i βi, ℜ∈( )

xi i 1 … N, ,=
f xi( )

I〈 〉 1
N
---- f xi( )

i 1=

N

∑
 
 
 
 

βi α i–( )

i 1=

d

∏
 
 
 
 

⋅=

I〈 〉

p x( ) βi α i–( )

i 1=

d

∏
 
 
 
  1–

=

I〈 〉



This estimator also has a variance , which is expressed as:

and which in turn can be estimated by:

Basic Monte Carlo integration will often produce much larger errors compared to deterministic quadrature
formulas with a comparable number of sample points. However, Monte Carlo integration can be useful
when we want to compute integrals of high dimensions. When using classic quadrature rules, the number
of sampling points usually grows exponentially with the dimension of the integral, whereas the number of
sampling points in a Monte Carlo integration can be of any nature. Another situation where we might opt to
use a Monte Carlo integration technique is when the functions to be integrated are of a rather complex
nature, and do not allow us to make any predictions about the expected error margins. The main advantage
of Monte Carlo integration is that it provides us with an unbiased estimator, which can be important in the
cases mentioned.
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3. Importance Sampling

Monte Carlo integration methods can roughly be subdivided in two categories: those that have no informa-
tion about the function to be integrated, and those that do have some kind of information available about
the function. Some authors call the first class of methods ‘blind Monte Carlo’, and the second class
‘informed Monte Carlo’ techniques. Intuitively, one expects that informed Monte Carlo methods are able to
produce more accurate results as opposed to blind Monte Carlo methods. The basic Monte Carlo integra-
tion algorithm outlined above is a blind Monte Carlo method, because it generates its sample points uni-
formly, without looking at the function itself.

This section describes a sampling technique known as importance sampling. Importance sampling uses a
non-uniform probability function for generating samples. By choosing the probability function wisely on
the basis of some knowledge of the function to be integrated, we can often reduce the variance. If we have
a PDF  defined over the integration domain D, and if we are able to generate sample points  accord-
ing to , we can then estimate the value of I by generating N sample points and computing the weighted
mean:

The expected value of  equals I, and this ensures that the estimator is unbiased:

To determine whether this estimator behaves better than uniform sampling, we have to compute its vari-
ance σ:

which can be estimated by its own estimator :
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It is obvious that the choice of  has an influence on the value of the variance. The difficulty of impor-
tance sampling is to choose a  in such a way that the variance is as low as possible, in order to make
the estimator as reliable as possible. The optimal  can be found by minimizing the expression for vari-
ance, using variational techniques and Lagrange multipliers.

We have to find the scalar λ for which the following expression L, a function of , reaches a minimum:

We have one boundary condition, which states that the integral of  equals 1 over the integration
domain:

This kind of problem can be solved by using the Euler-Lagrange differential equation.

To minimize, we need to differentiate:

The constant  is a scaling factor, such that  can fulfill the boundary condition. The optimal 
is then given by:

If we use this , the variance will be exactly 0. It is not possible to construct such a  because this
implies we have to know the value of I, which is exactly what we seek. This does not imply, however, that
importance sampling cannot be used as a sampling tool. It is one of the major tools in order to enhance
Monte Carlo integration techniques. Intuitively, a good importance sampling function matches the shape of
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the original function as closely as possible. The figure below shows three different probability functions.
Each of them will produce an estimator whose expected value will be equal to the value of the integral, but
the variance of the one on the left-hand side will be larger than the variance of the sampling function shown
on the right hand side.

There are various methods for constructing a ‘good’ probability function. The most obvious one is to build
a numerical probability table by sampling the function to be integrated and use that table to generate sam-
ples. Another (adaptive) strategy could consist of constructing the PDF at various steps during the sam-
pling process, based on the information gathered with all samples so far. This kind of strategy will be
explained further in this text.

Another way of looking at importance sampling is to consider importance sampling as a transformation of
variables of an integral. Suppose we want to evaluate the following one-dimensional integral:

We can rewrite this integral by carrying out a variable transformation:

The integral then is expressed as:

If  is a PDF, then  and . Evaluating this integral using a simple Monte Carlo inte-
gration requires the generation of a number of samples  over the interval , and evaluating .
This is exactly the same procedure as was used for generating non-uniform samples, by taking the inverse
of the cumulative probability distribution function.

4. Stratified Sampling

When generating samples over a domain, we have no control over where the samples will be positioned
relative to each other. It is therefore possible that we have clusters of samples in one region, and almost no
samples in another region. In other words, there may occur severe deviations from the number of samples
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we can expect in a certain part of the domain. This can happen irrespective of the PDF used, because the
PDF only tells us something about the expected number of samples in parts of the domain, but not about
the number of samples actually generated in that part.

Stratified sampling is a sampling technique that counters the effect of clumping. The basic idea is to split
up the integration domain in m disjunct subdomains (also called strata), and evaluate the integral in each of
the subdomains separately with one or more samples. More precisely:

Stratified sampling often leads to a smaller variance as opposed to a crude Monte Carlo integration method.
The variance of a stratified sampling method, where each stratum receives a number of samples , which
are in turn distributed uniformly over their respective intervals, is equal to [Hamm64]:

If all the strata are of equal size ( ), and each stratum contains one uniformly generated
sample ( ), the above equation can be simplified to:

This expression indicates that this variance is always smaller than the one obtained by a pure Monte Carlo
sampling scheme. As a consequence, there is no advantage in generating more than one sample within a
single stratum, since a simple equal subdivision of the stratum such that each sample is attributed to a sin-
gle substratum, always yields a better result.

This does not mean however, that the above sampling scheme always gives us the smallest possible vari-
ance, because we did not take into account the size of the strata relative to each other and the number of
samples per stratum. It is not an easy problem to determine how these degrees of freedom can be chosen
optimally, such that the final variance is the smallest possible. It can be proven that the optimal number of
samples in one subdomain is proportional to the variance of the function values relative to the average
function value in that subdomain. Applied to the principle of one sample per stratum, this implies that the
size of the strata should be chosen such that the function variance is equal in all strata. Such a sampling
strategy assumes prior knowledge of the function in question, which is often not available. However, such
sampling strategy might be used in an adaptive sampling algorithm [Pres90].
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Stratified sampling can also be combined with importance sampling. This is quite logical, since importance
sampling basically is a transformation from one integration domain to another. This strategy avoids the
clumping of samples, and at the same time distributes the samples according to the preset probability distri-
bution.

5. When to use Monte Carlo integration?

Monte Carlo integration often produces results that are worse than deterministic quadrature formulas that
require an equal amount of work. However, Monte Carlo integration can yield some advantages:

• Monte Carlo integration always provides us with an unbiased estimator of the integral. This means that
the expected value of the integration procedure equals the exact value of the integral.

• Monte Carlo integration can prove to be useful for integrating functions with complex behavior (e.g.
discontinuities). Deterministic integration algorithms often assume that the integrand does not differ
much from the class of functions for which the integration method is originally designed (e.g. low order
polynomials).

• Monte Carlo integration can be used for high-dimensional integrals, and does not require complex sub-
divisions of the integration domain. Moreover, irregular or complex integration domains can be handled
by means of a Monte Carlo integration scheme quite easily.

The main drawback is the fact that we still end up with a significant amount of error, and that it is hard to
provide an upper bound for the error, due to the variance of the stochastic process. One way to reduce the
variance is to use stratified sampling or importance sampling as discussed above. Another way of reducing
the error is to compute as much of the integral as possible using deterministic techniques. This can be sum-
marized by the following principle: ‘If, at any point of a Monte Carlo calculation, we can replace an esti-
mate by an exact value, the sampling error in the final result will be reduced.’ The second drawback is that
the variance only decreases proportional to the square root of the number of samples. Deterministic quadra-
ture formulas usually give faster convergence rates.

As a summary, one can state that Monte Carlo can be used for unknown, high-dimensional functions; if
possible, stratified sampling and importance sampling should be used to generate a good distribution of
samples.

Stratified Monte Carlo sampling combined with importance sampling.
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6. Fredholm Equations and Monte Carlo Integration

This section describes various strategies for solving Fredholm equations using Monte Carlo integration.
These equations are important for the global illumination problem, because the transport of radiance and
potential is expressed exactly by this kind of equations. Because the transport equations are essentially
recursive, which means the integrand is unknown, Monte Carlo integration is a viable alternative to com-
pute function values described by these equations.

6.1 Fredholm equations of the second kind

A Fredholm equation of the second kind (a recursive, linear integral equation, with a fixed integration
domain) in its most general form can be written as:

The unknown function is .  and the kernel  are given functions. Generally, we want to
evaluate  in a number of points x in order to learn more about the behavior of .

Since the equation is recursive and no termination condition to stop the recursive nature of the computation
is explicitly stated, one evaluation of a requires in its turn the evaluation of an integral. The evaluation can
therefore be thought of as an integral of infinite dimension.

A Fredholm equation can generally not be solved using analytical techniques. Because of the high dimen-
sion of the integral, a Monte Carlo method could be a good alternative.

6.2 Relationship with global illumination

The Fredholm equation of the second kind is a very important equation for the global illumination problem.
Indeed, all transport equations of radiance are equations of this kind.

 is the first visible point as seen from  in direction . The BRDF, together with the cosine term, takes
the role of the kernel. The emittance of light sources and the initial importance act as the initially known
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function b. These equations, however, are not one-dimensional equations, but two-dimensional Fredholm
equations in which the integration domain is the hemisphere around a single surface point.

6.3 Recursive Monte Carlo solutions

When solving a Fredholm equation, we basically want to evaluate the unknown function  at a number
of points . These points are determined by the requirements of another computation, possibly an integra-
tion method of the function  over a certain integration domain. Suppose the function a needs to be
evaluated for a certain argument value .  is a known function, so  can be evaluated directly.
To estimate the integral part of , we generate a number of sample points  over the domain D using
a PDF . An estimator for  is then given by:

This expression does not really give us a usable value, since the values for  are still unknown. Thus,
 can be approximated by adding more approximations recursively:

There are a few problems with this method of estimating :

• The sum is in principle infinite and will never stop. However, if the kernel function fulfils certain condi-
tions, the subsequent terms become smaller and smaller, and will contribute less to the final result. Nev-
ertheless, one has to provide some sort of termination criterion to stop the recursive algorithm.

• The number of samples required for estimating each term in the sum grows very quickly; i.e., estimating
the second term requires  new samples. Since the nature of the Monte Carlo algorithm requires
that the number of samples is large, this means a significant amount of computational work.

• One might wonder whether the infinite series of sums will ever converge. This depends on the nature of
the kernel function . Without going into a detailed description, one can say that the Fredholm
equation has a solution provided that the series

converges for a given x and y. A sufficient condition for convergence of this series is that:
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This is indeed the case for the global illumination transport equations, where the kernel function
 equals the BRDF times a cosine factor. The convergence can also be deduced from the physical

interpretation of the equation. Due to the restriction of energy conservation, the equations describing
light transport must always yield a viable result, without diverging or infinite solutions.

Absorption
Because the Fredholm equation is inherently recursive, an estimator produced by a Monte Carlo algorithm
is given by an infinite sum. If we want the evaluating algorithm to stop, we have to introduce a termination
condition. However, we still want to maintain the advantage of a non-biased estimator. Simply ignoring the
terms of the sum which fall beyond a certain threshold will introduce a bias. The concept of absorption pro-
vides one possibility of handling this problem.

Suppose we want to integrate the function  over its integration domain . Before evaluating the
function for each sample point , we first decide whether or not to use  (or absorb ). The probability
of absorption, is given by the absorption coefficient α ( ). The absorption is decided by generating
a uniform random variable u over .

For each sample point , we now decide what estimator to use. Because a number of samples will be
absorbed, we have to give the non-absorbed samples a higher weight. An estimator y is constructed such
that:

The expected value of y equals:

Thus, absorption does not change the expected value of the experiment.

The variance can be expressed as:

It is easy to imagine that the  can be of any nature.  can be a recursive function evaluation, or even
the result of another stochastic process. If the absorption test produces a value for u which is larger than α,
we evaluate , otherwise, the result is 0. If we apply such a scheme to a recursive evaluation (e.g. the
Fredholm equation), we decide at each step whether we evaluate the next recursive term. This provides us
with a nice termination algorithm, that still keeps the advantage that the final result will be unbiased, due to
the extra weighting factor.

The value of α should be chosen carefully. If α is large, the recursive evaluation will terminate rapidly, but
we can expect a high variance on the final result. If α is small, the recursive evaluation has a small chance
of terminating, but the result will be more reliable. Usually, the context of the specific problem provides
some insight in order to choose a good value for α.
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The relation with global illumination lies in the fact that during light-surface interaction, part of the irradi-
ance is absorbed by the surface, and is being transformed into heat or some other form of energy. This
physical process also has to be modelled somehow in our simulation. Thus use of an absorption coefficient
is an elegant way to do this.

Next event estimation
A Monte Carlo evaluation of the Fredholm equation can be expressed as:

which is an estimator for:

The choice of PDF  strongly influences the variance on the final result. According to the principle of
importance sampling, we get better results if  closely resembles . But,  is still
unknown at his point of the global evaluation, so we can only base our choice on the knowledge of the ker-
nel .

However, the function a is not completely unknown, because the first term of the sum is the known func-
tion b. We can rewrite the Fredholm equation as:

In order to evaluate , we now have to evaluate two integrals. However, there is one distinct advantage:
because we have split the integral in two parts, we can apply much better estimation techniques to each part
individually. The first term of this sum contains known functions  and . We can therefore
apply an informed Monte Carlo algorithm to this first term. Possibly, we might even be able to evaluate this
first term analytically. As a result, the variance for an estimator of  will decrease. The second term still
is a recursive evaluation. Here, we still can rely only on our knowledge of  in order to come up with
a suitable sampling scheme.

The next event estimation technique will prove to be useful if  has some distinct properties
which makes it easy to sample or to compute analytically, so that the decrease in variance will be obvious.
Some typical examples are listed below.
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• If  is a function which is zero over a large part of the domain, and contributes significantly to the
overall result of the integral, we might choose to generate more samples in the part of the integration
domain where  differs from zero. By using next event estimation, we can limit the generation of
samples over the subdomain only.

• A more extreme situation occurs if  equals a Dirac-impulse. We can integrate the first term analyt-
ically. In this case, sampling never yields the correct result, since we are never able to generate the exact
point where  differs from zero. An analytical evaluation provides us with an exact result and thus a
better approximation to the overall value .

• A combination of the above cases arises when  has some very sharp spikes. Due to their high func-
tion values, these spikes will cause a high variance when selected with a general sampling scheme. If we
can separate these spikes from the main integral, we can adjust the sampling function such that the
spikes themselves are sampled with a much higher frequency. This might reduce the overall variance.

Next event estimation applied to a function which is zero over a significant part of the integration domain.

Next event estimation applied to a Dirac-impulse.

Next event estimation applied to a function containing sharp spikes.
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The above examples, and their respective solutions, are actually based on the same principle as importance
sampling: if the function value is high, we want to generate more samples at that point. If we can compute
the integral analytically (e.g. a Dirac-impulse), we might gain a much more significant decrease in the vari-
ance of the final estimator.

Random walks
As stated above, one of the problems associated with solving Fredholm equations using a Monte Carlo
approach, is that the number of samples might increase very rapidly, due to the recursive nature of the
equation. At each step of the recursion, a number of samples is generated, thereby effectively generating a
tree of samples. At each node of the tree, we have to compute a possible contribution to the overall result.

As can be seen, much work is spent computing the contributions of the nodes lower in the tree, simply
because there are a lot more nodes at those depths. These lower nodes typically yield less significant contri-
butions to the overall result. This is a consequence of the increasing multiplications of the kernel function.
This approach seems disadvantageous, because much work is spent evaluating and generating samples that
have no visible impact on the final result of . On the other hand, we do not want to ignore these
deeper nodes, because they ensure us of an unbiased estimator for . A compromise is needed to con-
centrate more work in the higher branches of the tree, without ignoring possible contributions of the lower
nodes.

One might be tempted to think that increasing the probability of absorption will solve this problem. A
higher absorption ratio will indeed limit the depth of the tree, but there are still more lower branches when
the overall number of branches is kept constant.

A more elegant solution is to distribute the work evenly over all the levels of the tree. We can accomplish
this by generating only one sample at each recursive level. This gives rise to a so-called random walk. The
concept of absorption is maintained to end the recursion..

A single value  can be approximated by adding all contributions from the random walk:

Tree resulting from evaluating a(x0).
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The variance associated with this estimate is very bad, because we approximate each level of the recursion
with just one sample. On the other hand, we have not used as many samples as we would have done when
generating an entire tree. This gives us an opportunity to generate several random walks. By generating
several random walks originating from , and subsequently computing the average of these walks, we
have more estimators for , and the result might improve. The difference between these two
approaches is drawn schematically below.

The net result of using random walks is that more effort will be spent in computing the first terms of the
recursive sum. Under the conditions given above for convergence of the Fredholm equation, this seems
reasonable. Indeed, the contributions of the terms later in the series are less and less significant, and will
have a decreasing effect on the final result. Therefore, more relative effort should be put in the first terms.

The total estimator obtained by performing several random walks can be expressed as:

Random walk for evaluating a(x0).

Single tree versus several random walks.
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General Strategies for
Solving the Rendering Equation 

General Strategies for
Solving the Rendering Equation 

In this section of the course, we will look at some general strategies for computing 
the rendering equation.

Rather than give specific examples of algorithms, this section will outline some 
useful general design principles that can be used to design your own algorithms.

Two aspects are important: the notion that all light transport between a source and a 
receiver is really taking into account all possible light paths between that source and 
that receiver; and secondly, Monte Carlo integration is a useful tool for integrating 
the transported energy over all these possible paths.
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FrameworkFramework

Acquisition

Modeling
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Global
Illumination
Algorithms
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Mapping
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Human
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This is again the overall framework for photo-realistic rendering.

After the acquisition of BRDFs and geometry, we can now solve the rendering 
equation in order  to compute the light transport between the light sources in the 
scene and the pixels for which we want to compute a radiance value.

The result of the light transport phase will be that for each pixel, we will obtain a 
radiance value that passes through that pixel to the direction of the eye. As such, we 
have a matrix of radiance values. Afterwards, these radiance values will have to be 
transformed to RGB values that can be used to display the picture on the screen.
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Global Illumination AlgorithmGlobal Illumination Algorithm

radiance = ?

This is the general setup:

Given a scene (in this case a simple box with two floating triangles), the virtual 
camera (specified by its location, viewing direction, viewing angle, resolution, etc.), 
we can trace a viewing ray from the eye through each pixel, and find the closest 
intersection point in the scene. This is really a simple ray-casting operation, and we 
assume we have an appropriate implementation (which might use acceleration 
structures such as hierarchical bounding volumes or spatial voxel subdivision which 
are well described in classic ray tracing literature).

We now want to compute the radiance value leaving this surface point in the 
direction of the eye. So, the light transport algorithm really starts once we have 
found that first intersection point.
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Rendering EquationRendering Equation

∫
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This is the rendering equation we want to solve:

The radiance emitted by a point x in a direction Θ equals:
• the self-emitted radiance (which is different from 0 only if x is on the surface of a 
light source)
• plus the reflected radiance, which is all incoming radiance, multiplied by the 
BRDF, multiplied by the cosine factor, and integrated over the entire hemisphere.

Remember that the incoming radiance can be traced back to another surface point in 
space where it is the outgoing radiance. Thus, the rendering equation is inherently 
recursive.
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Radiance evaluationRadiance evaluation

Fundamental problem of GI algorithms:Fundamental problem of GI algorithms:
• Evaluate radiance at a given surface point in a 

given direction

x

?)( =Θ→xL

Evaluating the radiance value at a surface point x in a direction Θ really is the 
fundamental problem in all global illumination algorithms.

Not only do we want these radiance values at all points visible through the pixels, 
but also we need to evaluate these radiance values at others points in the scene, 
when we will trace back the incoming radiance at x and transform it in some 
outgoing radiance at another point.
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Radiance evaluationRadiance evaluation

)( Θ→xL

x

… find paths between sources and surfaces to be shaded

This is an illustration of the recursive nature of the rendering equation.

All radiance values incident at surface point x are themselves outgoing radiance 
values. We have to trace back the path they arrive from. This means tracing a ray 
from x in the direction of the incoming radiance. This results in some surface point, 
and the incoming radiance along the original direction now simply equals the 
outgoing radiance at this new point.

The problem is then stated recursively, since this new radiance value is also 
described exactly by the rendering equation.

This process will continue until the paths are traced back to the light source. Then 
we can pick up the self-emitted radiance, take into account all possible cosine 
factors and possible BRDF values along the path, perform the necessary integration 
at each surface point, to finally arrive at the original radiance value we are interested 
in.
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Radiance EvaluationRadiance Evaluation

Reconstructing all possible paths between the light sources and the point for which 
one wants to compute a radiance value is the core business of all global illumination 
algorithms.

This photograph was taken on a sunny day in New Mexico. It is shown here just to 
illustrate some of the unexpected light paths one might have to reconstruct when 
computing global illumination solutions.

The circular figure on the left wall is the reflection of the lid on the trash-can. The 
corresponding light paths (traced from the sun), hit the lid, then hit the wall, and 
finally end up in our eye. For a virtual scene, these same light paths need to be 
followed to reconstruct the reflection.
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Radiance EvaluationRadiance Evaluation

This photograph shows a similar effect.

We see shimmering waves on the bottom of the river (a similar effect is noticable in 
swimming pools). Light rays from the sun hit the transparent and wavy surface of 
the water, then are reflected on the bottom of the river, are refracted again by the 
water, the they hit our eye.
The complex pattern of light rays hitting the bottom, together with the changing 
nature of the surface of the water, causes these shimmering waves.

This effect is known as a caustic: light rays are reflected or refracted in different 
patterns and form images of the light source: the circular figure in the previous 
photograph, or the shimmering waves in this one.
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Radiance EvaluationRadiance Evaluation

• Many different light paths contribute to single 
radiance value

•many paths are unimportant

• Tools we need:

•generate the light paths
•sum all contributions of all light paths
•clever techniques to select important paths

So, many different light paths, all originating at the light sources, will contribute to 
the value of the radiance at a single surface point.

Many of these light paths will be unimportant. Imagine a light switched on on the 1st

floor of a building. You can imagine that some photons will travel all the way up to 
the 4th floor, but it is very unlikely that this will contribute significantly to the 
illumination on the 4th floor. However, we cannot exclude these light paths from 
consideration, since it might happen that the contribution is significant after all.

So, one of the mechanisms that a good global illumination algorithm needs is how to 
select the important paths from amongst many different possibilities, or at least how 
to try to put more computational effort into the ones that are likely to give the best 
contributions.

This is of course a chicken and egg problem. If we would know what the importance 
of each path was, we would have solved the global illumination problem. So the best 
we can do is to make clever guesses.
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Black BoxesBlack Boxes

• We assume that we can query the scene geometry 
and materials

•surface points
•light sources
•visibility checks
•tracing rays

To design the light transport component of a global illumination algorithm, a few 
building blocks need to be in place.

One should assume that one can query the virtual scene: the properties of surface 
points, light sources etc. should be easily accessible.

Also, we need a way to check visibility. There are two different sorts of visibility 
checks:
• Given 2 points in 3D space, are the mutually visible? In other words, is any other 
solid object intersecting the line connecting those two points?
• Given a surface point and a direction, what is the nearest surface points one can 
see looking from the surface point in the given direction?

Both of these visibility queries need to be implemented, usually this is done using a 
hierarchy of bounding volumes or a spatial acceleration structure (e.g. a voxel-grid). 
Classic ray tracing literature gives many details on how this can be done efficiently.
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Black BoxesBlack Boxes

• Surface points

x
Surface normal = ?
Brdf value = ?

xn

Θ
Ψ

?),( =Ψ↔Θxfr

The queries we want to make about a surface point:

• What is the surface normal at this point?

• Given two directions, what is the corresponding BRDF value? Note that this might 
involve looking up texture values, since the BRDF might be given in the form of a 
texture map. In general, this is not the same as a ‘shader’. Care has to be taken that 
the returned BRDF values are physically plausible (reciprocity constraint and energy 
conservation constraint).
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Black BoxesBlack Boxes

• Light sources

x
Surface normal = ?
Emission value = ?

?)( =Θ→xLe

xn

Θ

The queries we want to make about a point on a light source:

• What is the surface normal at this point?

• Given a direction, what is the self-emitted radiance value at this point?
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Black BoxesBlack Boxes

• Tracing rays + visibility checks 

•spatial acceleration structures
•bounding volumes
•...

x

y

z

r(x,Θ) = surface point

V(x,z) = 0 or 1

As we mentioned before, 2 types of visibility tests are needed:

• Given 2 points in 3D space, are the mutually visible? In other words, is any other 
solid object intersecting the line connecting those two points?
• Given a surface point and a direction, what is the nearest surface points one can 
see looking from the surface point in the given direction?

Both of these visibility queries need to be implemented, usually this is done using a 
hierarchy of bounding volumes or a spatial acceleration structure (e.g. a voxel-grid). 
Classic ray tracing literature gives many details on how this can be done efficiently.
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Monte Carlo IntegrationMonte Carlo Integration

• Numerical tool to evaluate integrals

• Rendering equation has integral:

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ+Θ→=Θ→
x

dnxLfxLxL xre ω),cos()()()()(

x
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Once the black boxes described previously are in place, we can start to look at 
solving the rendering equation itself.

The RE is a recursive integral equation. In practice, it cannot be solved analytically, 
so we need to find numerical ways to compute specific value of this equation in 
certain points and directions.

One of the most commonly used tool in global illumination to compute integrals is 
Monte Carlo integration.
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Monte Carlo IntegrationMonte Carlo Integration

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ+Θ→=Θ→
x
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function to integrate over all
incoming directions over the
hemisphere around xValue we want

In order to apply Monte Carlo integration to the RE, it is useful just to assume we 
have a function that needs to be integrated over some integration domain.

In our case, the integration domain is the hemisphere around point x. Using a 
parametrization of the hemisphere (e.g. hemispherical coordinates), we can rewrite 
this integral as a two-dimensional integral. The function to be evaluated is a 
recursive function, and that will give rise to a recursive Monte Carlo procedure.
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Monte Carlo IntegrationMonte Carlo Integration
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Estimator:

Let us look at a simple Monte Carlo scheme first.

Suppose we want to integrate a function f(x) over the integration domain [0,1]. 
Monte Carlo integration generates a number of random points in the integration 
domain, and takes the average values of their function values. This average value is 
an estimator for the value of the integral.

Note that the random points are sampled uniformly over the entire integration 
domain.

Since each time we will perform this computation, we will generate different 
random points, the estimator <I> will also be different. <I> is therefore a stochastic 
variable, with its own distribution.
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Monte Carlo IntegrationMonte Carlo Integration

• Expected value of estimator

•on ‘average’, we have the right result

• Standard deviation σ is a measure for the 
stochastic error

IIE =][

∫ −=
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22 ])([1 dxIxf
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The most useful property of <I> is, that the expected outcome of the Monte Carlo 
experiment is the value of the integral itself. Thus, if we repeat the Monte Carlo 
experiment an infinite number of times, and compute the average of all these 
experiments, we will end up exactly with I.

Intuitively, this means that ‘on average’, we will obtain a right answer. However, 
each individual value of <I> does not equal I. But the expected value of <I> equals 
I.

The standard deviation is a measure for the stochastic error. The real error can be 
larger than this, since we are working with a stochastic process. The more samples 
we generate, the lower the standard deviation becomes.
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Monte Carlo IntegrationMonte Carlo Integration

• Integral

• Uniform sampling

• Samples : 

15
1

0

4 == ∫ dxxI

x1 =   .86                  <I> = 2.74 

x3 =   .02                  <I> = 0.96 

x4 =   .38                  <I> = 0.75 

x2 =   .41                  <I> = 1.44 

Let’s take a look at a simple example.

Suppose we want to integrate a polynomial function 5x^4 over the integration 
domain [0,1]. The real value of this integral is 1, but what happens when we apply 
MC integration?

Suppose the first sample generates a point at x = 0.86. The our estimate so far is 
2.74, or an error of 1.74.

We can go on drawing more samples, and the error we make will decrease on 
average.
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Monte Carlo Integration - ExampleMonte Carlo Integration - Example

• Integral

• Stochastic error

• Variance

15
1

0

4 == ∫ dxxI

This plot shows the estimated value of the integral in function of the number of 
samples.

The yellow line plots the error, the red line plots the theoretical standard deviation. 
So one can see that the error can become larger than the standard deviation, but the 
deviation is a good measure for the error.

It is also obvious that the more samples are drawn, the smaller the error becomes, 
although the error decreases rather slowly.
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Monte Carlo integration - non-uniformMonte Carlo integration - non-uniform

• Generate samples according to density function 
p(x)

• Some parts of the integration domain have higher 
importance

• Variance is low if 

∑
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The previous example assumed that the samples were drawn uniformly over the 
integration domain.

One can also draw the samples non-uniformly, using a pdf p(x). Some parts of the 
domain will now be sampled more often than others, and this needs to be taken into 
account in the estimator.

By choosing a good pdf, one can decrease the variance. As a rule of thumb, the 
variance is low if the shape of the pdf matches the shape of the function to be 
integrated.
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Monte Carlo Integration - 2DMonte Carlo Integration - 2D

• MC Integration works well for higher dimensions
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Monte Carlo integration really starts to pay of for multi-dimensional functions. The 
principle remains exactly the same: random points are generated in the integration 
domain, and an average function value is computed, weighted by the value of the 
PDF.

The stochastic error still decreases by the square root of 1/N. This is usually better 
than many deterministic integration methods for higher-dimensional functions.
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Monte Carlo Integration - 2DMonte Carlo Integration - 2D

• Integration over hemisphere:
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This slide shows an example of a Monte Carlo integration over the hemisphere.

Suppose we want to integrate a function f, defined for all directions over the 
hemisphere. First, one has to choose a parametrisation (e.g. hemispherical 
coordinates), and rewrite the integral. Now we can simply define any pdf in the phi 
– theta domain, generate samples, evaluate f, and compute the weighted average.

The expected value of this stochastic process is the exact value of the integral to be 
computed.
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Hemisphere Integration exampleHemisphere Integration example
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Here we have a more complicated example.

Suppose we want to compute the irradiance at a point due to a single light source.
Suppose the pdf samples a direction proportional to the cosine of the angle theta. 

Then, by writing out the estimator, we obtain a very simple formula. Thus, we are 
generating direction according to a cosine distribution, and therefore only have to 
evaluate the radiance of the source for each sample. Note that the radiance of the 
source might be 0 if the sampled direction does not point to the light source.
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Direct IlluminationDirect Illumination

• Paths of length 1 only, between receiver and light 
source

umbra

penumbraglossy surface

Let us apply the principles of Monte Carlo evaluation to the computation of the 
direct illumination.

Direct illumination is only one component of the rendering equation. It describes the 
reflected radiance coming directly from the light sources.

Direct illumination is usually an important contribution for many images, so it is 
worthwhile using a specific sampling procedure.
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Direct IlluminationDirect Illumination
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This is the general Rendering Equation. To compute the radiance at a single surface 
point in a given direction, we need to integrate the incoming radiance over the 
hemisphere, multiply by the correct BRDF and cosine factors.

If we would just apply MC integration to this integral, we end up sampling 
directions over the hemisphere. For each of these directions, we need to recursively 
evaluate the radiance along this new ray. But, since we are only interested in direct 
illumination, the majority of samples is probably wasted, since these rays will not 
connect to the light source.

Although such an estimator would produce a valid and unbiased estimator, the 
variance will be high.
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Direct IlluminationDirect Illumination
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One can do better by reformulating the rendering equation for direct illumination. 
Instead of integrating over a hemisphere, we will integrate over the surface area of 
the light source. This is valid, since we are only interested in the contribution due to 
the light source.

To transform the hemispherical coordinates to area coordinates over the hemisphere, 
we need to transform a differential solid angle to a differential surface. This 
introduces an extra cosine term and an inverse distance squared factor.

Additionally, the visibility factor, which was hidden in the hemispherical 
formulation since we ‘traced’ the ray to the closest intersection point, now needs to 
be mentioned explicitly.
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Generating direct pathsGenerating direct paths

• Pick surface points yi on light source

• Evaluate direct illumination integral
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The complete Monte Carlo procedure for direct illumination now works as follows:

Pick random points on the light source, using an appropriate pdf. Then evaluate the 
function of the integral, which includes the geomtry term G, the BRDF, and the 
radiance of the light source.

One can see that this is in fact equivalent to traditional ‘shadow rays’ in classic ray 
tracing, except that we now have an unbiased, physically correct estimator of the 
radiometric quantity radiance. Classic ray tracing does not always take all these 
factors into account.
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Generating direct pathsGenerating direct paths

ParametersParameters
• How many paths (“shadow-rays”)?

•total?
•per light source? (~intensity, importance, …)

• How to distribute paths within light source?

•distance from point x
•uniform

To compute the direct illumination using Monte Carlo integration, the following 
parameters can now be chosen:

- How many paths will be generated total for each radiance value to be computed? 
More paths result in a more accurate estimator, but the computational cost increases.
- How many of these paths will be send to each light source? It is intuitively obvious 
that one wants to send more paths to bright light sources, closer light sources, visible 
light sources.
- How to distribute the paths within each light source? When dealing with large light 
sources, points closer to the point to be shaded are more important than farther-away 
points.
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Generating direct pathsGenerating direct paths

1 path / source 9 paths / source 36 paths / source

Here are a few examples of the results when generating a different number of paths 
per light source.

This simple scene has only one light source, and respectively 1, 9 and 36 paths are 
generated. The radiance values are computed more accurately in the latter case, and 
thus visible noise is less objectionable.

Although the first image is unbiased, its stochastic error is much higher compared to 
the last picture.
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Alternative direct pathsAlternative direct paths

• shoot paths at random over hemisphere; check if 
they hit light source

paths not used efficiently
noise in image

might work if light source occupies 
large portion on hemisphere

The algorithm in which the area of the light source is sampled is the most widely 
used way of computing direct illumination.

However, many more ways are possible, all based on a Monte Carlo evaluation of 
the rendering equation.

This slide shows an algorithm we have shown before: directions are sampled over 
the hemisphere, and they are traced to see whether they hit the light source and 
contribute to the radiance value we are interested in.

In this approach, many samples are wasted since their contribution is 0.
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Alternative direct pathsAlternative direct paths

1 paths / point 16 paths / point 256 paths / point

These images show the result of hemispherical sampling. As can be expected, many 
pixels are black when using only 1 sample, since we will only have a non-black 
pixel if the generated direction points to the light source.
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Alternative direct pathsAlternative direct paths

• pick random point on random surface; check if on 
light source and visible to target point

paths not used efficiently

noise in image

might work for large surface light 
sources

This is another algorithm for direct illumination:

We can write the rendering equation for as an integral over ALL surfaces in the 
scene, not just the light sources. Of course, the direct illumination contribution of 
most of these surfaces will be 0.

A Monte Carlo procedure will then sample a random surface point. For each of these 
surface points, we need to evaluate the self-emitted radiance (only different from 0 
when a light source), the visibility between the sampled point and the target point, 
the geometry factor, and the BRDF.

Since both the self-emitted radiance and the visibility term might produce a 0 value
in many cases, many of the samples will be wasted.
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Direct path generatorsDirect path generators

Hemisphere sampling

- Le can be 0

- no visibility in
estimator

Surface sampling

- Le can be 0

- 1 visibility term in
estimator

Light source sampling

- Le non-zero

- 1 visibility term in
estimator

Here we see the 3 different approaches next to each other.

The noise resulting from each of these algorithms has different causes.

When sampling the area of the light source, most of the noise will come from failed 
visibility tests, and a little noise from a varying geometry factor.

When sampling the hemisphere, most noise comes from the self-emitted radiance 
being 0 on the visible point, but the visibility itself does not cause noise. However, 
each sample is more costly to evaluate, since the visibility is now folded into the ray 
tracing procedure.

When sampling all surfaces in the scene, noise comes failed visibility checks AND 
self-emitted radiance being 0. So this is obviously the worst case for computing 
direct illumination.

Although all these algorithms produce unbiased images when using enough samples, 
the efficiency of the algorithms is obviously different.
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Direct pathsDirect paths

• Different path generators produce different 
estimators and different error characteristics

• Direct illumination general algorithm:

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

p = generate_path;
est_rad += energy_transfer(p) / probability(p);

est_rad = est_rad / n;
return(est_rad);

A general MC algorithm for computing direct illumination then generates a number 
of paths, evaluates for each path the necessary energy transfer along the path 
(radiance * BRDF * geometry), and computes the weighted average.

The differences in different algorithms lie in how efficient the paths are w.r.t. energy 
transfer.
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Indirect IlluminationIndirect Illumination

• Paths of length > 1

• Many different path generators possible

• Efficiency dependent on:

•type of BRDFs along the path
•Visibility function
•...

What about indirect illumination?

The principle remains exactly the same: we want to generate paths between a light 
source and a target point. The only difference is that the path will be of length 
greater than 1.

Again, the efficiency of the algorithm will depend on how clever the most useful 
paths can be generated.
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Indirect paths - surface samplingIndirect paths - surface sampling

• Simple generator (path length = 2):

•select point on light source
•select random point on surfaces

per path:
2 visibility checks

An added complexity is that we now have to deal with recursive evaluations. 
Although we show in these slides only the final paths between the light source and 
the target point, in an actual algorithm these paths will be generated recursively.

A simple algorithm involves samples all surface points in the scene. To generate 
paths of length 2, one can generate a random point on the surfaces, and a random 
point on a light source (direct illumination for the intermediate point). The necessary 
energy transfer is computed along the paths, and a weighted average using the 
correct pdf’s is computed.
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Indirect paths - source shootingIndirect paths - source shooting

• “shoot” ray from light source, find hit location

• connect hit point to receiver

per path:
1 ray intersection
1 visibility check

This algorithm might generate the intermediate point in a slightly different way: a 
random direction is sampled over the hemisphere around a random point on the light 
source, this ray is traced in the environment, and the closest intersection point found.

Then this visible point is connected to the target point.
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Indirect paths - receiver shootingIndirect paths - receiver shooting

• “shoot” ray from receiver point, find hit location

• connect hit point to random point on light source

per path:
1 ray intersection 
1 visibility check

Another algorithm might generate the intermediate point in a slightly different way: 
a random direction is sampled over the hemisphere around the target point, this ray 
is traced in the environment, and the closest intersection point found.

Then this visible point is connected to a random surface point generated on the light 
source.

This is the usual way of generating indirect paths in stochastic ray tracing.
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Indirect pathsIndirect paths

Source shooting

- 1 visibility term
- 1 ray intersection

Receiver shooting

- 1 visibility term
- 1 ray intersection

Surface sampling

- 2 visibility terms;
can be 0

Here are all the different approaches compared.

All three of these algorithms will produce an unbiased image when generating 
enough samples, but the efficiency will be very different.
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More variants ...More variants ...

•“shoot” ray from receiver point, find hit location
•“shoot” ray from hit point, check if on light source

per path:
2 ray intersections
Le might be zero

Even more variants can be thought of, as shown on this slide.

This is just to illustrate the general principle, that any path generator will do, as long 
as the correct energy transfer and correct probabilities for all the paths are 
computed.
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Indirect pathsIndirect paths

• Same principles apply to paths of length > 2

•generate multiple surface points
•generate multiple bounces from light sources and 

connect to receiver
•generate multiple bounces from receiver and 

connect to light sources
•…

• Estimator and noise characteristics change with 
path generator 

For paths of length greater than 2, one can also come up with a lot of different path 
generators.

Usually these are implemented recursively.
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Indirect pathsIndirect paths

• General algorithm:

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

p = generate_indirect_path;
est_rad += energy_transfer(p) / probability(p);

est_rad = est_rad / n;
return(est_rad);
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Indirect paths - how to end recursion?Indirect paths - how to end recursion?

• Contributions of further light bounces 
become less significant

• If we just ignore them, estimators will be 
incorrect!

An important issue when writing a recursive path generator is how to stop the 
recursion.

Our goal is still to produce unbiased images, that is, images which will be correct if 
enough samples are being generated.

As such, we cannot ignore deeper recursions, although we would like to spend less 
time on them, since the light transport along these longer paths is will probably be 
less significant.
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Russian RouletteRussian Roulette
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Russian Roulette is a technique that can be used to stop the recursion.

Mathematically, it means that we will cosnider part of integration domain to have a 
function value of 0. If a sample is generated in this part of the domain, it is 
‘absorbed’. Of course, this means that the samples which are not absorbed will need 
to get a greater weight, since they have to compensate for the fact that we still want 
an unbiased estimator for the original integral.
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Russian RouletteRussian Roulette

• In practice: pick some ‘absorption probability’ α
•probability 1-α that ray will bounce
•estimated radiance becomes L/ (1-α)

• E.g. α = 0.9

•only 1 chance in 10 that ray is reflected
•estimated radiance of that ray is multiplied by 10

• Intuition

•instead of shooting 10 rays, we shoot only 1, but 
count the contribution of this one 10 times
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Complex path generatorsComplex path generators

• Bidirectional ray tracing

•shoot a path from light source
•shoot a path from receiver
•connect end points

More complex path generators are also possible.

Bidirectional ray tracing is an algorithm that generates paths with variable length, 
both from the light source and the eye, and connects the end points.

Again, this is path generator, and results in an unbiased images if all relevant pdf’s 
are taken into account.
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Complex path generatorsComplex path generators

Combine all different paths and weight them correctly
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Bidirectional ray tracingBidirectional ray tracing

• Parameters

•eye path length = 0: shooting from source
•light path length = 0: shooting from receiver

• When useful?

•Light sources difficult to reach
•Specific brdf evaluations (e.g., caustics)
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Bidirectional ray tracingBidirectional ray tracing

(E. Lafortune, 1996)
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Bidirectional ray tracingBidirectional ray tracing

(E. Lafortune, 1996)
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Classic ray tracing?Classic ray tracing?

• Classic ray tracing:

•shoot shadow-rays (direct illumination)
•shoot perfect specular rays only for indirect

• ignores many paths

•does not solve the rendering equation

How does classic ray tracing compare to the physically correct path genertors 
described so far?

Classic ray tracing only generates a subset of all possible paths: shadow rays, and 
the perfect specular and refractive paths. As such, classic ray tracing ignores many 
of the other paths along which energy is transported from the light sources to the 
receiving surfaces.
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General global illumination algorithmGeneral global illumination algorithm

• Black boxes

•evaluate brdf, Le

•ray intersection
•visibility evaluation

• Design path generators

• Path generators determine efficiency of global 
illumination algorithm



1

Stochastic RadiosityStochastic Radiosity

What will we learn?What will we learn?

• Case study: computation of : computation of world-space
representation of representation of diffuse illuminationillumination
Over 100 papers on stochastic radiosity.

• Diffuse light path generation using light path generation using 
stochastic iteration and and random walks

• Different ways how to ways how to measure diffuse diffuse 
illuminationillumination

• Variance reduction: more efficient light : more efficient light 
path generation and usage.path generation and usage.
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Mathematical problem description (1):
Rendering Equation (general)
Mathematical problem description (1):
Rendering Equation (general)

SelfSelf--emittedemitted
radianceradiance

brdfbrdf total total 
radianceradiance

Mathematical problem description (2):
Radiosity Integral Equation (diffuse)
Mathematical problem description (2):
Radiosity Integral Equation (diffuse)

SelfSelf--emitted radiosityemitted radiosity reflectivityreflectivity total radiositytotal radiosity
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SelfSelf--emittedemitted
radiosityradiosity

reflectivityreflectivity total total 
radiosityradiosity

Mathematical problem description (3):
Radiosity Linear System
Mathematical problem description (3):
Radiosity Linear System

Form factor

Classical RadiosityClassical Radiosity

1. Discretise the input scenethe input scene
Problem:Problem: discretisation artifacts

2. Compute form factors
Problem:Problem: huge number of non-trivial 

integrals: 95% of the computation time,
very large storage requirements,
computational error.

3. Solve radiosity systemradiosity system
4. Tone mapping and display

In practice intertwined!!
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Discretisation ArtifactsDiscretisation Artifacts
Constant ApproximationConstant Approximation “true” solution“true” solution Quadratic ApproximationQuadratic Approximation

Form Factor  
Singularities and 
Discontinuities

Form Factor  
Singularities and 
Discontinuities
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Monte Carlo MethodsMonte Carlo MethodsMonte Carlo Methods

Principle:Principle:
• Formulate solution of a problem as the 

expectation of a random variable

• Sample random variable

• Mean of samples yields estimate for solution

Example: Example: simple estimation of a sumsimple estimation of a sum

SumSum

EstimateEstimate

VarianceVariance

Only useful for sums with a Only useful for sums with a large number of 
complicated terms..

Summation by Monte CarloSummation by Monte Carlo
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Monte Carlo MethodsMonte Carlo Methods

Advantages:Advantages:
• Correct result eventually

• Simple (at least in theory)

• Wide applicability

Disadvantage: Disadvantage: 
• Slow convergence rate (method of last resort!!)

Remedies:Remedies:
• Variance reduction

• Low-discrepancy Sampling

• Sequential Sampling 

Monte Carlo Methods for RadiosityMonte Carlo Methods for Radiosity

1. Form factor integration::
• Problem: Still need to store the form factors

• Problem: how many samples for each form factor??

2. Monte Carlo methods for solving radiosity 
system of linear equations directly::

• No need for explicit form factor computation and storage

• More rapid: log-linear rather than quadratic time 
complexity

• Reliable, user-friendly, easy to implement
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Power equations:Power equations:

Deterministic Jacobi Algorithm:Deterministic Jacobi Algorithm:

Jacobi Iterative Method for RadiosityJacobi Iterative Method for Radiosity

Quadratic cost!

Stochastic Jacobi 
iterations
Stochastic Jacobi 
iterations

1. Select patch1. Select patch jj

2. Select i conditional on2. Select i conditional on jj

3. Score (form factor cancels!!)

VARIANCE:
log-linear cost!
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Local LinesLocal Lines Global LinesGlobal Lines

Form factors Form factors FFijij for fixed patch i form a for fixed patch i form a 
probability distribution that that can be 
sampled efficiently by tracing rays..

Form factor samplingForm factor sampling

Incremental Jacobi iterationsIncremental Jacobi iterations
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Incremental Jacobi iterationsIncremental Jacobi iterations

Incremental Jacobi iterationsIncremental Jacobi iterations
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• Propagate only 
power received in 
last iteration until 
the amount drops 
below a certain 
threshold.

• Result = sum of 
results of all steps.

Incremental Jacobi iterationsIncremental Jacobi iterations

Incremental Jacobi iterationsIncremental Jacobi iterations
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Choose nr of rays N Choose nr of rays N 
proportional power to proportional power to 
be propagatedbe propagated

Incremental Jacobi iterationsIncremental Jacobi iterations

Incremental Jacobi iterationsIncremental Jacobi iterations
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Incremental Jacobi iterationsIncremental Jacobi iterations

First complete First complete 
radiosity solutionradiosity solution

Incremental Jacobi iterationsIncremental Jacobi iterations
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Regular Jacobi iterationsRegular Jacobi iterations

Complete 
solution

Regular Jacobi iterationsRegular Jacobi iterations

Propagate all power from 
all patches

Complete 
solution
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Regular Jacobi iterationsRegular Jacobi iterations

Output is nearly independent
of input. Take average.

New 
complete 
solution

1M rays1M rays 4M rays4M rays 16M rays16M rays

64M rays64M rays 256M rays256M rays

Result (30K patches, 1Mrays=20secs)Result (30K patches, 1Mrays=20secs)
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Random WalksRandom Walks

• Sequence of “states” of “states” XXii generated as generated as 
follows:follows:

1. Sample origin X0 according to some source 
density S(X0)

2. At each visited state Xi,
1. EITHER terminate the random walk according to 

some absorption probability function A(Xi)
2. OR make transition to new state Xi+1 according to a 

transition probability density T*(Xi,Xi+1)
Combined transition pdf T(X,Y) = (1-A(X)) T*(X,Y)

Survival probability

Light source samplingLight source sampling

• Sample point on light source with point on light source with 
probability proportional to selfprobability proportional to self--emitted emitted 
radiosity: S(x) = E(x)/radiosity: S(x) = E(x)/ΦΦTT
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Making the first transition (1)Making the first transition (1)

• No absorption at the absorption at the 
originorigin

• Sample direction direction 
according to directional according to directional 
distribution of selfdistribution of self--
emitted radiance.emitted radiance.
Diffuse emission: pdf is 

cos(θx)/π

Making the first transition (2)Making the first transition (2)

• Shoot ray ray 
along sampled along sampled 
direction.direction.

• Geometric
density factor:density factor:
cos(θy) / r2

xy
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Making the first transition (3)Making the first transition (3)

• Full transition transition 
density T(x,y) density T(x,y) 
is product:is product:

Further transitionsFurther transitions

1. Absorption / / 
survival test survival test 
according to according to 
albedoalbedo
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Further transitions (2)Further transitions (2)

2. Sample direction 2. Sample direction 
according to according to brdfbrdf

Further transitions (3)Further transitions (3)

3. Shoot ray3. Shoot ray
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Further transitions (4)Further transitions (4)

• Full transition transition 
density:density:

Once more …Once more …

1. Absorption / 1. Absorption / 
survival testsurvival test
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2. Sample direction 2. Sample direction 
according to according to brdfbrdf..

3. Shoot ray.3. Shoot ray.
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•• Full transition Full transition 
densitydensity

And yet once moreAnd yet once more

1. Absorption / 1. Absorption / 
survival testsurvival test
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2. Sample 2. Sample 
direction direction 
according to according to 
brdfbrdf

3. Shoot ray3. Shoot ray
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•• Full transition Full transition 
densitydensity

End of gameEnd of game

1. Absorption1. Absorption



24

Sampled pointsSampled points

1000 paths

Sampled pointsSampled points

10000 paths
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Sampled pointsSampled points

100000 paths

Sampled pointsSampled points

Collision density is related to radiosity!!
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Collision densityCollision density

•• In In general::

Random walk simulation yields points with 
density which is solution of second kind 
Fredholm integral equation

Path origins
at X

Visits to X
from elsewhere

Collision density for radiosityCollision density for radiosity

• Radiosity integral equation:

Source density should be Source density should be normalisednormalised,,
S(x) = E(x)/S(x) = E(x)/ΦΦTT, but we’re almost there!, but we’re almost there!
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Collision density for radiosityCollision density for radiosity

• Divide by total self-emitted power:

Collision density for radiosityCollision density for radiosity

SourceSource
density S(x)density S(x)
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Collision density for radiosityCollision density for radiosity

SourceSource
density S(x)density S(x)

Transition density T(y,x):Transition density T(y,x):
1. sample cosine 

distributed direction at y
2. shoot ray; ray hits x
3. survival test at x

Collision density for radiosityCollision density for radiosity

• Collision density proportional to radiosity

SourceSource
density S(x)density S(x)

Transition density T(y,x):Transition density T(y,x):
1. sample cosine 

distributed direction at y
2. shoot ray; ray hits x
3. survival test at x

D(x) = B(x)/ΦT
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Radiosity reconstructionRadiosity reconstruction

• Need to compute scalar productsto compute scalar products

• Estimates look like:look like:

Measurement function

Histogram methodHistogram method

•• Break surfaces in small elements. Count Break surfaces in small elements. Count 
photons hitting each element:photons hitting each element:
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Histogram methodHistogram method

Orthogonal series density estimationOrthogonal series density estimation

•• Linear, biLinear, bi--linear, quadratic, cubic, … linear, quadratic, cubic, … 
approximationsapproximations
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Orthogonal SeriesOrthogonal Series

Kernel density estimationKernel density estimation

• Place finitefinite--width density kernel at each width density kernel at each 
sample point. sample point. 
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Cylindrical kernelCylindrical kernel

Gaussian kernelGaussian kernel
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Linear systems: discrete RW’sLinear systems: discrete RW’s

•• Same as before, but using Same as before, but using discrete state space
and source and transition probabilities: and source and transition probabilities: 

Linear systems: discrete RW’sLinear systems: discrete RW’s

•• Same as before, but using Same as before, but using discrete state space
and source and transition probabilities: and source and transition probabilities: 

Source densitySource density
SSii==ΦΦii//ΦΦTT
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Linear systems: discrete RW’sLinear systems: discrete RW’s

•• Same as before, but using Same as before, but using discrete state space
and source and transition probabilities: and source and transition probabilities: 

Source densitySource density
SSii==ΦΦii//ΦΦTT

Transition densityTransition density
TTjiji==FFjijiρρii

1. Form factor 
sampling (local 
or global lines)

2. Survival test at i

Linear systems: discrete RW’sLinear systems: discrete RW’s

•• Same as before, but using Same as before, but using discrete state space
and source and transition probabilities: and source and transition probabilities: 

Source densitySource density
SSii==ΦΦii//ΦΦTT

Transition densityTransition density
TTjiji==FFjijiρρii

1. Form factor 
sampling (local 
or global lines)

2. Survival test at i

Collision density
Di=Pi/ΦT
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Discrete Random Walks (local lines)Discrete Random Walks (local lines)

Continuous Continuous 
(solves integral equation)(solves integral equation)

Discrete Discrete 
(solves linear system)(solves linear system)

Ad-joint systems: gathering RW’sAd-joint systems: gathering RW’s

• With each scalar product <V,B> with TB=E 
corresponds a scalar product <I,E> with I 
the solution of an ad-joint equation T*I=V:
Proof: <V,B>=<T*I,B>=<I,TB>=<I,E>

• Ad-joint radiosity systems::

• Random walks start at “region of interest” 
and yield scores when hitting light sources
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VV

EEII

BB

<V,B> = <I,E><V,B> = <I,E>

Scoring (1)Scoring (1)

Collision Estimator: Collision Estimator: 
scores everywherescores everywhere



37

Scoring (2)Scoring (2)

Absorption estimator: Absorption estimator: 
scores only where scores only where 
path terminatespath terminates

Scoring (3)Scoring (3)

Survival estimator: Survival estimator: 
scores everywhere scores everywhere 
except when except when 
absorbedabsorbed
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Scoring (4)Scoring (4)

Many moreMany more
Possibilities!Possibilities!

ComparisonComparison

1. Discrete versus continuous RW (histogram):
Slightly higher discretisation error, but QMC sampling is much 

more effective for discrete RW.

2. Scoring:
Collision RW most often preferable

3. Gathering versus shooting:
Shooting more effective, except on small patches

4. Discrete collision shooting RW versus 
stochastic iterations:

Basic estimators equally efficient, but variance reduction 
more easy and effective for stochastic iterations.
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Efficiency improvements:Efficiency improvements:

1. View-importance driven sampling
2. Control variates
3. Combining gathering and shooting
4. Weighted importance sampling
5. Metropolis sampling
6. Low-discrepancy sampling
Topic of Topic of ongoing research!!
Our experience: Our experience: often easier and more 

effective for stochastic iterative methods

View-Importance driven sampling.View-Importance driven sampling.

• Goal: focus computations on “important” : focus computations on “important” 
parts of a sceneparts of a scene

• Measure for “importance”:for “importance”:
• Solve adjoint radiosity equations:

• Use this “importance” in order to shoot more 
rays originating at/towards important regions
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View Importance

View A:

View B:

A B

View Importance:View Importance:

A: Sample more rays A: Sample more rays originating at at 
patches with high importancepatches with high importance

B: Sample more rays B: Sample more rays originating at at 
patches with high patches with high indirect importanceimportance

C: B + also aim rays C: B + also aim rays towards regions with regions with 
high indirect importancehigh indirect importance

View-importance driven stochastic 
iterations
View-importance driven stochastic 
iterations
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1 iteration 1 iteration 
(no importance)(no importance)

3 iterations3 iterations
(no importance)(no importance)

AA

BB

2 importance2 importance--driven driven 
iteration for VP Aiteration for VP A

2 more importance2 more importance--
driven iteration for VP Bdriven iteration for VP B

AA

BB
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ViewView--importance driven iteration is more importance driven iteration is more 
expensive than nonexpensive than non--importance driven importance driven 
iteration. For iteration. For same computation cost::

Hierarchical RefinementHierarchical Refinement

Problem:Problem:
• Noisy artifacts on small patches: group them!

• Large patches are too “flat”: subdivide them!
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Principle:Principle:

Related with Monte Carlo solution of Related with Monte Carlo solution of 
waveletwavelet--preconditioned linear systems.preconditioned linear systems.

Per-ray refinementPer-ray refinement

86



44

87

5min. 9min.

10min.

8Mpoly’s in 1 night8Mpoly’s in 1 night

(interactive (interactive visualisationvisualisation
with ray casting)with ray casting)
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SummarySummary

• Radiosity measurement
• Solution by means of stochastic iteration or 

random walks (= point sampling)
• Many kinds of random walks:

• Continuous versus discrete

• Shooting versus gathering (adjoint equation)

• Scoring: all collisions, at absorption, survival, …

• Plenty of ways to improve efficiency
• Viable alternative for deterministic methods

More informationMore information

• Related books:books:
• Kalos and Whitlock, The Monte Carlo Method, 1986

• Silverman, Density Estimation for Statistics and Data 
Analysis, 1986

• RenderPark: test bed system for global : test bed system for global 
illuminationillumination
• www.renderpark.be

• CAL session
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StochasticRadiosity
Doing Radiosity without Form Factors

Ph.Bekaert
�

Intr oduction

This coursesectionfocuseson algorithmsto computelight transportin purely diffuse3D envi-
ronments.The input consistsof a modelof a 3-dimensionalscene,with surfacesbroken up in
patches,mostoften trianglesor convex quadrilaterals.With eachpatchtheself-emittedradiosity���

(dimensions:�����
	���
 ) andreflectivity � � (dimensionless)aregiven.Theself-emittedradiosity
is theradiositythata patchemits“on its own”, evenif therewereno otherpatchesin themodel,
or all otherpatcheswereperfectlyblack. Thereflectivity is a number(for eachconsideredwave-
length)between0 and1. It indicateswhatfractionof thepowerincidentonthepatchgetsreflected
(therestgetsabsorbed).Thesedatasuffice in orderto computethetotal emittedradiosity � �

(di-
mension: ������	���
 ) by eachpatch,containingbesidestheself-emittedradiosity, alsotheradiosity
receivedvia any numberof bouncesfrom otherpatchesin thescene.Theproblemof computing� � is commonlycalledtheradiosityproblem[18, 9, 43].

Therestrictionto diffuseemissionandreflectionmayseemdraconicat first sight. In addition,
subdividing asceneinto patcheslimits whatkind of geometrydescriptionscanbeused.Thereare
other light transportalgorithmsthat do not suffer theselimitations. We believe that radiosity is
neverthelessaninterestingtopic for study, because:� diffusereflectionis a reasonableapproximationin many indoorandoutdoorenvironments,

wherein particularindirectnon-diffuseillumination is oftennotsoimportant;� tessellationof inputmodelsis alsorequiredin otherrenderingalgorithms,for instancewhen
usinggraphicshardware. Although meshquality requirementsarehigher, many meshing
problemsarenotuniquefor radiosity. Meshingis a topic thathasbeenstudiedextensively;� the computedradiositiescanbe convertedinto patchandvertex colors,or into a texture,
which canbe renderedin real time usingcommoditygraphicshardware. Reasonableap-
proximationsfor non-diffusedirect illumination,suchasglossyhighlights,andevenmirror
reflections,canalsobeaddedusinggraphicshardware.At this time, this is a uniqueadvan-
tageof radiositymethods;�

Currentadress:Max PlanckInstitut für Informatik, Im Stadtwald 46.1,66123Saarbr̈ucken,Germany. E-mail:
Philippe.Bekaert@mpi-sb.mpg.de
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� the radiosityproblemis a simplified instanceof the generallight transportproblem. Both
problemscanbesolvedusingthesametechniques,at leastin theory. We will show in this
coursethat the set of techniquesfor solving radiosity is richer than for the generallight
transportproblem. We hopethe overview in this documentmay thereforeinspire further
researchfor thegenerallight transportproblemtoo.

This coursesectionis structuredas follows: first, a conciseoverview is given of the radiosity
method( � 1). Our focusis on MonteCarloalgorithmsfor theradiosityproblem,which have been
proposedrelatively recently. Themainunderlyingprinciplesof thesealgorithmsarepresentedin� 2. Monte Carlo algorithmsfor radiosityaremorereliableandeasierto implementandto use
thantheir deterministiccounterparts.In addition,they requirelessstorageandyield fair quality
imagesmorerapidly in far mostcases.Theseadvantagesarerelatedwith the fact that explicit
computationandstorageof so called form factorsis avoided. Therearebasicallytwo ways to
do this: by stochasticadaptationsof classicaliterative methodsfor solving linear systems( � 3)
andby randomwalks ( � 4). Next ( � 5), several variancereductiontechniquesandthe useof low
discrepancy samplingarepresented.Thesetechniquescansometimesyield verysignificantspeed-
ups.Weconcludewith adescriptionhow higherorderapproximationsandhierarchicalrefinement
canbeincorporatedin MonteCarloradiosityalgorithms( � 6).

All resultsreportedin thesenoteshave beenobtainedusing RENDERPARK on a 195MHz
R10000SGI Octanesystemwith 256MB RAM. RENDERPARK is a free software testbedsys-
temfor global illumination algorithms,developedat thecomputergraphicsresearchgroupof the
departmentof computerscienceat theK. U. Leuven,Leuven,Belgium.Thesourcecodeof REN-
DERPARK canbedownloadedfrom www.renderpark.be.

1 The Radiosity Method

In this section,we will presenta very conciseoverview of theradiositymethod.More extensive
treatmentscanbe found in the booksby CohenandWallace[11] andSillion andPuech[63] as
well asvariousSIGGRAPHcoursesorganizedin thepast.First,amathematicaldescriptionof the
problemis given.Next, theclassicalradiositymethodis outlinedanddiscussed.

1.1 Mathematical problem description

The radiosityproblemcanbe describedmathematicallyin threedifferentways: by the general
renderingequation,aninstanceof it for purelydiffuseenvironments,andby a discretizedversion
of thelatter.

1.1.1 The generalrendering equation

The renderingequation,introducedin the field by Kajiya [25], describeslight transportin envi-
ronmentsexhibiting generallight emissionandscattering.Theaverageradiosity � �

emittedby a

2



patch � , in suchanenvironmentis givenby:� ��� �� � ����� �"!$#&%('*),+&-/.10"243 576 8 9;:<8 �>=
(1)

with %('*)?+&-/.10 � %('@ ),+&-/.10BA � !$#DCFEG),+&HI.KJ"L .10M%(N*),+&-/.OJP0"2�3Q5R6GJS8 9T:"U
(2)

Themeaningof thesymbolsis summarizedin a tableat theendof thesenotes(page44).

1.1.2 The radiosity integral equation

In apurelydiffuseenvironment,self-emittedradiance
% '@ )?+V0

andthebrdf
CGEF),+V0

donotdependon
directions

.
and

. J
. Therenderingequationthenbecomes:% ' )?+V0 � % '@ ),+V0BA � ! # CFEG),+V0W% N ),+&-/. J 0"2�3Q5R6 J 8Q9 J:DX

Of course,theincidentradiance
% N ),+&-/. J 0

still dependsonincidentdirection.It correspondsto the
exitant radiance

% ' )ZY"0
emittedby thepoint

Y
visible from

+
alongthedirection

. J
. The integral

above,overthehemisphere[ = , canbetransformedinto anintegraloverall surfaces\ in thescene,
yieldinganintegralequationin whichnodirectionsappear:% ' ),+V0 � % '@ )?+V0BA � ),+V0 � �^]_)?+&-`Y"0M% ' )ZY"0M8 �ba
or (multiplicationwith c onbothsides):� )?+V0 �d� )?+V0BA � ),+V0 � �^]_)?+&-`Y"0 � ),Y�0W8 �ba X

(3)

Thekernelof this integralequationis:]e),+&-`Y"0 � 2�3Q5f6 = 2�3Q576 acBg �=Ia vis
)?+&-`Y"0 X

(4)

Equation(1) now becomes: � �<� �� � � ��� � ),+V0W8 �>= X
(5)

1.1.3 The radiosity systemof linear equations

Onemethodto solve integralequationslike (3) is theGalerkinmethod[14, 32,11, 63]. Basically,
the left and right handside of (3) are projectedonto a set of basisfunctionsand the resulting
coefficientsleft andright areequated.With a constantbasisfunctionfor eachpatch � ( h � ),+V0 � �

3



if
+ji \ � and k if

+mli \ � ), approximating� ),+V0
by � )?+V0on p� ),+V0 �rq � � J� h � )?+V0 , the Galerkin

methodyieldstheclassicalradiositysystemof linearequations:� J� �d�s� A � ��tvuxwD� u � Ju X
(6)

Thefactors
wD� u

arecalledpatch-to-patch form factors:w&� u � �� � � ��� � �My<]e),+&-`Y"0M8 �ba 8 �b= X
(7)

Thecoefficients � J�
thatresultaftersolvingthesystemof linearequations(6) areonly anapprox-

imation for theaverageradiosities(5) in theprevioussection.Thedifferenceis thatdiscretisation
errorsget propagated,resultingin diffusereflectionsof for instancelight leaks. It is possibleto
constructscenesin whichthedifferenceis visible,but suchcasesareveryrarein practice.Wewill
denoteboththeaverageradiosity(5) andtheradiositycoefficientsin (6) by � �

in theremainderof
this text.

1.2 The classicalradiosity method

Solvingtheradiosityproblemtakesthefollowing four steps:

1. Discretisationof theinputgeometryin patches� . For eachresultingpatch� , aradiosityvalue
(perconsideredwavelength)� � will becomputed;

2. Computationof form factors
wD� u

(7), for everypair of patches� and z ;

3. Numericalsolutionof theradiositysystemof linearequations(6);

4. Displayof thesolution,includingthetransformationof theresultingradiosityvalues� �
(one

for eachpatchandconsideredwavelength)to displaycolors.Thisinvolvestonemappingand
gammacorrection.

In practice,thesestepsareintertwined,for instance:form factorsareonly computedwhenthey
are needed,intermediateresultsare displayedalreadyduring systemsolution, in adaptive and
hierarchicalradiosity[10, 21], discretisationis performedduringsystemsolution,etc

X{X{X
.

1.3 Problems

At first sight,onewould expectthatstep3, radiositysystemsolution,would bethemainproblem
of theradiositymethoddueto thesizeof the linearsystemsthatneedto besolved(oneequation
perpatch,100,000patchesis quitecommon).Theradiositysystemof linearequationsis in prac-
tice however very well behaved,so thatsimpleiterative methodssuchasJacobior Gauss-Seidel
iterationsconvergeafterrelatively few iterations.

Themainproblemsof theradiositymethodarerelatedto thefirst two steps:
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Flat shaded Gouraud shaded

Figure1: Meshingartifactsin radiositywith constantapproximations(left) includeundesiredshad-
ing discontinuitiesalongpatchedges.Gouraudshadingcanbeusedto blur thesediscontinuities.
Whereever theradiosityvariessmoothly, ahigherorderapproximationof radiosityoneachpatch
resultsin a moreaccurateimageon the samemesh(a quadraticapproximationwasusedin the
right column),but artifactsremainneardiscontinuitiessuchasshadow boundaries.The middle
columnshowsthe“true” radiositysolution(computedwith bidirectionalpathtracing).

1. Scenediscretisation:the patchesshall be small enoughto captureillumination variations
suchasnearshadow boundaries:theradiosity � ),+V0

acrosseachpatchneedsto beapproxi-
matelyconstant.Figure1 shows whatimageartifactsmayresultfrom animproperdiscreti-
sation.On theotherhand,thenumberof patchesshouldn’t betoo high,becausethis would
resultin anexaggeratedstoragerequirementsandcomputationtimes;

2. Form factor computation: the numberof form factorsis not only huge(10,000,000,000
form factorsfor 100,000patches),but eachform factorin additionrequiresthesolutionof
a non-trivial 4-dimensionalintegral (7). The integral will be singularfor abutting patches,
wherethe distanceg =Ia in the denominatorof (4) vanishes.The integrandcanalsoexhibit
discontinuitiesof variousdegreesdueto changingvisibility (seefigure2).

Extensive researchhasbeencarriedout in orderto addresstheseproblems. Proposedsolutions
includecustomalgorithmsform factorintegration(hemi-cubealgorithm,shaftculling ray tracing
acceleration,

X{X{X
), discontinuitymeshing,adaptive andhierarchicalsubdivision,clustering,form

factorcachingstrategiestheuseof view importanceandhigherorderradiosityapproximations.
The techniquespresentedin thesenotesaddressthe latter problemby avoiding form factor

computationandstoragecompletely. This resultsin morereliablealgorithms(no problemswith
form factorcomputationalerror), that requirelessstorage(no form factorsneedto bestored).In
addition,thepresentedalgorithmsaremoreeasyto implementandto useandthey resultin images
of reasonablequality, showing multiple inter-reflectioneffects,sometimesmuchmorerapidly than
otherradiosityalgorithms.
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DISTANCE
TENDS TO ZERO

OCCLUDED
VISIBLE

DISCONTINUITIES

Figure2: Form factor difficulties: the form factor integral, equations(7) and (4), containsthe
squaredistancebetweenpointsin thedenominator. This causesa singularityfor abutting patches
(left). Changingvisibility introducesdiscontinuitiesof variousdegreesin theform factorintegrand
(right). Dueto thisproblems,reliableform factorintegrationis adifficult task.
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2 Monte Carlo Radiosity Basics

It is possibleto avoid form factorcomputationandstoragein radiositybecausetheform factors
wD� u

(7) for fixed � andvariablez form a probabilitydistribution thatcanbesampledefficiently. Using
form factorsampling,MonteCarloestimationof sumsthatoccurin radiosityyieldsexpressionsin
whichtheform factorappearsin numeratoranddenominator, soit cancelsandthenumericalvalue
of a form factoris never needed.In this section,an outline is givenhow sumscanbe estimated
usingtheMonteCarlomethod,andhow form factorbasedsamplingcanbecarriedout.

2.1 Monte Carlo estimationof sums

2.1.1 Monte Carlo methods

Only averybrief outlineis givenhere.An excellentintroductionto MonteCarlomethods,canbe
foundin [26].

The basicideaof Monte Carlo methodsis to formulatea quantityto be computedasthe ex-
pectedvalue of a randomvariable. The meanof independentsamplesof the randomvariable
yieldsanestimatefor its expectedvalueandthusfor thequantityto becomputed.

A randomvariableis a setof possibleoutcomes, say � � , with associatedprobabilities� � that
indicatethechancethattheoutcomewill show up in a randomtrial. Theoutcomescanbediscrete
events(“heads”or “tails”, oneof the six facesof a dice, a integer numberin a given range),or
continuous(for instancea point in a square,or a directionin the hemisphereabove a point on a
surfacein 3D space).Theprobabilitiesneedto bepositive andthey sumup to 1. In thesenotes,
wewill dealmainlywith discreterandomvariables.

Theexpectedvalueof a discreterandomvariable �� � ) � � - � � 0�- � � � X{X{XM� (
�

is thenumberof
potentialoutcomes),is definedas � � �� 
 � �t �S�V� � � � � X (8)

A secondquantityrelatedto randomvariables,thevariance, playsin importantrole in theanalysis
of the performanceof a Monte Carlo method. The varianceis the meansquaredeviation of the
outcomesfrom theexpectedvalue:� �"�� 
 � �t ���V�o� � �f��� �R�� 
¡  � � �<� �t ���V� � �� � �7�¢� ���� 
 � X (9)

2.1.2 Monte Carlo summation

Wewill now applytheabovedefinitionsin orderto estimateafinite sum1

\ � �t �S�V� � � X
1MonteCarlosummationis thesameasMonteCarlointegration,but with adiscreterandomvariableratherthana

continuousone.
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Supposethat £ timesaterm � ��¤ -/¥ � � - X4X{X £ is randomlyandindependentlypickedfrom thesum,
with theterm � � having a probability � � of beingpicked. Theaverageratio of thevalue � ��¤ of the
pickedterms,over theirprobability � ��¤ , thenyieldsanestimatefor thesum \ :�£ ¦t § �V� � � ¤� ��¤ n \ X (10)

Indeed,therandomvariablethatcorrespondswith thisprocedureis �\ � ) � � �/� � - � � 0 , with outcomes� � ��� � andassociatedprobabilities� � , � � � X{X{XW� . Theexpectedvalueof �\ is:� �G�\;
 � �t �S�V� � �� � � �<� \ X
This implies thatestimating\ by a singlesampleworks,but it is easyto show that in that case,
alsothemeanof £ independenttrialswill yield acorrectestimate[26]. Thevariance� �G�\T
 � �t �S�V� � ��� � � \ � (11)

indicateshow effective suchMonte Carlo summationwill be. It canbe shown that an estimate

with £ trials will beoff by lessthanonestandard error ¨ � �G�\T
¡�4£ 68.3%of thetime. It will be
off by lessthantwice thestandarderror95.4%of thetime. Theprobabilitythattheestimateis off
by lessthanthreetimesthestandarderror is 99.7%. If thevariance

� � �\;
 is large,moresamples
(larger £ ) will berequiredin orderto obtainestimateswhicharewithin afixedthresholdfrom the
truesumwith givenconfidence.

Ideally, the varianceshouldbe zero, in which casea single randomtrial alreadyyields the
correctresult.Theestimator �\ for \ is thencalledperfect. Unfortunately, perfectestimationis not
possibleif the quantityto be estimatedis not alreadyknown. In the caseof summation,perfect
estimationwould result if � � is chosenproportionalto � � andall � � are of the samesign. The
probabilities� � however needto be normalized:

q ��S�V� � �K� � . Normalizationimplies that they
would have to equal � �©� � � � \ , but \ is not known in advance! Note that with theseperfect
probabilities,� � ��� ��� \ always.Any randomtrial wouldyield thecorrectresultindeed.

The varianceformula above indicatesthat goodestimationwill resultalreadyif � � is chosen
approximatelyproportionalto � � . Ontheotherhand,caremustbetakenthatnoneof thetermsgets
a too low probability, yielding largeratios � �� ��� � . In particular� � shallneverbezeroif � � isn’t: the
estimateswouldnolongerconvergeto thecorrectsolution(they wouldbebiased) andthevariance
wouldbeinfinitely large.

2.1.3 Discussion

MonteCarlomethodsarewidely applicableandsimple.It is sometimessaidthatthey areawayof
solving complicatedmathematicalproblemswithout complicatedmath. Indeed,all oneneedsto
dois 1) designarandomvariablewith appropriatemeanandlow variance,2) takerandomsamples
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from it, and3) averagetheresults2. Disregardingroundingerrorsandothersourcesof inaccurate
arithmetic,the moresamplesone takes, the closerthe estimatewill be to the correctresult. In
the caseof imagesynthesis,the error manifestsitself in the form of noisy artifacts. If an image
computedwith a correctlyimplementedunbiasedMonteCarloalgorithmexhibitsno noise,it will
becorrect.

Themaindisadvantageof MonteCarlomethodsis theirslow, ª ) �G�v« £ 0
convergence:in order

to reducethestandarderrorby afactorof 10,100timesmoresamplesareneeded.For this reason,
alot of researchhasbeencarriedout(andstill is beingdone)in orderto transformagivenestimator
for someprobleminto onewith lowervariance(variancereductiontechniques),or to takesamples
accordingto non-randombut moreuniformpatterns(low-discrepancysampling), see� 5.

Consideringthat computersarevery goodat addingnumbers,Monte Carlo summationis in
generalnot recommended.Thesituationhoweverchangesfor sumswith a largenumberof terms,
which arenot simplenumbers,but which aretheresultof somecomplicatedcalculation.With an
appropriateprobabilitydistribution � � , it mayhappenthatonly a smallsetof all termsin thesum
needsto beevaluatedin orderto obtainanestimatefor thesumthat is of sufficient accuracy. The
impactof thetermswhicharenotsampledis takeninto accountin theprobabilitydistribution,“by
thefactthatthey couldhavebeensampled”.Weshallseethatthis is thecasein radiosity.

2.2 Form factor sampling

In radiosity, we will needto evaluatesumswith asmany termsastherearepatchesin thescene.
Eachtermcontainsa form factor

w&� u
, which is givenby a non-trivial 4-dimensionalintegral (7).

Theform factors
w&� u

for fixed � andvariablez form a probabilitydistribution becausethey are
all positiveor zero,andthey sumup to 1 in aclosedenvironment:

q �u �V� wD� u � � . Thisprobability
distributioncanbesampledby meansof local or globaluniformlydistributedlines. In bothcases,
randomlines(rays)aretracedthroughthescenein sucha way that theprobabilityof obtaininga
ray from a fixedpatch � to any otherpatchz in thescenecorrespondsto the form factor

wD� u
(see

figure3). In otherwords,giventhatauniformly distributedlocalor globalline piercesthepatch� ,
it will have its next intersectionwith a surfacein thesceneon any otherpatchz with probability
equalto

w&� u
. Suchlineswill beusedto sampletransitionsfrom a patch � to a randomotherpatchz with probabilityof selectingz beingequalto

w&� u
.

2.2.1 Local line sampling

Thefirst way to sampleaccordingto theform factorsis to select

1. auniformly chosenrandomrayorigin
+

on thesurface \ � of thefirst patch� ;
2. acosine-distributedraydirection

.
w.r.t. thesurfacenormalat

+
.

2Quite often however, there is complicatedmath involved in the designof an appropriateestimatoror in the
samplingalgorithm!
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Figure3: Local uniformly distributedlines(left) areconstructedby explicitly samplingtheorigin
onapatchin thescene.Globallines(right) areconstructedwithout referenceto any of thepatches
in thescene.Their intersectionpointswith thesurfacesin thescenearehowever alsouniformly
distributed. The anglebetweentheselines andthe normalon eachintersectedsurfaceis cosine
distributed, just like with local lines. The intersectionpoints definespanson eachline. Each
global line spancanbe usedbidirectionally for form factorcomputationbetweenthe connected
patches.

Theprobability that thefirst hit point ¬®­°¯&±?²&³/´1µ of this ray with a surfaceof thescenelayson
a patch¶ is givenby ·&¸º¹ 3. This samplingschemehasbeenproposedat theendof the’80-iesasa
ray-tracingalternative for thehemi-cubealgorithmfor form factorcomputation[62, 57].

2.2.2 Global line sampling

Therealsoexist techniquesto constructuniformly distributedlineswithoutexplicitly samplingthe
origin on a patchin thescene.Uniformly distributedlinesconstructedwithout explicit sampling
theorigin onapatch,arecalledglobaluniformlydistributedlines. Theconstructionandproperties
of suchlineshavebeenstudiedextensively in integral geometry[48, 49,50].

In thecontext of radiosity, thefollowing algorithmshavebeenused:» Two-points-on-a-sphere method:two uniformly distributedpoints ¼ and ½ aresampledon
thesurfaceof a sphereboundingthescene.Theline connecting¼ and ½ canbeshown to be
a uniformly distributedline within thescene[49]. A field of ¾ uniformly distributedlines
is obtainedby sampling ¾ pairsof points ²7¿ and ¬�¿ , ÀÁ­ÃÂQ³4Ä{Ä{Ä�³I¾ , on the surfaceof the
boundingsphere;» Plane-intercept method[46, 37,50,70]: a uniformly distributedpoint ´ is sampledon the
unit sphere.As such, ´ is a uniform global direction. Considerthe plane Å throughthe
origin andperpendicularto ´ : theplaneequationis ´�Æ�²Ç­ÉÈ . Now considertheorthogonal

3Exercise:proof this. Hint: calculatetheprobability Ê Ë�Ì that ÍÏÎPÐÏÑÓÒTÔ<Õ×Ö�Ì
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projectionof the sceneonto this plane. Eachuniformly sampledpoint
+

in the projection
defines,togetherwith

.
, auniformly distributedline throughthescene.

Theresultinglinescrossseveralsurfacesin thescene.Theintersectionpointswith theintersected
surfacesdefinespansof mutually visible patchesalongthe line (seefigure 3). Eachsucha line
spancorrespondsto two local cosine-distributedlines— onein bothdirectionsalongthe line —
becausetheglobal uniformly distributedlines areuniformly distributedw.r.t. every patchin the
scene.This is unlike local lines,whichareuniformly distributedonly w.r.t. thepatchonwhichthe
origin wassampled.

It canbe shown that theprobability thata global uniform line, generatedwith theaforemen-
tionedalgorithms,intersectsagivenpatch� , is proportionalto thesurfacearea

� �
[50]. If £ global

linesaregenerated,thenumber£ �
of linescrossingapatch� will be£ � n £ � ��bØ X (12)

It canalsobeshown that,if £ � u
is thenumberof linesthathave subsequentintersectionswith the

surfacesin thesceneon patch � andonpatchz , then£ � u£ � n wD� u X
2.2.3 Local versusglobal line sampling

The main advantageof global lines over local lines is that geometricscenecoherencecan be
exploitedin orderto generategloballinesmoreefficiently:� In anaiveray-tracingimplementationfor instance,thetwo-points-on-a-spheremethodwould

yield all Ù intersectionsof a line with thesurfacesin thesceneat thesamecostof determin-
ing only thenearestintersectionof a local line. In aproperlyconstructedscene,thenumber
of line spanson a global line is half the number Ù of intersectionpoints. Sinceeachspan
is usedbidirectionally, this meansthat theglobal line yields theequivalentof Ù local lines
at the samecost. Even whenusing ray-tracingaccelerationtechniquesthat allow to stop
tracinga local line beforeall its potentialintersectionswith thescenearedetermined,there
still is aspeed-up.� Theplane-interceptmethodallows bundlesof parallelglobal lines to be generatedusinga
Z-buffer like algorithm: first, a uniform randomdirection

.
is chosen.Next, a rectangular

window is chosenin theplane,throughtheorigin andperpendicularto
.

, thatcontainsthe
orthogonalprojectionof the whole sceneon the plane. A certainresolutionfor rendering
is chosenin the window. Eachpixel will correspondto a parallelglobal line. Finally, a
suitableorthogonalprojectionmatrix is setupandthesceneprojectedontotheplaneusinga
Z-buffer-like algorithm. Insteadof keepingonly thenearestZ-valuein eachpixel however,
a full sortedlist of all patchesvisible througheachpixel is kept [37]. Alternatively, it is
possibleto usesweep-planealgorithmsto solvethevisibility problemanalytically[46]. This
correspondsto a bundleof parallellineswith infinite density[69].
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The main limitation of global lines w.r.t. local lines is that their constructioncannoteasilybe
adaptedin orderto increaseor decreasetheline densityonagivenpatch.In particular, whenused
for form factorcalculation,it canbeshown thattheform factorvarianceis approximatelyinverse
proportionalto thearea

� �
of thesourcepatch� . Thevariancewill behighon smallpatches.
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3 StochasticRelaxationRadiosity

The radiositysystemof linear equations(6) is usuallysolvedusingan iterative solutionmethod
suchasJacobi,Gauss-Seidelor Southwelliterations.Eachiterationof sucha relaxationmethod
consistsof sums:dotproductsof arow of theform factormatrixwith theradiosityor powervector.
WhenthesesumsareestimatedusingaMonteCarlomethod,asexplainedin theprevioussection,
astochasticrelaxationmethodresults.In thissection,weexplorestochasticrelaxationmethodsfor
radiosity, basedonform factorsampling.Not only is form factorcomputationandstorageavoided
in stochasticrelaxationmethods,but alsotheir timecomplexity is muchlower: roughlylog-linear
in thenumberof patchesratherthanquadratic.

3.1 The Jacobi iterati vemethod for radiosity

3.1.1 Regular gathering of radiosity

The Jacobiiterative methodfor radiosity constructsa sequenceof approximations�ÛÚ�Ü`Ý� for the
solution of the radiosity systemof equations(6). As the first approximation� Ú�ÞßÝ� � ���

, self-
emittedradiosity canbe taken. A next approximation� Ú�Ü`à � Ý�

is then obtainedby filling in the
previousapproximation� Ú�ÜIÝ in theright handsideof (6):� Ú�ÞßÝ� � ���� Ú�ÜIà � Ý� � ��� A � � t$u w&� u � Ú�Ü`Ýu

(13)

A hemi-cubealgorithmfor instance,allowsto computeall form factors
w&� u

for fixedpatch� simul-
taneously. Doingso,iterationstepsaccordingto theaboveschemecanbeinterpretedasgathering
steps:in eachstep,thepreviousradiosityapproximations� Ú�Ü`Ýu

for all patchesz are“gathered”in
orderto obtaina new approximationfor theradiosity � Ú�ÜIà � Ý at � .
3.1.2 Regular shootingof power

A shootingvariantof the above iterationalgorithmcanbe obtainedby multiplying the left and
right handsideof (6) by thearea

� �
, yielding thesocalledpowersystemof linearequations:áD�V�ãâä� A tQu á u w u � � � X (14)

TheJacobiiterativemethodcanalsobeappliedto thissystemof equations,yielding thefollowing
iterationscheme: á Ú�ÞßÝ� � âä�á Ú�ÜIà � Ý� � âä� A tvu á Ú�ÜIÝu w u � � � X (15)
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3.1.3 Incr ementalshootingof power

Eachregular power-shootingiterationabove replacesthe previous approximationof power
á Ú�ÜIÝ

by anew approximation
á Ú�Ü`à � Ý . Similar to in progressiverefinementradiosity[8], it is possibleto

constructiterationsin whichunshotpoweris propagatedratherthantotalpower. An approximation
for thetotalpoweris thenobtainedasthesumof incrementså á Ú�ÜIÝ computedin eachiterationstep:å á Ú�ÞßÝ� � âä�å á Ú�Ü`à � Ý� � tvu å á Ú�ÜIÝu w u � � �

á Ú�ÜIÝ� � Üt æ � Þ å á Ú æ Ý�
3.1.4 Discussion

With deterministicsummation,thereis no differencebetweentheresultsaftercompleteiterations
with theabovethreeiterationschemes.Wewill seebelow however, thatthey leadto quitedifferent
algorithmswhenthesumsareestimatedstochastically.

Thecomputationcostof eachdeterministiciterationis quadraticin thenumberof patches.

3.2 StochasticJacobi radiosity

3.2.1 Stochasticincrementalshootingof power

Considerthe incrementalpower shootingiterationsabove. The sum
q u å á Ú�ÜIÝu w u � � � canalsobe

writtenasadoublesum,by introducingKronecker’s deltafunction ç æ �<� � if è � � and k if è l� � :å á Ú�ÜIà � Ý� � t uWé æ å á Ú�Ü`Ýu w u æ � æ ç æ � X
Thedoublesumcanbeestimatedusinga MonteCarlomethodasexplainedin � 2.1:

1. Pick terms(pairsof patches)
) z - è 0 in eitherof thefollowing ways:

(a) By local line sampling:� Selecta “source”patchz with probability � u proportionalto its unshotpower:� u � å á Ú�ÜIÝu � å á Ú�ÜIÝØ
with: å á Ú�ÜIÝØ � tQu å á Ú�ÜIÝu

� Selecta “destination”patch è with conditionalprobability � æ�ê u �xw u æ
by tracinga

local line asexplainedin � 2.2.1.

Thecombinedprobabilityof picking apair of patches
) z - è 0 is� u æ � � u � æPê u � å á Ú�ÜIÝu w u æ � å á Ú�Ü`ÝØ X
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(b) By global line sampling(transilluminationmethod[37, 68]): theintersectionsof each
globalline ( � 2.2.2)with thesurfacesin thescenedefinespansof mutuallyvisiblepairs
of pointsalongthe line. Eachsuchpair correspondsto a term

) z - è 0 in the sum. The
associatedprobabilityis: � u æ � � u w u æ � ��Ø X

2. Eachpickedtermyieldsascoreequalto thevalueof thattermdividedby its probability � u æ .
The averagescoreis an unbiasedestimatefor å á Ú�ÜIà � Ý�

. Estimationwith £ local lines for
instance,yields: �£ ¦t § �V� å á Ú�ÜIÝu ¤ w u ¤ é æ ¤ � æ ¤ ç æ ¤ é �å á Ú�ÜIÝu ¤ w u ¤ é æ ¤ ��å á Ú�ÜIÝØ � � � å á Ú�ÜIÝØ £ �£ n å á Ú�ÜIà � Ý�
£ �<� q ¦

§ �V� ç æ ¤ é � is thenumberof local linesthatlandon � .
Theprocedureabovecanbeusedto estimateå á Ú�Ü`à � Ý�

for all patches� simultaneously. Thesame
samples(rays)canbeused.Thedifferenceis only in thescores,which basicallyrequireto count
thenumberof rayshitting eachpatch.With stratifiedlocal line sampling,algorithm1 results.

3.2.2 Discussion

The mostexpensive operationin the algorithmabove is ray shooting. The numberof rays that
needsto be shot in order to computethe radiositiesin the sceneto given accuracy with given
confidenceis determinedby thevarianceof the involvedestimators.We discussherethecaseof
local line sampling.

Variance of a single iteration The varianceof the above sketchedMonte Carlo methodfor
estimatingå á Ú�ÜIà � Ý�

is straightforwardto computeaccordingto (11) [1]:� �_�å á Ú�ÜIà � Ý� 
 � � � å á Ú�ÜIÝØ å á Ú�ÜIà � Ý� � � å á Ú�ÜIà � Ý�   � X (16)

Thelattertermis usuallynegligible comparedto theformer( å á Ú�ÜIà � Ý� ë å á Ú�ÜIÝØ
).

Variance of a sequenceof iterations until convergence Thesolution
áD�

is eventuallyobtained
asa sumof incrementså á Ú�ÜIÝ�

computedin eachiterationstep. The varianceon eachincrementå á Ú�ÜIÝ�
is given above. Assumingthat subsequentiterationsare independent(which is to good

approximationtruein practice),andthat £ Ü independentsamplesareusedin the Ù -th iteration,the
varianceon theresultof ì iterationswill be� �$�áD� 
 � ít Ü �V� �£ Ü � �ºåî�á Ú�ÜIÝ� 
 X
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Algorithm 1 IncrementalstochasticJacobiiterativemethod.

1. Initialize total power
áD�ðï âä�

, unshotpower å á&�sï âä�
, received power ç áD�ðï k for all

patches� andcomputetotal unshotpower å á Ø �ãq � å áD�
;

2. Until ñ�å áD� ñ>òôó or numberof stepsexceedsmaximum,do

(a) Choosenumberof samples£ ;

(b) Generatea randomnumberõ i�) k - � 0 ;
(c) Initialize £bö E @ø÷ ï k ; ù ï k ;
(d) Iterateoverall patches� , for each� , do

i. ù �<ï å áD� � å á Ø
;

ii. ù ï ù A ù � ;
iii. £ �<ï ú £Çù A õ�û � £>ö E @ø÷ ;
iv. Do £ �

times,

A. Samplerandompoint
+

on \ � ;
B. Samplecosine-distributeddirection

.
at

+
;

C. Determinepatchz containingthenearestintersectionpointof therayoriginat-
ing at

+
andwith direction

.
, with thesurfacesof thescene;

D. Incrementç á u ï ç á u A �
¦ � u å á Ø

.

v. £bö E @ø÷ ï £bö E @ø÷ A £ �
.

(e) Iterateover all patches� , incrementtotal power
áD��ï áD� A ç áD� , replaceunshotpowerå áD�<ï ç áD� andclearreceivedpower ç áD�<ï k . Computenew total unshotpower å á Ø

on thefly.

(f) Displayimageusing
á&�

.

Optimalallocationof £ � q íÜ �V� £ Ü samplesover theindividual iterationsis obtainedif �F�4£ Ü is
inverseproportionalto

� ��åx�á Ú�ÜIÝ� 
 . For all patches� , � ��åx�á Ú�ÜIÝ� 
 (16) is approximatelyproportional
to

á Ú�Ü�ü � ÝØ
, suggestingto choosethenumberof samplesin the Ù -th iterationproportionalto thetotal

unshotpower å á Ú�Ü�ü � ÝØ
to bepropagatedin thatiteration:

£ Ü n £ å á Ú�Ü�ü � ÝØá Ø X
When £ Ü dropsbelow a small threshold,convergencehasbeenreached.Combiningall above
results,it canbeshown thatthevarianceon theradiosity � �

afterconvergenceis to goodapproxi-
mationgivenby [1]: � �Ï�� � 
 n á Ø£ � � ) � �7�¢�s� 0� � (17)
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Time complexity In order to computeall radiosities � � to prescribedaccuracy ó with 99.7%
confidence,thenumberof samples£ shallbechosensothat

ý � �Ï�� � 
£ òôó
for all � . Filling in (17) thenyields:

£ÿþ�� á Øó � �������� � � ) � �V� ��� 0� � X
(18)

This formulaallowsusto examinehow thenumberof raysto beshotmustbeincreasedasascene
to berenderedis “madelarger”. Therearehowever many possiblescenarioshow a scenecanbe
“madelarger”. For instancenew objectscanbeadded,or onecanswitchto a finer tessellationof
thesurfacesin thescenewithout addingnew objects.If all patchesin a scenearesplit in two, the
requirednumberof raysin orderto obtaina givenaccuracy will needto be doubledasdividing
the patches(asymptotically)hasno effect on reflectivities andradiosities. The costof shooting
a ray is often assumedto be logarithmic in the numberof polygons. Although the truth thusis
muchmorecomplicated,it is often statedthat Monte Carlo radiosityalgorithmshave log-linear
complexity. In any case,theircomplexity is muchlowerthanquadratic.Thisresultis notonly valid
for incrementalstochasticshootingof power, but alsofor otherMonteCarloradiosityalgorithms
basedonshooting[59, 51,1].

3.2.3 Stochasticregular shootingof power

The sumsin regular power shootingiterations(15) canbe estimatedusinga very similar Monte
Carlomethodasdescribedabove for incrementalpower shooting.Thefirst stochasticJacobira-
diosity algorithms,proposedby L. andA. Neumannet al. [38], consistedentirely of suchitera-
tions.Unlike in its deterministiccounterpart,theresultingradiositysolutionsof eachiterationare
averaged,ratherthanhaving theresultof a new iterationreplacetheprevioussolution. Themain
disadvantageof usingonly regular iterationsis thathigherorderinter-reflectionsappearedin the
resultonly at a slow pace,especiallyin bright environments. This problemhasbeencalledthe
warmingup or burn in problem[38, 37, 40,39]

Thewarmingup problemcanbeavoidedby first performingasequenceof incrementalpower
shootingiterationsuntil convergence,asexplainedabove. This resultsin a first completeradiosity
solution, including higherorder inter-reflections. Especiallywhenthe numberof samples£ is
ratherlow, this first completesolutionwill exhibit noisyartifacts.Stochasticregularpowershoot-
ing iterationscanthenbeusedin orderto reducetheseartifacts.A regularpowershootingiteration
canbeviewedasatransformation,transformingafirst completeradiositysolutioninto anew com-
pleteone. It canbeshown that theoutputis largely independentof the input. Theaverageof the
two radiositydistributionsobtainedsubsequentlyis to goodapproximationthesameastheresult
of oneiterationwith twice thenumberof samples.
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3.2.4 Stochasticregular gathering of radiosity

Also regularradiositygatheringiterations(13)canbeconvertedinto astochasticvariantusingthe
procedureoutlinedabove. Themaindifferencewith power shootingiterationsis thatnow, a new
radiosityestimateis obtainedas the averagescoreassociatedwith rays that areshot from each
patch � , ratherthanfrom raysthatlandon � .

Thevarianceof regulargatheringis in practicemostoftenhigherthanthatof shooting,but it
doesnotdependonthepatcharea.Gatheringcanthereforebeusefulin orderto “clean” noisyarti-
factsfrom smallpatches,which havea smallchanceof beinghit by shootingraysfrom elsewhere
andthereforecansuffer from a largevariancewith shooting.

3.3 Other stochasticrelaxationmethodsfor radiosity

It is possibleto designstochasticadaptationsof otherrelaxationmethodsin thesamespirit. Shirley
hasinvestigatedalgorithmsthatcanbeviewedasstochasticincrementalGauss-SeidelandSouth-
well algorithms[57, 59, 58]. Bekaerthasstudiedstochasticadaptationsof over-relaxation,Cheby-
shevs iterative method,and the conjugategradientmethod(suggestedby L. Neumann). These
relaxationmethodshave beendevelopedin hopeof reducingthenumberof iterationsto conver-
gence.Sincethedeterministiciterationshave a fixedcomputationcost,stronglyrelatedwith the
sizeof a linear system,reducingthe numberof iterationsclearly reducesthe total computation
costto convergence.This is howevernot sowith thestochasticvariants.Thecomputationcostof
stochasticrelaxationmethodsis dominatedby thenumberof samplesto betaken. Thenumberof
samplesis only looselyrelatedwith thesizeof thesystem.In theradiositycase,it turnsoutthatthe
simplestochasticJacobiiterationsdescribedaboveis at leastasgoodasotherstochasticrelaxation
methods.Figure4 illustratesour claim that stochasticrelaxationcanyield useful imagesmuch
fasterthancorrespondingdeterministicrelaxationalgorithms.
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Figure4: Stochasticrelaxationmethodscanyield usefulimagesmuchfasterthantheir determin-
istic counterparts.Theshown environmentconsistsof slightly morethan30,000patches.Thetop
imagewasobtainedwith incrementalstochasticpower shootingiterationsin lessthan2 minutes
on a 195MHzR10000SGI Octanesystem,usingabout 	�
�� rays.Evenif only 1 raywereusedfor
eachform factor, 
���	�
�� rayswould berequiredwith a deterministicmethod.Noisy artifactsare
still visible,but areprogressively reducedusingregularstochasticpowershootingiterations.After
about30 minutes,they arenotvisibleanymore.
This progressive variancereductionis illustratedin the bottomimages,shown without Gouraud
shadingto makenoisyartifactsbettervisible. Theshown imageshavebeenobtainedafter1, 4, 16,
64and252(right-to-left, top-to-bottom)iterationsof lessthan2 minuteseach.
Themodelshown is aneditedpartof theSodaHall VRML modelmadeavailableat theUniversity
of Californiaat Berkeley.
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4 RandomWalk Radiosity

Unlikestochasticrelaxationmethods,randomwalk methodsfor linearsystemsarewell coveredin
MonteCarlo literature[20, 66, 19, 16,47]. Their applicationto theradiositysystemof equations
(6) andequivalentpowersystem(14)hasbeenproposedby Sbert[50,51]. They arecalleddiscrete
randomwalk methods,becausethey operateonadiscretestatespace. In thissection,wewill show
how they differ from morefamiliar continuousrandomwalk methodsfor secondkind Fredholm
integral equations.Therearemany differentkindsof randomwalksbesidesthefamiliar collision
randomwalk which contributesa scorewhenever it hits a surface. We will comparethemwith
eachotherandwith thestochasticJacobiradiositymethodsof theprevioussection.

4.1 Randomwalks in a continuousstatespace

4.1.1 Particle transport simulationsand integral equations

Light transportis an instanceof a wider classof linear particle transportproblems,that canbe
solvedasfollows [26]:

1. Fix a descriptionof thestate � of a particle. In many applications,including illumination
computation,particlesaresufficiently characterizedby their position

+
, direction

.
, energy� 4 andthetime � ;

2. Fix a descriptionof theparticlesourcesby meansof a normalizedsource(or birth) density
distribution \ ) � 0

and a constant\ Ø expressingthe total emissionintensity. With � �),+&-/.o- � - � 0 , \ ) � 0
expressestherelative intensityof emissionof particleswith energy

�
at

time � from position
+

andinto direction
.

;

3. Fix adescriptionof how particlesinteractwith themediumandsurfacesin whichthey travel.
Particlescanbescatteredor absorbed.If thescatteringandabsorptionof theparticlesonly
dependsontheirpresentstate,andnotontheirpasthistory, particlescatteringandabsorption
is fully determinedby a transitiondensityfunction � ) ��� � J 0

from eachstate� to each
otherstate� J

. Thetransitiondensityfunctionneednot to benormalized:� ) � 0 � � ! � ) ����� J 0M8 � J
describesthe averagenumberof particlesresultingwhen a particle scattersat � . Here,[ denotesthe full statespaceof the particles. � ) � 0

canbe larger than1, e.g. in nuclear
reactions,in which casethe mediumis calleda multiplying or super-critical medium. If� ) � 0 ò � , � ) � 0 � � � � ) � 0

expressestheintensityof absorptionat � . In case� ) � 0�� k ,
themediumis calledabsorbingor sub-critical;

4. Particle pathsaresimulatedby samplingemissioneventsaccordingto the sourcedensity
function \ ) � 0

andsubsequentlysamplingscatteringeventsaccordingto � ) ��� � J 0
until

4for photons:���! "$#&%(' with  " Planck’sconstant,
#

thevelocityof light and
'

thewavelengthof thephoton.
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the particle is eitherabsorbedor disappearsfrom the region of interest(assumingthat the
particlewill not re-enterthe region of interest).While simulatingparticlepaths,eventsof
interestarecounted.

Suchasimulationis suitedfor computingweightedintegralsof theparticledensityfunction ) ) � 0
:] � � !+*<) � 0 ) ) � 0M8 � (19)

The responseor detectorfunction
*<) � 0

expressesour interestin particleswith given location,
direction,energy andtime � . For instanceby taking

*<) � 0 � � for particleslocatedon a given
surfaceand0 onothersurfaces,theparticleflux on thesurfacewill beestimated.

Theparticledensity) ) � 0
is thedifferentialparticleflux atgivenlocation,directionandenergy

at a fixed time. It is the sum of the sourcedensity \ ) � 0
and the densityof particlesthat are

scatteredinto � from elsewhere:) ) � 0 � \ ) � 0<A ��! ) ) � JS0 � ) � J �,� 0M8 � J X
(20)

In short: simulation of particle paths with given source density \ ) � 0
and transition density� ) � J � � 0

is a techniqueto samplepoints � in statespace[ with (non-normalized)density) ) � 0
that is thesolutionof theintegral equation(20).

4.1.2 Continuous random walks for radiosity

Thegeneralrenderingequation(2) andtheradiosityintegral equation(3) areof thesameform as
(20). In thecaseof a purelydiffuseenvironment,equation(3), weproceedasfollows:� Only thelocationof theparticleis of interest:� � +

;� The sourcedensity \ ) � 0
correspondsto the normalizedself-emittedradiosity

� )?+V0 � â Ø ,
with

â Ø
thetotal self-emittedpower in thescene;� The transitiondensity � ) � J � � 0

correspondsto
]_),YV-M+V0 � ),+V0 . It can be sampledby

shootinga ray in a cosinedistributeddirectionw.r.t. the surfacenormalat
Y
. Next a sur-

vival/absorptiontest is carriedout at thenew location
+
, taking the probability of survival

equalto thereflectivity � ),+V0 ;� Theparticledensity) ) � 0
correspondswith theradiosity: ) ),+V0 � � )?+V0 � â Ø .

Suchparticlesimulationcanbeusedin orderto estimateintegralscontainingtheradiosityfunction� ),+V0
. With the generalrenderingequation(2), particle transportis simulatedwith non-diffuse

emissionandscattering.Theresultingparticledensityis againproportionalto theradiosityif only
locationis taken into account.It will be proportionalto theexitant radiance

% ' ),+&-/.10
whenwe

take into accountbothlocationanddirection.Thebasicideais however thealwaysthesame.We
discussa numberof applicationsfor the purelydiffusecasebelow. Particle transportsimulation
faithfull to thelawsof physicsis calledanalog simulation.
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4.1.3 The histogram method

Theaverageradiosityon apatch� is givenby anintegralequationof � )?+V0
:

� �<� �� � � ��� � ),+V0W8 �>= X
Randomwalkconstructedasoutlinedaboveareatechniquetosamplepoints

+
with density) ),+V0 �� ),+V0 � â Ø . With £ randomwalks, � � canbeestimatedasâ Ø £ �� � £ n � �

where £ �
is thenumberof visits to thepatch � . Thehistogrammethodfor radiositycomputations

hasbeendemonstratedby Heckbert[22], Pattanaik[44] andotherslateron.

4.1.4 Basisfunction methods

Bouatouchetal. [5] andFeda[17] haveusedsuchrandomwalksin orderto estimatehigherorder
(linear, quadratic,

X4X{X
) approximationsof radiosityonpatches:p� � )?+V0 � t - � � é - h � é - ),+V0 X

Thefunctionsh � é - )?+V0 arecalledbasisfunctions.Thesumabove is overall basisfunctionsdefined
on patch � . A constantapproximationis obtainedwhenusingjust onebasisfunctions h � ),+V0 per
patch,which is 1 on thepatchand0 outside(see� 1.1.3).Thecoefficients � � é - canbeobtainedas
scalarproductswith socalleddual basisfunctions

ph � é - :
� � é - � ��� � )?+V0 ph � é - ),+V0M8 �b= X

With £ randomwalks,theseintegralscanbeestimatedasâ Ø£ t § ph � é - )?+ § 0 n � � é - X
The sumis over all points

+ §
visited by the randomwalks. The dual basisfunction

ph � é - is the
uniquelinearcombinationof theoriginal basisfunctionsh � é . thatfulfills therelations� ��� ph � é - )?+V0 h � é . )?+V0M8 �>= � ç - é . X
In thecaseof a constantapproximation,thedualbasisfunction is

ph � ),+V0 � �G� � �
if
+ i \ � and0

elsewhere.This resultsin thesameexpressionaswith thehistogrammethod.

22



4.1.5 Kernel methods

The radiosity � )ZY"0
at a point

Y
could alsobe written asan integral involving a so calledDirac

pulsefunction: � )ZY"0 � � � � ),+V0 ç ),+ � Y"0M8 �>= X
Estimatingthelatter integral with randomwalkswouldn’t work, becausetheDirac pulsefunction
is zeroeverywhere,exceptwhen its argumentis zero. The chanceof finding a particlehitting
exactly the point

Y
is zero in theory5. Even if we would find a particlehitting exactly at

Y
, the

valueof the Dirac pulseis not determinate.It can’t be finite, becausethe Dirac function is zero
everywhereexceptat onepoint andits integral is equalto 1. An approximationfor the radiosity
at

Y
canhowever beobtainedby usinga different,normalizeddensitykernel function ì ),+ � Y"0

centeredaround
Y
: p� ),Y�0 � � � � )?+V0 ì ),+ � Y�0W8 �>= n � ),Y�0

This integral canbeestimatedusing £ randomwalksas:â Ø£ t § ì ),+ § � Y"0 n p� )ZY"0
Thesumis againover all points

+ §
visitedby therandomwalks,andcanbeviewedalternatively

asa sumof thevalueat thequerypoint
Y

of mirroredkernels
pì ),Y � + § 0 � ì ),+ § � Y"0

centered
aroundthehit points

+ §
. This form of densityestimationhasbeenusedby Chen[6], Collins [12]

andShirley et al. [60, 74]. Also the photonmapalgorithmby Jensenet al. [24] is basedon a
similar principle. Densityestimationandthephotonmaparediscussedin detail in othercourses
at this conference.

4.1.6 Final gathering usingdependenttests

Final gatheringis a well known view-dependenttechniqueto computevery high-qualityimages
basedonaroughradiositysolution.Basically, it re-evaluatestheradiosityemittedby points

+ ö vis-
ible througheverypixel in animage,by filling in theapproximatepre-computedview-independent
radiositysolution

p� )ZY"0
in theright handsideof theradiosityintegralequation:

� disp
),+ ö 0 �É� ),+ ö 0BA � � p� )ZY"0M]e)ZYf-�+ ö 0 � ),+ ö 0W8 �>a X

Considertheequation: � disp
),+ ö 0 �É� ),+ ö 0BA � � � )ZY"0M]e)ZYf-�+ ö 0 � ),+ ö 0W8 �>a X

5In practice,thechanceis not zerobecauseof finite precisionarithmetic.
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This is alsoan integral containingthe radiosity function � )ZY"0
, andcanthusbe estimatedusing

randomwalks. Estimatesfor � disp
)?+ ö 0 canbe obtainedusingthe samesetof randomwalk hit

points
Y §

for all
+ ö : � )?+ ö 0BA � ),+ ö 0 â Ø£ t�§ ]e)ZY § -M+ ö 0^n � disp

),+ ö 0 X
Evaluatingthe kernel values

]_),Y § -�+ ö 0 for a fixed randomwalk hit point
Y §

, requiresvisibility
testingsimilar to in algorithmsfor computingshadows in an imagedue to a point light source
[29].

4.1.7 Collision estimation

In global illuminationalgorithms,therandomwalksareusedin aslightly moreefficient way than
explainedabove:� Particlesat the light sourceare not counted,becausethey estimatethe self-emittedlight

distributionwhich is known. We call this sourcetermestimationsuppression;� Whensamplingtransitions,first anabsorption/survival testis carriedout. Only if theparticle
survives,it is propagatedto anothersurface,by tracinga ray;� Particlesarecountednot only whenthey survivea collision with asurface(survival estima-
tion), but alsowhenthey areabsorbed(collision estimation). This is compensatedfor by
multiplying theestimatesabove with theprobabilityof survival, i.o.w. with thereflectivity� � .

4.2 Randomwalks in a discretestatespace

4.2.1 Discreterandom walks and linear systems

Thestatesin which a particlecanbe founddo not needto form a continuousset. They canalso
form a discreteset.For instance,thestatescanbe“the particleis on patch � ”, with onesuchstate
perpatch.

Justlike the particledensityresultingfrom a randomwalk with continuoussourceandtran-
sition densityis the solutionof a second-kindFredholmintegral equation,the (discrete)particle
density ) � resultingfrom a discreterandomwalk with sourcedensity c � andtransitiondensity� � u
(for particlesgoingfrom � to z ), is thesolutionof a systemof linearequations6:) ��� c � A tvu ) u � u � X (21)

Thisdensitycanbeusedin orderto estimatescalarproducts] �0/ *f- ) � � t � * � ) � X (22)

For instance,by choosing
* �<� ç � Ü , the Ù -th component) Ü of thesolutionof (21) is computed.

6Notetheswitchof indices1�243 insteadof 1�352 !
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4.2.2 Discreteshootingrandom walks for radiosity

Usinglocalor globaluniformly distributedlines( � 2.2),weareableto simulateparticletransitions
from a patch� to patchz accordingto theform factor

w&� u
.

Due to the order in which the indicesof the form factorsappearin the equations,discrete
randomwalk simulationasoutlinedabove is thereforesuitedto solve thepowersystem(14)áD�V�ãâä� A tQu á u w u � � � X
The origin of the randomwalks is chosenaccordingto birth probabilities c �>�Ãâä� � â Ø , propor-
tional to theself-emittedflux (

â Ø
is thetotal self-emittedflux, division by it normalizesthebirth

probabilities). The transitionprobabilitiesare � u ��� w u � � � . In orderto simulatetransitions,first
a uniformly distributedrandomline throughz is tracedin orderto determine� , thenext patchto
be visited. Next, a survival test is donewith � � beingthe probability of survival. If the particle
survives,a contribution

â Ø �4£ is recordedon thepatch � on which theparticlesurvived. £ is the
total numberof randomwalksbeingtraced.Both local or global linescanbe usedfor sampling
transitions.Globallinesyield socalledglobal multi-pathalgorithms[55, 50].

Therandomwalk estimatorsketchedabove is calledasurvivalshootingestimator:� survivalestimation:particlescontributeascoreonly if they surviveacollisionwith asurface.
Somealternativeswill bediscussedbelow ( � 4.3);� shooting: thephysicalinterpretationis thatof particlesbeingshotfrom thelight sources.

4.2.3 Discretegathering random walks for radiosity

A well known result from algebrastatesthat eachscalarproduct
/�6 -87 �

like (22) with the
solution

6
of a linear system9 6É�;:

canalsobe obtainedasa scalarproduct
/<: -8=>�

of the
sourceterm

:
with the solutionof theadjoint systemof linearequations90? = � 7

with source
term

7
: / 7 - 6 � �0/ 9 ? =^- 6 � �0/ =^- 9 6 � �@/ =ä- : � X

90? denotesthetransposedmatrix 9 : if 9 �BA�C/� uED
, then 9F? �>A�C u � D

.
Adjoint systemscorrespondingto theradiositysystemof equation(6) look like:GIHV�KJLH A tvu G u M u w u H X (23)

Theseadjointssystemsandthestatementabovecanbeinterpretedasfollows: considerthepowerNPO
emittedby apatchQ . NPO canbewrittenasascalarproduct

NPOSRUTVOXWYOSR0Z[W]\^J _
with

J`HaRTVHcb^HdO
: all componentsof thedirectimportancevector

J
are0,exceptthe Q -thcomponent,whichis

equalto
J�OVReTVO

. Thestatementaboveimpliesthat
NPO

canalsobeobtainedas
NPOSR0Z�Gf\hg _VRi H GIHjg+H , which is a weightedsumof theself-emittedradiositiesat thelight sourcesin thescene.
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Thesolution
G

of theadjointsystem(23) indicatesto whatextenteachlight sourcecontributesto
theradiosityat Q . G is calledimportanceor potentialin literature[65, 45, 7].

Theadjoints(23) of theradiositysystemalsohave the indicesof theform factorsin theright
order, so they canbesolvedusinga randomwalk simulationwith transitionssampledwith local
or global lines. Theparticlesarenow however shotfrom thepatchof interest( k HlRmbnO&H

), instead
of from thelight sources.Thetransitionsprobabilitiesareoqp HrR M pnsrp H : first anabsorption/survival
testis performed.If theparticlesurvives,it is propagatedto anew patch,with probabilitiescorre-
spondingto theform factors.A non-zerocontribution to theradiosityof patch Q resultswhenever
theimaginaryparticlehits a light source.Its physicalinterpretationis thatof gathering.

Continuousgatheringrandomwalk methodscanbe obtainedin a very similar way, by intro-
ducingadjointsof an integral equation. Adjoints of the radiosity integral equationfor instance,
look like: taucvrwfRKx]ucvrwzy|{~}ltru��~w M u���w&��u���\8vrw&��TV�X�
Continuousgatheringrandomwalksarethebasisof pathtracingalgorithms[13, 25].

4.3 Scoring

Thepreviousparagraphsalreadymentionedthatrandomwalkscanbeusedin differentways.The
straightforwardanalogshootingsimulationscorrespondto socalledsurvivalestimation,in which
a particleyieldsa scorewhenever it survivesa collision with a surface.In graphics,we aremore
familiar with randomwalks in which particlesyield a scorewhenever they hit a surface,alsoat
absorbed.Thiskind of randomwalk estimatorsarecalledcollisionestimators.A third kind which
is occasionallymentionedin graphicsliteratureareso calledabsorptionestimators,in which a
particleyieldsascoreonly whenit is absorbed.In thesamespirit, many moreexotic randomwalk
estimatorscanbe developed,for instanceestimatorsthat yield a scoreonly on the onebut last,
secondbut last,

�X�X�
collision, or estimatorsthat yield a scoreon the two, three,... last collision

(seefigure5).
In all thesecases,therandomwalksareconstructedin anidenticalmanner, asoutlinedbefore.

Thedifferenceis only in their scores:1) whenascoreis contributedand,related,2) whatvalueis
contributed. Thederivationof thescoresto beassociatedwith a randomwalk in orderto obtain
unbiasedestimatorsfor solvinglinearsystems,andthecalculationof thevarianceof randomwalk
estimators,involvesa fair amountof algebra.In mosttexts,aparticularexpressionof thescoresis
proposedandtheunbiasednessandvariancederivedaccordingto thedefinitionof expectedvalue
andvariance.A morecompact,constructiveapproach,basedonjust two theorems,canbefoundin
[1]. Thefirst theoremleadsto asetof equations,allowing to derivescoresthatguaranteeunbiased
estimationby construction.Thesecondtheoremyieldsa generalexpressionfor thevariance.

Table1 and2 summarizetheresultsfor thediscreteabsorption,collisionandsurvival shooting
andgatheringrandomwalksfor radiosity[50, 51].
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Figure 5: Kinds of randomwalk estimators:the black dots indicateat what nodesthe path is
allowed to yield a contribution. Gatheringrandomwalks originateat a patchof interest. They
yield a non-zeroscoreonly whena light sourceis hit at theallowedlocations.Shootingrandom
walksoriginateat a light sourceandcontributea scoreto all patchesat theallowedlocations.

estimator score �� u��X��\X�X�X��\�����w variance
x�� ��X�

absorption �&�� �`������ �&� b p�� O �&�� �������� �8��� O � �h¡Ocollision � �� �£¢l¤ i �¥�¦ � b p�§ O � �� ��¢l¤ u©¨ªy[«�¬(OXw � O � � ¡O
survival

�� � ¢l¤ i � �­�¥�¦ � b p�§ O �� � ¢l¤ u©¨ªy[«�¬(OXw � O � � ¡O
Table1: Scoreandvarianceof discreteshootingrandomwalk estimatorsfor radiosity.

�X�
is the

patchat which a randomwalk originates. It is a patchon a light sourcein the scene,chosen
with probability proportionalto its self-emittedpower.

� � \X�X�X��\���� are the patchessubsequently
visitedby therandomwalk. Transitionsaresampledby first doingasurvival/absorptiontest,with
survival probabilityequalto thereflectivity. After survival, thenext visitedpatchis selectedwith
probabilityequalto theform factor, by tracinglocal or global lines. ® is thelengthof therandom
walk: therandomwalk is absorbedafterhitting thepatch

���
. Theexpectationof all theseestimators

is thenon-selfemittedradiosity � OVR¯WYO �°g+O at apatch Q (sourcetermestimationis suppressed).
The left columnwith mathematicalexpressionsindicateswhat scoreshall be contributedto the
resultfor unbiasedestimation.Theright columncontainsthevariance.

¬(O
is therecurrentradiosity

at Q : if Q wouldbetheonly sourceof radiosity, with unit strength,thetotal radiosityon Q wouldbe
largerthan1, say

tnO
, becauseotherpatchesin thescenereflectpartof thelight emittedby Q back

to Q . Therecurrentradiositythenwouldbe
¬nOSRet�O �±¨

.

4.4 Discussion

Randomwalk estimatorsfor radiositythuscanbeclassifiedaccordingto thefollowing criteria:
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estimator score �� u��X� R Q \X�X�X�²\����EwfR �� O�u�³´w variance
x]� �� O �

absorption M O¶µ$· ���� � · � M O iB¸ µº¹��� � ¹ � O ¸ � � ¡O
collision M O i �¥�¦ � g p § M O iB¸ u�g ¸ y[« � ¸ w � O ¸ � �h¡O
survival M O i � �­�¥�¦ � µ�· §� · § M O i ¸ µº¹�» ¡�¼ ¹� ¹ � O ¸ � � ¡O

Table2: Scoreandvarianceof discretegatheringrandomwalk estimatorsfor radiosity. Theexpec-
tationis � OVR¯WVO½��gSO , thenon-selfemittedradiosityonpatchQ (alsohere,sourcetermestimation
is suppressed).

�X�
is thepatchat which a particularrandomwalk originates.It is alwaysthepatchQ of interest.

� � \X�X����\���� aresubsequentlyvisitedpatches.Transitionsaresampledin exactly the
samewayasfor shootingrandomwalks: first anabsorption/survival testis carriedout,with prob-
ability of survival equalto thereflectivity. After survival, a next patchis selectedwith probability
equalto the form factor, by tracinglocal or global lines. ® is the lengthof the randomwalk. � O ¸is the radiosityat Q dueto the light source� , received directly or via interreflectionsfrom other
patches( � ¸ R i ¸ � O ¸ ).¾ whetherthey arecontinuousor discreterandomwalks;¾ whetherthey areshootingor gathering;¾ accordingto wherethey generatea contribution: at absorption,survival, at every collision,

etc
�X�X�

.

4.4.1 Continuousversusdiscreterandom walks

Continuousrandomwalks anddiscreterandomwalks estimatedifferentquantities(see ¿ 1.1.3).
The differenceis in practicehowever only rarely noticeable.Also the algorithmicdifferenceis
quite small: with a continuousrandomwalk, a particle is alwaysreflectedfrom its point of in-
cidenceon a patch. In a discreterandomwalk, a particle is reflectedfrom a uniformly chosen
differentlocationon thepatchon which it landed.

Experimentsin which a continuousanddiscretecollision shootingrandomwalk have been
compared,indicatethat thereis no significantdifferencein variance.Low discrepancy sampling
however, appearsto be significantlymoreeffective with the discreterandomwalk thanwith the
continuousrandomwalk [1].

4.4.2 Shootingversusgathering

The varianceexpressionsin the tablesabove allow to make a detailedtheoreticalcomparisonof
discreteshootingandgatheringrandomwalks. Theshootingestimatorshave lower variance,ex-
cepton small patcheswhich have low probability of beinghit by raysshot from light sources.
Unlikeshootingestimators,thevarianceof gatheringestimatorsdoesnotdependonthepatchareaTYO

. For sufficiently small patches,gatheringwill bemoreefficient. Gatheringcould, like in the
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caseof stochasticrelaxationmethods,beusedin orderto “clean” noisyartifactson smallpatches
aftershooting.

4.4.3 Absorption, survival or collision?

Thevarianceresultsin thetablesabovealsoindicatethatthesurvival estimatorsarealwaysworse
thanthe correspondingcollision estimators,becausethe reflectivity À O is alwayssmallerthan1.
As arule, thecollisionestimatorsalsohavelowervariancethantheabsorptionestimators,because
therecurrentradiosity

¬nO
is in generalnegligible (shooting)andself-emittedradiosity

g ¸
of a light

sourceis in generalmuchlargerthanthenon-selfemittedradiosityin practice(gathering).
Theseresultshold when transitionsare sampledaccordingto the form factors. When the

transitionprobabilitiesaremodulated,for instanceto shootmorerays into importantdirections
( ¿ 5.1),anabsorptionestimationcansometimesbebetterthanacollisionestimator. In particular, it
canbeshown thatacollisionestimatorcanneverbeperfect,becauserandomwalkscancontribute
avariablenumberof scores.An absorptionestimatoralwaysyieldsasinglescore.Themoreexotic
estimatorsmentionedabove,whichyield scoresat thetwo last,threelast,

�X�X�
collisionsalsoyield

afixednumberof scores.For thatreason,they mayalsoyield perfectestimators.Theiranalysisis
aninterestingtopic for furtherresearch.

4.4.4 Discretecollision shootingrandom walks versusstochasticJacobi relaxation

Accordingto table1, the varianceof Á!ÂÄÃ discretecollision shootingrandomwalks is approxi-
mately: x Â�ÃÁ ÂÄÃÆÅ ¨Á Â�Ã À OTVO ¢l¤ u4WYO��°gSOXw
Thevarianceof incrementalpowershooting(17)with Á } Â raysis approximately:x } ÂÁ } ÂÇÅ ¨Á } Â À OTYO N ¤ u�WYOÈ�°g+O�w(�
It canbe shown that Á ÂÄÃ randomwalks resulton the averagein Á Â�Ã N ¤aÉ�¢l¤ raysto be shot.
Filling in Á } Â R Á ÂÄÃ N ¤aÉ£¢l¤ in theexpressionabovethusindicatesfor for samenumberof rays,
discretecollision shootingrandomwalksand incrementalpowershootingJacobi iterationsare
approximatelyequallyefficient. This observationhasbeenconfirmedin experiments[1].

Bothalgorithmshaveanintuitiveinterpretationin thesenseof particlesbeingshotfrompatches.
Theparticleshaveuniformstartingpositionon thepatchesandthey havecosine-distributeddirec-
tionsw.r.t. thenormalonthepatches.Thenumberof particlesshotfrom eachpatchis proportional
to thepowerpropagatedfrom thepatch.Sincethetwo methodscomputethesameresult,thesame
numberof particleswill beshotfrom eachof thepatches.If alsothesamerandomnumbersare
usedto shootparticlesfrom eachpatch,the particlesthemselvescanalsobe expectedto be the
same.The main differenceis the orderin which the particlesareshot: they areshotin “breath-
first” orderin stochasticrelaxationandin “depth-first” orderwith randomwalks(seefigure6).

29



2 332

Stochastic Jacobi
1

Random Walk
1

Figure6: This figure illustratesthe differencein order in which particlesareshot in stochastic
Jacobiiterations(“breadth-first”order)andin collision shootingrandomwalk radiosity(“depth-
first” order).Eventually, theshotparticlesareverysimilar.

Therearehoweveralsoother, moresubtle,differencesbetweenthealgorithms,in particularin
thesurvival sampling.Experimentswith verysimplescenes,suchasanemptycube,whererecur-
rent radiosity

¬nO
is important,do reveal a differentperformance.The conclusionthat stochastic

Jacobiiterationsandrandomwalksareequallyefficient is alsono longertruewhenhigherorder
approximationareused,or with low discrepancy samplingor in combinationwith variancere-
ductiontechniques.Many variancereductiontechniquesandlow discrepancy samplingareeasier
to implementandappearmoreeffective for stochasticrelaxationthanwith randomwalks (both
continuousor discrete,see ¿ 5). Stochasticrelaxationwith higherorderapproximationappearsat
leastasgoodaswith continuousrandomwalks,andis significantlysuperiorto a discreterandom
walk ( ¿ 6.1).
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5 VarianceReductionand Low DiscrepancySampling

Thebasicalgorithmsof theprevioussectionscanbemademoreeffectiveby usingvariancereduc-
tion techniquesandlow discrepancy sampling.In this section,we will discussvariancereduction
by view-importancesampling,bycontrolvariates,by combininggatheringandshootingestimators
usingthesamerandomwalksor raysandby weightedimportancesampling.

5.1 View-importancedri ven shooting

5.1.1 View-importance

In the basicalgorithmsof the previous sections,transitionsaresampledusingprobabilitiesthat
reflect the laws of physics. The quality of the computedresultmainly dependson the areaand
reflectivity of the patches,but is furthermoreuniform in the whole scene.Sometimeshowever,
onewould like to save computationtime by having a high quality only in a part of the scene,
for instancethe part of the scenethat is visible in a view, while compromisingon the quality
in unimportantpartsof the scene.For instance,whencomputingan imageinsidea singleroom
in a large building with several floors eachcontainingmany rooms,the basicestimatorswould
spenda lot of work in computingthe illumination in all roomson all floors to similar quality.
Onemight prefer to concentratethe computationwork on the room oneis in, at the expenseof
a lower quality of the radiosity solution in other roomsandother floors of the building. With
view-importancesampling,thesamplingprobabilitiesin ourMonteCarloradiosityalgorithmsare
modulatedin suchaway thatmoresamplesaretakenin importantregionsof ascene,andfewer in
lessimportantregions.

This requiresin the first placea measurefor the importanceof the illumination acrossthe
surfacesin the scene.As explainedin ¿ 4.2.3, the adjointsof the radiositysystemof equations
yield sucha measure.Here, it will be moreconvenientto useadjointsof the power systemof
equations(14)7: t(ÊaR¯x~Ê~y|Ë p s Ê p^ÀEp t p � (24)

Theimportances
t(Ê

arealwaysdefinedw.r.t. somedirectimportancedistribution
x­Ê

. Whenchoos-
ing

x~ÊfRÌ¨
for thepatchesÍ thatarevisible in a view, and

x­ÊlRÏÎ
for patchesthatarenot visible

in a view,
tnÊ

is called view-importanceand indicateswhat fraction of the radiosity
WVÊ

will be
contributedto thepatchesvisible in a view, directlyor via inter-reflections.

A continuousview importancefunction
tru�vrw

on thesurfacesof thescenecanbedefinedin a
verysimilar wayby meansof adjointsof theradiosityintegralequation(3):taucvrwfRKx]ucvrwzy { }ltru��~w À u���w&��u���\8vrw&��TV�X� (25)

7Adjoint radiositysystems(23) areobtainedby multiplying the left andright handsideof if (24) with the patch
areaÐPÑ . Ò�Ñ and Ó�Ñ in (23)arerelatedto Ô©Ñ and Õ$Ñ hereas Ò�ÑÄÖ×ÐPÑØÔÙÑ and ÓÚÑÄÖÛÐzÑjÕ�Ñ .
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Theequationsfrom which importanceis to be solvedareof thesameform astheequationsthat
describelight transport,andthereforethe samealgorithmsasfor light transportcanbe usedfor
computingimportancein a scene.This canhappeneitherin separatephases,or bothat thesame
time. Moreover, thecomputationof importancecanpossiblybespedupby takingadvantageof the
adjointof importance:theradiosity. In practice,oneshouldtake carehowever that importanceis
only usedfor computingradiosity(andviceversa)if theimportancesolutionis sufficiently stable.

5.1.2 View-importancedri ven shootingrandom walks

View-importance
tnÊ

canbeusedin variouswaysduringrandomwalk sampling:¾ for modulatingthetransitionprobabilities,sothatrandomwalksarescatteredpreferentially
towardsregionsof high importance.Unfortunately, this canno longerbe doneusinguni-
formly distributedlocalor globallinesandrequiresthatincomingimportanceateverypatch
is storedor canbequeriedefficiently in someway [33, 67];¾ for modulatingthesurvivalprobabilitiesonly, soparticlesnearimportantregionsgetahigher
chanceof survival. In regionsof low importance,particleswill bekilled off with a higher
probability than accordingto the reflectivity (Russianroulette). In interestingregions, it
evenis possibleto split a particlein two new particlesof which thescoresareappropriately
combined(splitting);¾ for modulatingthebirth probabilities,sothatmorerandomwalksarestartedfrom important
light sourcesandfewer from unimportantsources.This canbecombinedwith importance-
modulatedtransitionsampling,or canbedonewith analogtransitionsampling.In thelatter
case,thebestresultsareobtainedbymodulatingtheanalogbirthprobabilitiesatlight sources
(proportionalto self-emittedpower)by thesquare rootof view-importance[52].

In orderto keeptheestimationunbiased,scoresshallbedecreasedwhenprobabilitiesareincreased
andvice versa.If thesurvival chanceof a particleis reducedin Russianroulettefor instance,the
contribution of a particlethat survivesthe testshall be increasedin orderto compensate.View-
importancebasedsamplinghasbeenstudiedfor continuousas well as discreterandomwalks
[45, 15, 52,54,1].

5.1.3 View-importancedri ven stochasticrelaxation radiosity

In thecontext of incrementalandregularpower shooting( ¿ 3.2), view importancecanbeusedin
orderto¾ aim particlespreferentiallytowardsinterestingregions: the problemis the sameas with

randomwalks: local or global line samplingis no longerhelpful andincomingimportance
needsto bestoredwith eachpatch;¾ increaseor decreasetheprobabilityof shootingarayfrom agivenpatch:thisyieldsthesame
effect asRussianroulette,splitting andmodulatingbirth probabilitiestogetherin random
walks. It is veryeasyto implementwith local line sampling.
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In general,view-importancedriven stochasticrelaxationmethodscanbe derived in exactly the
sameway asanalogstochasticrelaxationmethodsby consideringthepower systemof equations
(14)modifiedasfollows: NzÊÜtnÊaR ¢ Êjt(ÊÄy Ë p N p u�t p �Çx p w sap Ê�À ÊctnÊt p �Çx p �
Nonview-importancedrivenstochasticrelaxationradiositycorrespondswith thechoices

tnÊaR>¨ É À Êand
x­Ê R�¨ É À Ê´�B¨ . (Thesechoicesarealwaysa valid solutionof (24) in closedenvironments).

Figure7 showssomeresults,obtainedwith algorithmsdevelopedby NeumannandBekaert[36,1].

5.2 Control variates

Anotherwell known variancereductiontechniqueis by meansof socalledcontrolvariates.Sup-
posea function Ý ucvrw is to benumericallyintegratedandthatwe know the integral

�
of a similar

function Þ u�vrw . If the differenceÝ u�vrwÈ� Þ u�vrw is to goodapproximationconstant,it will be more
efficient to usea Monte Carlo methodfor integratingthe differenceÝ ucvrwÈ� Þ ucvrw andadd

�
af-

terwards. The function Þ ucvrw is calleda control variate. Control variateshave beenproposedfor
variancereductionin stochasticraytracingby Lafortune[34]. We discussheretheapplicationto
discreterandomwalksandstochasticrelaxation.

5.2.1 Control variates for linear systems

This ideacanbeappliedto thesolutionof linearsystems(andintegral equations)in thefollowing
way: supposewe know an approximation �ß for the solution ß of ß Ráà@yUâ ß . The correctionã ß R ß � �ß thenfulfills ã ß Räu�àåyÇâ �ß � �ß w²y|â�æ ã ß (26)

Proof:ã ß RÏu�çÈ�èâÛwéæ ã ß y|âmæ ã ßëê u�çª�°âÛwéæ ã ß R ß �èâ ß y|â �ß � �ß Reàìy|â �ß � �ß í
This is true regardlessof the error in the approximation �ß . Now suppose

ã ß is computed
usingfor instancea randomwalk method.Theresultingestimate

ã �ß for thecorrection
ã ß will

not beexact,so that ��ß R �ß y ã �ß will not beexactly equalto thesolution ß of thesystemto be
solvedeither. However, regardlessof theerroron thefirst approximation�ß , theerroron thenew
approximation��ß is only determinedby theerroron thecomputedcorrection

ã �ß ! Sometimes,the
correction

ã �ß canbeestimatedmoreefficiently than ß itself.
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Figure7: View-importancedrivenstochasticJacobiradiosity: thetop imageshave beenobtained
usingapproximatelythesametotal amountof work (about9 minutes,3.3 îXï�ð rays). Thetop-left
image,computedwith view-importance,is significantlylessnoisythanthetop-rightimage,which
hasbeenobtainedwithout computingandtakingadvantageof view-importance.Thebottom-left
imageshows an overview of the scenein which the view wastaken. The scenewassubdivided
in 162,000patches.Thebottom-rightimageshows theimportancedistribution for theview. High
intensityindicateshighview-importance.
Theshown modelis aneditedpartof theSodaHall VRML modelmadeavailableat theUniversity
of Californiaat Berkeley.
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5.2.2 Constantcontrol variates in random walk radiosity

Theonly choicefor �ß thatallows
â �ß to becalculatedanalyticallyin thecaseof radiosity, is the

constantchoice �WVÊaRòñ . With this choice,wegetã WVÊóR ô�g Ê�y Ë p À Ê s Ê p ñ!�èñ´õey Ë p À Ê s Ê p ã W pR u�g+Ê��òu©¨S� À ÊcwÙñPw²y Ë p À Ê s Ê p ã W p
Thequestionnow is how to determinean optimal valuefor

ñ
. Heuristicsfor choosing

ñ
canbe

derivedby minimizing theexpectedmeansquareerrorof randomwalk estimators.Severalcrude
approximationsneedto bemadehowever, andthebenefitsarein practicenotverysignificant.

5.2.3 Constantcontrol variates in stochasticrelaxation radiosity

In stochasticJacobirelaxationhowever, constantcontrol variatevariancereductionis easierto
obtainandmoreeffective. Monte Carlo summationshall be appliedto the following modified
powerequations: NåöÊ R ¢ ÊÄyÇTSÊ À Êjñ�y[Ë Ê Ë p T p u4W p �èñPw sap Ê À Êcb(ÊdO
A goodvaluefor the control radiosity

ñ
canbe obtainedby numericaloptimizationof s u�ñPw@Ri ¸ T ¸Y÷ W ¸ �øñ ÷

[1, 41].
Onedisadvantageof constantcontrolvariatesin radiosityis thatthescenebeingrenderedneeds

to fulfill certainrequirements:¾ it needsto beclosed,becauseotherwise
i p s Ê p ñ[ùRUñ for somepatchesÍ in thescene;¾ therecannotbeclosed“holes” in a scenethatdo not receive any light, e.g. theinterior of a

box.

Thespeedupthatcanbeobtainedwith aconstantcontrolvariatetypically is in therangeof 5-50%.

5.3 Gathering for fr ee

Yet anothervariancereductiontechniquedescribedin Monte Carlo literatureis the combination
of severalestimatorsfor thesamequantity. In MonteCarloradiosity, onewill alwaysfind a gath-
eringestimatorcorrespondingwith eachshootingestimator. Gatheringis in generallessefficient
thanshooting,but by combininggatheringandshootingover randomwalksandrayssampledfor
shooting,amoderatevariancereductionis possibleatnegligible additionalcost.
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5.3.1 Combining estimatorsand multiple importance sampling

Supposetwo estimators úû � and úû ¡ for a givenquantity
û

areavailable. Any linear combinationü � úû � y ü ¡ úû ¡ with constantweightsü � y ü ¡ Rý¨ will thenalsobeanestimatorfor
û

. Thevariance
of thelinearcombinationhoweverdependson theweights:x]� ü � úû � y ü ¡ úû ¡ � R ü ¡ � x�� úû � � y ü ¡¡ x�� úû ¡ � y[« ü � ü ¡ Cov

� úû � \ úû ¡ � �
Cov

� úû � \ úû ¡ � denotestheco-varianceof thetwo estimators:

Cov
� úû � \ úû ¡ � RUg]� úû � æ úû ¡ � �èg]� úû � � æEg�� úû ¡ � �

If úû � and úû ¡ are independent,the covarianceis zero8. Minimization of the varianceexpression
aboveallows to fix theoptimalcombinationweights:ü �ü ¡ R

x]� úû ¡ � � Cov
� úû � \ úû ¡ �x]� úû � � � Cov
� úû � \ úû ¡ � �

For independentestimators,theweightsshallbe inverseproportionalto thevariance.In practice,
theweightscanbecalculatedin two differentways:¾ usinganalyticalexpressionsfor thevarianceof theinvolvedestimators(suchaspresentedin

this text);¾ usinga-posterioriestimatesfor thevariancesbasedon thesamplesin anexperimentthem-
selves[26]. By doingso,a slightbiasis introduced.As thenumberof samplesis increased,
thebiasvanishes:thecombinationis asymptoticallyunbiasedor consistent.

The combinationof estimatorscanbe generalizedfor morethantwo, say þ estimators.If ÁÚÿ
outof a total of Á samplesaretakenfrom eachestimator úû ÿ , yielding primaryestimates�û Oÿ \ Q R¨£\X�X�X�a\ ÁÚÿ for

û
, thecombinedestimateslook like:�Ëÿ ¦ � ü ÿ ¨Á ÿ ���Ë O ¦ � �û Oÿ Å û �

Veach[73] notedthatvery robustcombinationis oftenpossibleby assigningpotentiallydifferent
weightsü Oÿ to eachindividualsample,evenfor samplesfrom thesameestimator:

�Ëÿ ¦ � ¨Á ÿ � �Ë O ¦ � ü Oÿ �û Oÿ Å û �
Thecorrespondingcombinedestimatoris unbiasedaslongas

i �ÿ ¦ � ü Oÿ R>¨ for everysample.He
proposedseveralheuristicsfor determiningtheweights.Thebasicideabehindtheseheuristicsis to

8A zerocovarianceis anecessary, but notasufficientconditionfor independence:thereexist dependentestimators
thatalsohavezerocovariance(seee.g.[26, p.13]).
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givea samplea weightthattakesinto accounttheprobabilitythatthesamplewould have resulted
with the otherestimators:if the samplewould be generatedonly with low probability with the
otherestimators,it is givena largeweight. Vice versa,whenany otherestimatorwould yield the
samesamplewith high probability, theweightof thesampleis reduced.Oneof thoseheuristics
is thesocalledbalanceheuristic, in which theweights ü Oÿ aresimply chosenproportionalto the
probabilityof drawing thesampleaccordingto the � -th estimator, multiplied with thenumberof
samplesÁ ÿ .

5.3.2 Combining gathering and shootingin discreterandom walk radiosity

Combininggatheringandshootingoverasinglesetof randomwalkscanbedonein severalways:¾ usingmultiple importancesampling:thebasicobservationis thatgatheringradiosityovera
pathsegment

� ¥ \�� ¥ » � \X�X�X�a\�� ¸ is identicalto shootingpoweroverthereversesegment
� ¸ \�� ¸ �­� \�X�X��\�� ¥

. Multiple importancesamplingcanbeappliedif theprobabilityof having asub-path
originatingat theend-points

� ¥
and

� ¸
arebothknown. In practice,combinedgatheringand

shootingbasedon multiple importancesamplingis usefulonly with global lines, in global
multi-pathalgorithms[55, 50]. With local lines,therequiredprobabilitiesareunfortunately
not known in advance;¾ usinga-posteriorivarianceestimates:suchestimatescanbeobtainedby approximatingan-
alytical expressions[53]. Alternatively, samplebasedvarianceestimationis alsopossible
[1]. Samplebasedvarianceestimationyieldsvery goodweightseventually, but theweights
areunreliablein thebeginningof thecomputations,whenonly few randomwalkshavebeen
visiting a patch. A-posteriorivarianceestimationallows to combineshootingandgather-
ing alsowith local line sampling.Figure8 shows theshootingandgatheringcontributions
associatedwith asinglepath.

Combininggatheringandshootingin randomwalk radiosityyieldsmoderatevariancereduction,
again5-50%,but theadditionalcomputationcostis negligible.

5.3.3 Combining gathering and shootingin stochasticJacobi radiosity

Combininggatheringandshootingin stochasticJacobiiterationsis againvery simple[1]. Each
line shotin power shootingiterations( ¿ 3.2.1)yieldsa contribution to thepatchthat it hits, while
in gatheringiterations( ¿ 3.2.4),the line yieldsa contribution to thepatchfrom whereit wasshot.
Also here,gatheringcorrespondswith shootingover thereverseline. Unlike with randomwalks,
the probability of shootinga line from every patchis known, so multiple importancesampling
canbeused.The resultis thata scorecanberecordedat bothendsof eachshotline. For a line
connectingthepatchesÍ and

�
, thescoresatbothendpointsare:ü Ê p û��Ê p R À ÊcN po ÊÜT p y oqp TSÊ on Íü Ê p û��Ê p R ÀEp NzÊo ÊÜT p y oqp TSÊ on

�
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Figure8: Contributionsof a randomwalk
�X�X\�� � \�� ¡ \��	� : (a,b,c)gatheringat

�X�
; (d) shootingat

� � ;
(e,f) gatheringat

� � ; (g) shootingat
� ¡ ; (h) gatheringat

� ¡ ; (i) shootingat
�	�

.

As before,o Ê and oqp indicatetheprobabilityof shootinga line from Í and
�
. With local lines,we

canchooseo Ê proportionalto thepower to beshotfrom Í . With global lines, o Ê is proportionalto
thepatcharea

TVÊ
.

Thetechniqueis extremelysimpleto implement,it is alwayssafeto use,it comesat no addi-
tional costandcanyield fair speed-ups:up to a factorof 2 if illumination is nearlyuniform.

5.4 Weightedimportance sampling

Weightedimportancesamplingis yet anothervariancereductiontechnique.It canbe explained
intuitivelyasfollows: supposeoneneedsto computeanintegral s R�
 Ý u�vrwÙ��v andthatoneknows
a second,similar, integral

�ýR�
 Þ u�vrw&�£v with samedomain.Both integralscanthenbeestimated
usingthesamesamples.TheresultingMonteCarloestimate �� for

�
canthenbecomparedwith

the true,known, valueof
�

. Due to its randomnature,the estimate �� will sometimesbe larger
than

�
andsometimesbesmaller. Supposethatoneknows thatthecorrespondingestimate �s fors will alsobelarger than s in case �� is larger than

�
, a moreaccurateestimatefor s thenmay

be �s � É �� : �s is decreasedif ��Ï_±�
andit is increasedif ��ÏZ �

.
Unlike thevariancereductionstechniquesdescribedbefore,weightedimportancesamplingis

biased,but it is consistentif Ý and Þ fulfill certainrequirements.Thebiasvanishesas
¨ É Á ( Á is

thenumberof samples).This is muchfasterthanthe statisticalerror, which vanishesas
¨ É 
 Á .

A moreelaborateexpositionof this idea,with applicationto form factorintegrationandstochastic
relaxationradiosity, canbefoundin [4].
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Figure9: If samplevectorswith sameindex areusedon differentpatches,for choosingthe ori-
gin anddirectionof the rays,distractingpatternsmay result in a computedimage. This figure
illustrateshow suchpatternsmayresultdueto clusteredcontributionsfrom nearbysources.

5.5 Low-discrepancysampling

Low discrepancy sampling[42] allows to achieve a higherconvergencerate than � uÙ¨ É 
 Á w by
placingsamplesmoreuniformly thanrandom.Thetheorybehindnumericalintegrationwith low-
discrepancy sampling,calledquasi-MonteCarlo integration,is totally differentthanthatof Monte
Carlomethodsbasedonrandomsampling.Integrationwith randomsamplesis basedonstatistics.
Quasi-MonteCarlo methodsare basedon numbertheory. The convergenceratesthan can be
obtaineddependon the dimension

�
of the integral andarenon-trivial to analyze.They canbe� u�������� Á É Á w .In practicehowever, improved convergenceratesare often obtainedby little more than re-

placingthe randomnumbergeneratorby a socalledquasi-randomnumbergenerator. Local line
sampling( ¿ 2.2.1)for instance,requires4-dimensionalrandomvectors:two randomnumbersare
neededfor choosinga ray origin andtwo morefor samplinga cosinedistributeddirection.Keller
[27] showedthatusinga4-dimensionalquasi-randomvector[42] yieldsspeed-upsof aboutanor-
derof magnitudewhencomputingform factorswith local lines.Neumannetal. observedasimilar
speed-upwhenusingquasi-randomnumbersinsteadof randomnumbersin stochasticrelaxation
radiosity[39]. Thespeed-upobtainedwith quasi-randomsamplingin continuousshootingrandom
walk radiosity[28] is however muchsmaller. In discreteshootingrandomwalk radiosity, it is of
thesamemagnitudeasin stochasticrelaxationradiosity, andoftenmuchhigherthanin continu-
ousrandomwalks [1]. A theoreticalstudyof the convergencerateof quasi-randomsamplingin
radiosityhasbeencarriedoutby Szirmay-Kalos[71].

Therearehoweveranumberof importantdifferencesbetweenrandomandquasi-randomsam-
pling. Themaindifferencein practiceis thatquasi-randomsamplesarenot statisticallyindepen-
dent.They canevenbeverystronglycorrelated.Naiveapplicationcanresultin disturbingaliasing
artifactsin computedimages(seefigure9). With local line samplingin radiosity, thecorrelations
canbebrokenby keepinga separatesampleindex for eachpatch.Thesampleindex is initialized
to adifferentvaluefor eachpatch,andis incrementedindependentlyfrom otherpatcheseachtime
anew ray needsto beshotfrom thepatch.
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6 Extensions

To conclude,anumberof usefulextensionsto theMonteCarloalgorithmsdescribedsofarwill be
presentedin this section.Especiallythelatter, theincorporationof hierarchicalrefinement,makes
MonteCarloradiosityalgorithmshighly competitivewith deterministicradiosityalgorithms.

6.1 Higher order radiosity

Sofar, thefocushasbeenonthecomputationof aconstantradiosityapproximationoneachpatch.
On patcheswherethe radiosityfunction

W�u�vrw
variessmoothly(everywhereexceptnearshadow

boundaries),higherorderapproximations(linear, quadratic,
�X�X�

) will bemoreaccurateat a little
higherstoragecost(oneadditionalvalueperbasisfunction,seefigure1 on page5).

Wealreadymentionedhow continuousrandomwalkscanbeusedin orderto computeahigher
orderapproximationin ¿ 4.1.4.Similar algorithmscanalsobedevelopedfor stochasticrelaxation
radiosityandfor discreterandomwalks[3, 1]. Thenecessaryadaptationsto stochasticrelaxation
radiosityareminimal: local or global linescanbecastasfor constantapproximations.Only the
contributedscoresareslightly different,andcontainthedualbasisfunction �� Ê�� ��u�vrw at thepoint

v
hit by thelines.

Feda[17] analysedthecostof usingcontinuousrandomwalks in orderto estimatea product
Legendrebasisapproximationof radiosity. He observedthat therequirednumberof samplesfor
a � -th orderapproximationis � ¡ timeslarger thanfor a constantapproximations.Bekaerthas
shown that this is alsothe casefor higher-orderstochasticrelaxationradiosity. The increasein
computationtime for higherorderapproximationsis largerthanin deterministicmethods[23, 75],
but the resultingalgorithmsaresignificantlyeasierto implementandaremuchlesssensitive to
computationalerrors(seefigure10).

Higher-orderapproximationscanalsobe estimatedwith discreterandomwalks. The result
that discreterandomwalks areasgoodasstochasticrelaxationradiositydoeshowever not hold
for higherorderapproximations:discreterandomwalkshave a muchhighervariance,which gets
worsefor bright environmentsandhigherapproximationorder. They arenot recommendedfor
practicaluse.

6.2 Hierar chical refinementand clustering

Accuratea-priori meshingfor radiosityis a difficult task.On theonehandside,thepatchesshall
besmallenoughin orderto accuratelycapturehigh-frequency illuminationvariations,suchasnear
shadow boundaries.Ontheotherhand,thenumberof patchesneedsto bekeptassmallaspossible
in order to avoid redundantcomputationwork. With hierarchicalrefinement[10, 21, 56], large
input patcheswill be broken up into smallerelementsduring the computationswhenneeded,as
predictedby a refinementoraclefunction.

Small input patchescanalsobe groupedinto clusters in orderto reducethe numberof form
factorsto becomputedduring initial linking in deterministicradiosityalgorithms[64, 61]. A user
is not only liberatedfrom the difficult taskof creatinga suitablemeshhimself, but hierarchical
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Figure10: Two imagesgeneratedfrom thesameconvergedcubicapproximationsolution. Once
the solutionhasbeenobtained,a new imagefor a new viewpoint canbe generatedin fractions
of a second. Theseimagesillustrate also that the (discrete)higher order stochasticrelaxation
radiosityalgorithmdescribedin thesenotescanyield very high imagequality in regionswhere
the illumination variessmoothly: computationalerror is dealt with effectively in Monte Carlo
radiosity. In the neighborhoodof discontinuitieshowever, disturbingimageartifactsremaindue
to thediscretisationerror. Theresultingimageartifactswouldbeavoidedif discontinuitymeshing
wereused.
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Figure11: Per-ray hierarchicalrefinementin stochasticJacobiradiosity: for eachray shot,con-
nectingtwo points

v
and

�
, the algorithmwill determinewhich level of the elementhierarchies

at
v

and
�

is appropriatefor computinglight transportfrom
v

to
�
. The elementhierarchiesare

lazily constructed.In non-hierarchicalMonteCarlo radiosity, light transportwould becomputed
betweentheinput patchescontainingtheend-points

v
and

�
of theray.

refinementandclusteringalsoallow to computelight transportalwaysat a properlevel of detail.
Thenumberof form factorsto becomputedis reducedfrom quadraticto log-linearin this way.

Hierarchicalrefinementcanbeincorporatedalsoin MonteCarloradiosityalgorithms,combin-
ing thebenefitsof hierarchicalrefinementwith lowersensitivity for computationalerrorin Monte
Carloradiosity.

The incorporationof hierarchicalrefinementduring form factorcomputationwith local lines
hasbeenproposedby severalauthors[35, 31,30], whousedit asareplacementfor thehemi-cube
algorithmin progressive refinementradiosity. Thebasicideain thesethreeproposalsis identical:
a large amountof rays is shot from the sourcepatch. The surroundingsceneis subdivided in
receiver elementssothateachreceiver element(a surfaceor cluster)receivesthesameamountof
rays. The disadvantageis that thesetechniqueswill only work if a large numberof raysis shot
simultaneouslyfrom theshootingpatch.This is not thecasein morerecentstochasticrelaxation
algorithms.

Tobler et al. [72] have presentedan adaptive meshingschemefor continuousshootingran-
domwalk radiosity( ¿ 4.1.3). By simultaneouslykeepingtrackof incidentparticleson successive
hierarchicalelementlevels,smoothnessassumptionviolationscanbedetected.

Bekaertetal. [2, 1] proposedto incorporatehierarchicalrefinementin stochasticJacobiradios-
ity by meansof per-ray refinement.Thebasicobservationis thateachline castin non-hierarchical
stochasticJacobiradiositycarriessomeflux from thepatchcontainingits origin to thepatchcon-
tainingits destinationpoint. With hierarchicalrefinement,a wholestackof elementscorresponds
with bothend-points.A refinementoraclewill predictfor eachline, at what level of theelement
stackcontainingthedestinationpoint of a line, theflux carriedby theline shallbedeposited(see
figure11). Elementsarerefinedlazily, on thefly duringthecomputations.

Per ray refinementworks extremelywell with a cheaporacle,suchasbasedon transported
power [21]. Someresultsarepresentedin figure12. HierarchicalstochasticJacobiradiosityhas
beenusedin orderto rapidlycomputeradiositysolutionsin scenescontainingmillions of polygons,
suchasentirebuilding andcarmodels,on highendPCs.
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Figure 12: Complex scenesrenderedwith hierarchicalMonte Carlo radiosity: theater(39,000
initial polygons,refinedinto 88,000elements,5 minutes),conferenceroom (125,000polygons,
refinementyields178,000elements,9minutes)andcubicleofficespace(128,000polygons,refined
into 506,000elements,10 minutes).
Model credits:CandlestickTheater:Design:Mark Mack Architects,3D Model: CharlesEhrlich
andGreg Ward(work conductedasa researchprojectduringtheArchitecture239Xcoursetaught
by Kevin Matthews formerly at UC Berkeley, College of EnvironmentalDesign). Conference
roomandcubiclespacemodelsby AnatGrynberg andGreg Ward(LawrenceBerkeley Laboratory,
Berkeley, California).
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NotationsZ��!\��m_
scalarproductof

�
and

�
(functionsor vectors)�� estimateor approximationfor

�
, or modifiedquantity

�ú� MonteCarloestimatorfor aquantity
�

(randomvariablefor estimating
�

) v�!
largestintegersmallerthanor equalto

vâL\#"
matriceswith elements$ Ê p \�%hÊ p& \('ª\ àI\*)q\ ß \(+ vectorswith components$ Ê�\ � Ê�\X�X�X�TVÊ
surfaceareaof patchÍ�qT-,
differentialareaat apoint

v
. Ê�\ . ucvrw absorptionprobabilityof a randomwalkWVÊ

radiosityemittedby patchÍ (constantapproximations)WVÊ�� �
radiosityemitted“under” basisfunction

� Ê�� �
in �W×u�vrwfR i Ê/� � WSÊ�� � � Ê/� ��u�vrwW×ucvrw

“true” radiosityfunctionat point
v� Ê WVÊI�°g Ê

: non-selfemittedradiosityat patchÍ� Ê10 radiosityat Í dueto light sourcepatch 2 : � ÊaR i 0 � Ê10Cov
� ú�è\ ú� � co-varianceof MonteCarloestimators ú� and ú�"43

transposeof thematrix
"

:
%53Ê p R6% p Ê7 Ê�\ 7 u�vrw randomwalk hit point densityb^Ê p Kronecker’s delta:1 if Í R|� , 0 if Í ùR[�g Ê

self-emittedradiosityby patchÍ (constantapproximations)g�ucvrw
“true” self-emittedradiosityfunctionat

vg�� ú� � expectationof theMonteCarloestimator ú� for
�s Ê p patch-Í -to-patch-

�
form factorÝ98 u�v ê;:6< : ö w BRDFat

v
for scatteringfrom adirection : into direction : ö or viceversa��u�v´\ ��w

geometricradiositykernel= ucv´\ : w first point onasurfacevisible from
v

in thedirection :tnÊ
importanceat patchÍ (radiosity-like)> � ucv´\ : w(\�> � ucv´\ : w exitant andincidentradianceat

v
into/fromdirection :Á numberof samplesin a MonteCarlocomputation? sizeof aproblem,for instancenumberof equationsin a linearsystem@ ,

hemisphereof directionsabove
v�BADC

infinitesimalsolid anglecontainingdirection :NzÊ TSÊcWVÊ
: poweremittedby patchÍo ucvrw (continuous)probabilitydensityat apoint

vo Ê (discrete)probabilityat apatchor stateÍo Ê p transitionprobabilityfrom Í to
�k Ê randomwalk birth probabilityat Í¢ Ê TSÊcg Ê

: self-emittedpowerat patchÍ
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� Ê/� � . -th basisfunctionon patchÍ�� Ê/� � . -th dualbasisfunctiononpatchÍ : 
 }5E �� Ê�� �Iu�vrw � Ê�� F­u�vrwÙ�qT-,YR¯b#�	FG ,h� distancebetweenpoints
v

and
�À Ê reflectivity of patchÍÀ u�vrw reflectivity at point

vû Ê
surfaceof patchÍ (setof points): , out-goingdirectionat point

vH ,
anglebetween: ¸ andthesurfacenormalat

v�IÊ TSÊjtnÊ
: importanceat patchÍ (power-like)x~Ê

source-importanceat patch Í (radiosity-like)x�� ú� � varianceof theMonteCarloestimator ú� for
�

vis
ucv´\ ��w

visibility predicate:1 if
v

and
�

aremutuallyvisible,0 if notILÊ TSÊ�x~Ê
: source-importanceat patch Í (power-like)¬^Ê

recurrentradiosity:fractionof radiosityon Í dueto itself
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[15] Ph.Dutré andY. D. Willems. Potential-driven MonteCarloparticletracingfor diffuseenvironments
with adaptive probabilitydensityfunctions.In EurographicsRenderingWorkshop1995, June1995.

46



[16] S. M. Ermakow. Die Monte-Carlo-Methodeund verwandteFragen. V.E.B. DeutscherVerlag der
Wissenschaften,Berlin, 1975.

[17] M. Feda.A MonteCarloapproachfor Galerkinradiosity. TheVisualComputer, 12(8):390–405,1996.

[18] C. M. Goral, K. E. Torrance,D. P. Greenberg, and B. Battaile. Modeling the interactionof light
betweendiffusesurfaces.In SIGGRAPH’84 ConferenceProceedings(Minneapolis,MN, July 23-27,
1984), pages213–222,July1984.

[19] J. H. Halton. A restrospective andprospective survey of the Monte Carlo method. SIAM Review,
12(1):1– 63,January1970.

[20] J. M. Hammersley andD. C. Handscomb. MonteCarlo methods. MethuenLondon/Chapmanand
Hall, 1964.

[21] P. Hanrahan,D. Salzman,andL. Aupperle. A rapid hierarchicalradiosityalgorithm. In Computer
Graphics(SIGGRAPH’91 Proceedings), volume25,pages197–206,July 1991.

[22] P. S. Heckbert. Adaptive radiosity texturesfor bidirectionalray tracing. ComputerGraphics(SIG-
GRAPH’90 Proceedings), 24(4):145–154,August1990.

[23] P. S. Heckbertand J. Winget. Finite elementmethodsfor global illumination. TechnicalReport
UCB/CSD91/643,ComputerScienceDivision(EECS),Universityof California,Berkeley, California,
USA, July 1991.

[24] H. W. Jensen.Global illumination usingphotonmaps. In EurographicsRenderingWorkshop1996,
pages21–30.Eurographics,June1996.

[25] J.T. Kajiya. Therenderingequation.ComputerGraphics(SIGGRAPH’86 Proceedings), 20(4):143–
150,August1986.

[26] M. H. KalosandP. Whitlock. TheMonteCarlo method. J.Wiley andsons,1986.

[27] A. Keller. TheFastCalculationof Form FactorsUsingLow Discrepancy Sequences.In Proceedings
of the SpringConferenceon ComputerGraphics(SCCG’96), pages195–204,Bratislava, Slovakia,
June1996.ComeniusUniversityPress.

[28] A. Keller. Quasi-MonteCarloradiosity. In EurographicsRenderingWorkshop1996, pages101–110,
June1996.

[29] A. Keller. Instantradiosity. In SIGGRAPH97 ConferenceProceedings, pages49–56,August1997.

[30] A. Keller. Quasi-MonteCarlo methodsfor photorealistic image synthesis. PhD thesis,Universiẗat
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Girona,January1998.

[55] M. Sbert,X. Pueyo, L. Neumann,andW. Purgathofer. GlobalmultipathMonteCarloalgorithmsfor
radiosity. TheVisualComputer, 12(2):47–61,1996.

[56] P. Schr̈oder. Numericalintegrationfor radiosityin thepresenceof singularities.In 4th Eurographics
Workshopon Rendering, Paris, France, pages177–184,June1993.

[57] P. Shirley. A ray tracingmethodfor illumination calculationin diffuse–specularscenes.In Graphics
Interface’90, pages205–212,May 1990.

[58] P. Shirley. Radiosityvia ray tracing. In J.Arvo, editor, GraphicsGemsII , pages306–310.Academic
Press,SanDiego,1991.

[59] P. Shirley. Time complexity of MonteCarlo radiosity. In Eurographics’91, pages459–465.North-
Holland,September1991.

[60] P. Shirley, B. Wade,Ph.M. Hubbard,D. Zareski,B. Walter, andDonaldP. Greenberg. GlobalIllumi-
nationvia DensityEstimation.In P. M. HanrahanandW. Purgathofer, editors,RenderingTechniques
’95 (Proceedingsof theSixthEurographicsWorkshoponRendering), pages219–230,1995.

[61] F. Sillion. A unifiedhierarchicalalgorithmfor globalillumination with scatteringvolumesandobject
clusters.IEEETransactionsonVisualizationandComputerGraphics, 1(3):240–254,September1995.

[62] F. Sillion andC. Puech. A generaltwo-passmethodintegratingspecularanddiffusereflection. In
ComputerGraphics(SIGGRAPH’89 Proceedings), volume23,pages335–344,July1989.

[63] F. Sillion andC. Puech.RadiosityandGlobal Illumination. MorganKaufmann,SanFrancisco,1994.

[64] B. Smits,J. Arvo, andD. Greenberg. A clusteringalgorithmfor radiosityin complex environments.
In SIGGRAPH’94 Proceedings, pages435–442,July1994.

[65] B. Smits,J.Arvo, andD. Salesin.An importance-driven radiosityalgorithm. In ComputerGraphics
(SIGGRAPH’92 Proceedings), volume26,pages273–282,July1992.

[66] J. SpanierandE. M. Gelbard. MonteCarlo Principlesand Neutron TransportProblems. Addison-
Wesley, 1969.

[67] L. Szirmay-Kalos,C. Balasz,andW. Purgathofer. Importance-driven quasi-randomwalk solutionof
therenderingequation.Computers andGraphics, 23(2):203–211,1999.

49



[68] L. Szirmay-Kalos,T. Foris, L. Neumann,andC. Balasz. An analysisof quasi-MonteCarlo integra-
tion appliedto thetransilluminationradiositymethod.ComputerGraphicsForum(Eurographics’97
Proceedings), 16(3),1997.C271–C281.

[69] L. Szirmay-Kalos,T. Foris,andW. Purgathofer. Quasi-MonteCarloglobal light tracingwith infinite
numberof rays. In WSCG’98 (SixthEuropeanConferencein Central Europeon ComputerGraphics
andVisualization), pages386–393,Plzen,CzechRepublic,1998.Universityof WestBohemia.

[70] L. Szirmay-KalosandW. Purgathofer. Globalray-bundletracingwith hardwareacceleration.In Ninth
EurographicsWorkshopon Rendering, Vienna,Austria,June1998.

[71] L. Szirmay-KalosandW. Purgathofer. Analysisof thequasi-MonteCarlointegrationof therendering
equation.In WSCG’99 (SeventhInternationalConferencein Central Europeon ComputerGraphics,
VisualizationandInteractiveDigital Media), pages281–288,Plzen-Bory, CzechRepublic,February
1999.Universityof WestBohemia.

[72] R. Tobler, A. Wilkie, M. Feda,andW. Purgathofer. A hierarchicalsubdivisionalgorithmfor stochastic
radiositymethods.In EurographicsRenderingWorkshop1997, pages193–204,June1997.

[73] E. VeachandL. J.Guibas.Optimally combiningsamplingtechniquesfor MonteCarlorendering.In
SIGGRAPH95 ConferenceProceedings, pages419–428,August1995.

[74] B. Walter, Ph.M. Hubbard,P. Shirley, andD. F. Greenberg. Global illumination usinglocal linear
densityestimation.ACM TransactionsonGraphics, 16(3):217–259,July1997.

[75] H. R. Zatz. Galerkinradiosity:A higherordersolutionmethodfor global illumination. In Computer
GraphicsProceedings,AnnualConferenceSeries,1993, pages213–220,1993.

50



Contents

Intr oduction 1

1 The Radiosity Method 2
1.1 Mathematicalproblemdescription . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Thegeneralrenderingequation . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Theradiosityintegralequation. . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Theradiositysystemof linearequations. . . . . . . . . . . . . . . . . . . 3

1.2 Theclassicalradiositymethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Monte Carlo Radiosity Basics 7
2.1 MonteCarloestimationof sums . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 MonteCarlomethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 MonteCarlosummation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Form factorsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Local line sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Globalline sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Local versusgloballine sampling . . . . . . . . . . . . . . . . . . . . . . 11

3 StochasticRelaxationRadiosity 13
3.1 TheJacobiiterativemethodfor radiosity . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Regulargatheringof radiosity . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Regularshootingof power . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Incrementalshootingof power . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 StochasticJacobiradiosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Stochasticincrementalshootingof power . . . . . . . . . . . . . . . . . . 14
3.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Stochasticregularshootingof power . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Stochasticregulargatheringof radiosity . . . . . . . . . . . . . . . . . . . 18

3.3 Otherstochasticrelaxationmethodsfor radiosity . . . . . . . . . . . . . . . . . . 18

4 Random Walk Radiosity 20
4.1 Randomwalksin acontinuousstatespace. . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Particletransportsimulationsandintegralequations . . . . . . . . . . . . 20
4.1.2 Continuousrandomwalksfor radiosity . . . . . . . . . . . . . . . . . . . 21
4.1.3 Thehistogrammethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.4 Basisfunctionmethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.5 Kernelmethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.6 Final gatheringusingdependenttests . . . . . . . . . . . . . . . . . . . . 23
4.1.7 Collision estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

51



4.2 Randomwalksin adiscretestatespace. . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Discreterandomwalksandlinearsystems. . . . . . . . . . . . . . . . . . 24
4.2.2 Discreteshootingrandomwalksfor radiosity . . . . . . . . . . . . . . . . 25
4.2.3 Discretegatheringrandomwalksfor radiosity . . . . . . . . . . . . . . . . 25

4.3 Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.1 Continuousversusdiscreterandomwalks . . . . . . . . . . . . . . . . . . 28
4.4.2 Shootingversusgathering . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.3 Absorption,survival or collision? . . . . . . . . . . . . . . . . . . . . . . 29
4.4.4 DiscretecollisionshootingrandomwalksversusstochasticJacobirelaxation 29

5 VarianceReduction and Low DiscrepancySampling 31
5.1 View-importancedrivenshooting. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 View-importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2 View-importancedrivenshootingrandomwalks . . . . . . . . . . . . . . 32
5.1.3 View-importancedrivenstochasticrelaxationradiosity . . . . . . . . . . . 32

5.2 Controlvariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.1 Controlvariatesfor linearsystems. . . . . . . . . . . . . . . . . . . . . . 33
5.2.2 Constantcontrolvariatesin randomwalk radiosity . . . . . . . . . . . . . 35
5.2.3 Constantcontrolvariatesin stochasticrelaxationradiosity . . . . . . . . . 35

5.3 Gatheringfor free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.1 Combiningestimatorsandmultiple importancesampling. . . . . . . . . . 36
5.3.2 Combininggatheringandshootingin discreterandomwalk radiosity . . . 37
5.3.3 Combininggatheringandshootingin stochasticJacobiradiosity . . . . . . 37

5.4 Weightedimportancesampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Low-discrepancy sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Extensions 40
6.1 Higherorderradiosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Hierarchicalrefinementandclustering . . . . . . . . . . . . . . . . . . . . . . . . 40

Notations 44

Bibliography 46

52



1

Recent Trends and
Future Directions

Recent Trends and
Future Directions

Global
Illumination
Algorithms

Light
Transport

Modeling

Measurement

Acquisition

FrameworkFramework

Tone
Mapping
Operators

Visual
Display

Geometry
BRDFs
Lights
Textures

Radiometric
Values Image

Human
Perception

Observer



2

• BRDF Measurement
• Skin

• Paint etc.

• Richer shading models
• Polarization, Fluorescence

• Subsurface scattering

Recent Trends: BRDFsRecent Trends: BRDFs
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• Metropolis Light Transport
• Caching + interpolation

• World space

•RADIANCE
•Photon Maps
•Local Linear Density Estimation ….

• Ray space

•Radiance Interpolants

• Image space

•Render Cache
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MetropolisMetropolis

• Generate paths using any path 
generation method

• Once a valid path is found, mutate it to 
generate new valid paths

• Advantage: once an important path with 
low probability is found, it is explored

• No bias

MetropolisMetropolis
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MetropolisMetropolis

Valid path

Small mutations

MetropolisMetropolis

Accept mutations
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Radiance Radiance 

• Greg Ward

• Cache diffuse inter-reflections
• k-d tree

• Interpolate
• Nearest neighbors

Photon MapPhoton Map

• Idea: Stochastic RT + pre-caching 

• 2 passes:
• shoot light-rays (“photons”) and store

•K-d tree

• shoot viewing rays, interpolate 

•Nearest neighbors

• Can capture effects such as caustics
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Pass 1: Shoot PhotonsPass 1: Shoot Photons

•Light path generated using MC techniques
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• probability

• color

• ...
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•Light path generated using MC techniques

•Store:
• position

• incoming direction

• probability

• color

• ...

Pass 1: Shoot PhotonsPass 1: Shoot Photons

•Find N closest photons

•Assume photons hit 
point of interest

•Compute average 
radiance 

Pass 2: Viewing RayPass 2: Viewing Ray
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Future DirectionsFuture Directions

• Real-Time Global Illumination!!

• Interactivity
• Viewpoint change

• Interactive object manipulation

• Parallel Rendering


