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Quasi-Monte Carlo Methods in Computer Graphics:
The Global Illumination Problem

Alexander Keller

ABSTRACT. The main part of the global illumination problem of computer
graphics is given by a Fredholm integral equation of the second kind, describ-
ing the light distribution in a closed environment. Calculating photorealistic
images from that equation requires its kernel to be very complex and discontin-
uous. Due to this complexity Monte Carlo methods are an interesting tool for
estimating a solution. In this article we investigate the application of determin-
istic quasi-Monte Carlo methods, as compared to pure Monte Carlo methods,
for global illumination calculations in very complex environments and give
numerical evidence for the superiority of the quasi-Monte Carlo methods.

1. Introduction

In photorealistic rendering in computer graphics a scene usually is given as a
BREP (boundary representation). In addition to this geometry description, the
surface properties such as roughness, texture and light emission are provided. The
global illumination problem now consists in calculating an image from that descrip-
tion, taking into consideration all physical effects that emerge from this specifica-
tion. The problem can be described by a second kind Fredholm integral equation.
The kernel of that integral equation covers visibility, which is very expensive to
compute and in addition makes the complexity of the integral equation strongly
depend on the complexity of the BREP model of the scene. The visibility function
has discontinuities, which are not aligned to any axis. So Monte Carlo methods
seem to be a very useful approach for solving the equation. Instead of random
sample points as used in the Monte Carlo method, we apply quasi-random sample
points. These deterministic points lead to the quasi-Monte Carlo method, promis-
ing a faster convergence than the Monte Carlo rate. For a profound introduction
to such points and quasi-Monte Carlo integration, see [Nie92b].

In the next section we will give a short introduction to quasi-Monte Carlo inte-
gration, followed by a brief description of the physical facts leading to the integral
equation to solve. In section 4 we present an algorithm for the solution of the global
illumination problem and finally come to the conclusion, that quasi-Monte Carlo
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methods are superior to Monte Carlo methods for the global illumination prob-
lem, confirming the results of recent information based complexity theory issues
[TWWB88| [Woz91].

2. Quasi-Monte Carlo Integration

Monte Carlo integration is a powerful means whenever functions with unknown
discontinuities have to be integrated. The Monte Carlo method estimates an integral
by the mean value of NV function values of the integrand f taken at the points
PN == {3707 PN ,$N71}2

1 N—-1
(2.1) y f(z) dz ~ N ; f(z;)

where I* = [0,1)® is the s-dimensional unit cube and Py C I®. If the points Py
are chosen at random the error is expected to be

| N1 o(f
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where o(f) is the variance of the function f.

Since computers are deterministic machines, we are only able to generate
pseudo-random numbers, approximating real random numbers. Their quality is
checked by several statistical tests [Nie92b] [Knu81] and they are usually gener-
ated using the linear congruential method (for several other methods see [Nie92a]).

The most important property of the sampling point set Py is uniform distri-
bution, which also guarantees the convergence of the integration scheme (2.1) if f
is Riemann-integrable [Hla71]. The deviation of the point set Py from uniform
distribution is measured by its discrepancy

N-1
[ i@ ds = £ 3 o)

So the discrepancy is the worst integration error for integrating the volume of all
axis-aligned subcubes J = H;Zl[O, a;) C I° by using Py. A sequence of point sets
Py is called to be uniformly distributed modulo I*® if and only if

lim D*(Py)=0.
N —oo

D*(Py) := sup
T=T1;_,[0,a;)CI*

It can be proved, that the discrepancy of any point set Py is bounded from below
by

s—1
log™> N
(2.3) D*(Py) > B~ _——
where By > 0 is a constant depending on the dimension s. When using random
points in (2.1) we only have

D*(ij?ndom) € O ( ,10gl](\)]gN>

by the law of the iterated logarithm. This roughly is the rate (2.2) of the Monte
Carlo method. But in fact there exist point sets and sequences, which acquire
about the order of magnitude of (2.3) and therefore are called low discrepancy
points. Using low discrepancy point as sample points in (2.1) is called quasi-Monte
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Carlo integration. The construction of low discrepancy points is mostly based on
the radical inverse function:

B, (i) := Zaj(i) b ei= Zaj(i) b

For base b = 2 the radical inverse of some natural number i € INg simply is its binary
representation mirrored at the decimal point. The most simple sequences are the
Halton sequence and the Hammersley point set. The infinite Halton sequence in s
dimensions is built by

x; = (Pp, (1), .., Py, (1))

where by, ... ,bs are the first s prime numbers, so as to reduce corellations between
the components. Note that the number N of samples easily can be incremented by
reusing all samples taken before. For the Halton points we have

. s 1 & b1 b +1
D ( II;]Ialto )< N-I_WH (2]1—0gb410gN+ ]2 >
J

j=1

The Hammersley point set is finite, that is the sample number N has to be fixed
and adaptive sampling results in having to discard all samples taken so far:

1

N:¢b1 (Z)7 s 7‘Db571(i))

The disadvantage of being finite is paid off by the slightly superior rate of

z; = (

s—1
1 b —1 bj +1
D* PHammers]ey < s I I J loe N J
(Px )<yt 2 logh; ° T

Jj=1

Since those point sets are designed to minimize discrepancy, i.e. for integration
or optimization purposes, they do not have random properties and therefore fail
almost any statistical test. Using deterministic point sets for integration results in

THEOREM 2.1. The Koksma-Hlawka inequality:

< V(f) D*(Pn)

1 N—-1
@ de-g gj f(:)

where V(f) is the variation in the sense of Hardy and Krause.

So if the variation can be bounded by a constant, using low discrepancy point
sets will result in a faster quadrature than using random numbers. But in computer
graphics the integrands often are of the form

f(z) = g(x) xa, (h(z)) p(x)

where 0 < g € Ly is a bounded function, p is a probability density and x4, is the
characteristic function of the set A, C S, telling whether the endpoint of the path
h(z) is in the set. Since x4, usually is not aligned to any axis we have V(f) = oc.
In consequence theorem 2.1 is not applicable for integrals in computer graphics.
Instead we aim to make the integrand more smooth by using the importance
sampling technique of Monte Carlo integration, which also applies to quasi-Monte
Carlo integration for smooth functions [SM94]. In our case we are only able to
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integrate the probability density function p. Let u be the measure for the probability
density p, then the integral can be rewritten:

N-—1

1
[ 96@) xa, (@) ple) do = [ gf6) xa, (b)) duto) = 5 3 9(01) xa, (w0)
° ¢ =0
The sample point cloud Cn = {yo,... ,yn—1} used for the Monte Carlo estimate

approximates the density p. It is constructed out of the uniformly distributed
point set Py by means of the multi-dimensional inversion method (also known as
Hlawka-Miick transformation [HM72]):

fotjfol---fol e bj1, Ty, e T) dTj - dTs
f01f0 fO tjfl,Tj,...,Ts)de"'de

Fj(tl,... ,t]') =

From the equations

we successively determine

Then the inverse pu=" is

=y .

We now define the deviation of C from p, i.e. the discrepancy with respect to
some density, by

N-—1
N 1
D'pOwi= s a5 Y )
J=[I;_,[0,a;)CI* |/1* i=0

Due to [Wic74] we have the following two theorems on the modeling of discrete
densities:

THEOREM 2.2. The discrepancy with respect to the probability density p is
(2.4) D*(p,C) < V(") D*(Pw) .
THEOREM 2.3. If p is separable, i.e. p(z) = H;:1 p@) (29)), we have

(2.5) D*(p,Cn) = D*(Px) .

Since the variation of f is unbounded in computer graphics, we are not able
to use theorem 2.1 for providing an error bound on the quadrature (2.1), although
there exist deterministic point sets with lower discrepancy than random sample
points. But theorems 2.4 and 2.5 apply for modeling densities. Using low discrep-
ancy points then results in a better approximation than using random numbers.
In consequence the quasi-Monte Carlo integration is faster than the Monte Carlo
method, even in the setting of computer graphics.
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3. The Global Illumination Problem

The global illumination problem consists of calculating an image of a three-
dimensional scene description, taking into consideration all physical effects. The
scene description is given by a boundary representation (BREP) of the objects to
be illuminated. Usually this two-dimensional domain S = UleAk is given by a
disjoint union of surface primitives like for example triangles Ay. To guarantee
energy preservation, the scene S must be closed. Photorealistic rendering requires
realistic scene models. Such models usually consist of a very large number K of
surface primitives (up to 10%). In addition we are given the radiance emission
Ly : S xQ — IRT from a point on the surface into a direction of the hemisphere
Q in that point and the bidirectional reflectance distribution function (BRDF)
fr 1 QxS xQ — IRT, depending on the incoming, outgoing direction, and the
location, characterizing the reflectivity, roughness and color of the surfaces. For
sake of simplicity we restrict ourselves to only the reflectance function in this paper
and omit transluscent effects. The global illumination problem is given by two
equations: The radiance equation describes the distribution of light in a scene
whereas the pixel equation calculates the exposure of the radiances on an image.

Throughout this paper we use radiometric units, that is radiance L is given in
electromagnetic power per unit projected area per unit solid angle. Usually L is
given as a vector of some color primaries. In our simulation we selected the RGB -
color system (red, green, blue). This system could easily be replaced by any other
system without changing the algorithms described in the sequel. So L = (r,g,b),
where 7, g and b are the intensities for the selected wavelengths of red, green and
blue used for firing the electron guns of a CRT. For simplicity we use L as scalar
in the algorithmic explanations. So whenever we write an equation using L, this is
meant to be one equation for each component of the color base.

3.1. The radiance equation. The radiance equation describes the radiance
distribution in the scene. It is given by a second kind Fredholm integral equation.
The radiance L, which leaves from a point z € S on the surface of the scene in
direction w € 2, where () is the hemisphere in point z, is the sum of the source
radiance Ly and all reflected radiance (see figure 1 for the geometry):

(3.1) L(z,w) = Lg(x,w)—l—/ L(h(z,w'"), —w") fr(—w' z,w) cos@ du'
Q
= Lo+TyL

Here h(z,w') € S is the first point that is hit when shooting a ray from z into
direction w’. This function accounts for visibility in the three-dimensional environ-
ment. Its calculation is the most expensive in the whole illumination process and is
bounded from below by O(log K). Minimizing the number of calls to h promises the
fastest algorithms for the solution of (3.1). So the reflected radiance is the integral
of the radiance of all points which can be seen through the hemisphere (2 in point =
attenuated by the BRDF f,. and the projection term cosf’, which puts the surface
perpendicular to the ray (z,w’). 8’ is the azimuth angle between the surface normal
in z and the direction w’. Due to physical reasons we have ||T¢| < 1, because any
real scene is reflecting less than 100% of the radiance. Another important property
used for the solution of the radiance equation is the Helmholtz principle:

fT(fwl: .r,w) = fr(fwvmvw’)
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F1GURE 1. The geometry for the radiance equation.

This property allows to reverse all light paths.

3.2. The Pixel Equation. In order to calculate an image from the solution
of the radiance equation (3.1), we have to simulate a camera lens. In our case we
restrict ourselves to the most simple model of the pinhole camera. The radiance
Lp of a pixel P of the rectangular image matrix then is the mean value integral of
the radiance that is radiated through the area of that pixel into the eye:

o 1 0S—1
(3.2) Lp=— / L(wgye, ) dv ~ Y L(Tgye, ;)
Pl Jp =
Here L(zgye, ) is the radiance, which emerges from the point seen from the eye-
point Tgye through the pixel position z into the direction of the viewpoint zgye.
For a more realistic camera model we refer to [KMH95]. Choosing the set Pos =
{zo,... ,20s-1} is called antialiasing. For a survey on this subject and the appli-
cation of quasi-Monte Carlo integration see [HK94].

4. Solving the Global Illumination Problem

The algorithm for the solution of the radiance equation (3.1) is split in two
passes. The preprocessing step distributes the radiation starting from the light-
sources by a random walk simulation. Then the rendering phase uses this informa-
tion to reconstruct the radiances for the pixels in the image matrix.

4.1. Surface Properties. The surface properties are given by bidirectional
reflection distribution functions (BRDF) of the kind

fd(w) + fs(_wl7w7w)

o (Pd(m)-l-Ps(??) T “‘2#)

— — e
T 4o cos B’ cosl

fr(_wl=x=w)

which were introduced by [War92]. f,; = ‘”‘T('T) is the diffuse part of the BRDF,
that is the fraction of radiance, which is reflected independently of incoming and
outgoing direction. « is the root mean square of the surface slope. The f; term
accounts for specular reflection like mirrors (o« = 0) or glossy (0 < a < o) objects.
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The surface S is characterized by the reflectivities pg and ps (pg and ps, like L, are

given in the color base (r, g,b) and account for the color of the reﬂection) and the
w+w

ww'||
of the directions w and w' in point . 6 is the angle between fi and w. Although the

structure of the BRDFs is simple, the model is sufficient for photorealistic image
generation, fits physical experiments and is similar to theoretical derivations. Many
more details like transparency or anisotopy can be added to the model but are
omitted in this context.

A very important property of Ward’s model is that the inversion method is
applicable to f, (see [War92]). So the process of photon scattering can be simulated
in a very natural way. The reflected radiance hence is

/ L(h(z,w"), —w'") fi(—w', z,w) cosf dw' = / L(h(z,w"), —w') dF,.(w")
Q

Q

roughness a. ¢ is the angle between the normal A and the half vector h = ToxoT

In a simulation F, then is modeled by choosing diffuse or specular scattering
by the composition method and then scattering with the densities fq(x)cosé’ or
fs(—w',x,w) cosh’, respectively, by using the inversion method. Note, that the
distribution functions already include the projection term. Since we assumed all
surfaces to be isotropic, the density f. is separable in (f',¢') = ' and by theorem
(2.5) using F,. for scattering does not change the discrepancy of the point set Py
used for modeling C. (Note, that F, includes the projection term cosf'.)

4.2. Algorithm. Each sample L of the pixel equation (3.2) now is calculated
by the following decomposition of (3.1) :

L

LO + de+st
= Lo+ Ty L+Ts,(Lo+Tp44.L)

= Ly Source radiation

+ Ty,Lg Direct illumination

+ Ty,Ty,L Indirect diffuse illumination
+ Ty, L Specular effects

+ Ty,Ty, L Caustics

Ly is given, Ty, Lg is evaluated by standard algorithms (see [War91b]). The re-
maining terms are evaluated using functionals of the form

(4.1) (L, 9 p( // (y,w") Up(w', h(y,w'),w) cosb' dw' dy

Depending on the ”detector function” ¥p : Q x S x Q@ — IRT, those functionals
return a part of radiance leaving in direction w averaged over a domain D.

Indirect Diffuse Illumination. To calculate the indirect diffuse illumination, we
proceed similar to [Kel94] by selecting

Ta, (1, 000) = ﬁxm-z) ful2)

resulting in

Lag = <L P, (1, 02,w
= |Ak / / y7 XAk( (y7 )) fd( (y7 )) cos @' dw' dy i
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L 4, is the mean radiance reflected by the diffuse part of f, of the surface element
Ag. Using

(Ty,L)(x) = L(= Z La, x4, (%

we approximate the indirect diffuse illumination by

(42) (Ty,Ty,0)() ~ (Ty,T) / (ZLAk Yo (h '>>> Fal) cost’ du’

Specular Effects. The specular effects are treated using another functional:

Wi 0y (1172:9) = =5 X5 012 fal)

Here B, (z) is the ball around the point 2 with radius r and xp, (,)(y) tells whether

point y lies inside or outside this ball. 72 is approximately the area of the ball

projected onto S. Hence

(Ty, L) ()
~ <L ‘I’B 17 "2, (U))

-/ / (1) X, o) (3, 0") Fulbly, ) cos8l ' dy

approximates the mean radiant flux through B, reflected by f; in direction w. The
specular effects are treated by recursion:

Ty, (Lo + Ty, L) max. level

(4.3) Ty L =
Ty, (Lo + Ty, L+ Ty, L) else

If the maximum level of recursion is reached we will estimate

(Ty, L) (2, w)
~ (L Vg, ;W)

- = / / (1) X0 (3, ) o '), 0) cos8l d dy

by using the complete BRDF f,.

Caustics. The effect of bright surface elements that are mirrored by specular
onto diffuse surface elements is called caustic. Their detection and evaluation is a
very hard problem in computer graphics. The caustics are approximated by:

(4.4) (Ty,Ty, L)
// (Ty, L)(y,w") XB,(2)(h(y,w")) fa(h(y,w")) cosb dw' dy

4.3. Implementation. The implementation is done in C++. The object ori-
ented program system uses an extremely fast binary space partition (BSP) for the
ray shooting h(z,w). For specifying S, Lo and f, the material and geometry file
format (MGF, see [War95]) is used.
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Calculation of the Functionals. The preprocessing is a particle simulation of
light, i.e. a random walk. Since || T¢|| < 1 the Neumann series converges and can
be cut off at a certain degree M, leaving a little underestimation since 7% and L
are positive:

fe'e) M
L=L0+TfL=ZT;‘LO ~ ZT}'LO

We transform the functionals (4.1) into a sum of integrals on the unit cube, which
then can be evaluated by random walk simulation using Monte Carlo methods:

<L7 \I’D('h '2>w)>

M

~ (Z T;r L07lI,D('17'2:w)>
=0
M .

= Z(T;r Lo, ¥p(1,2,w))
j=0

M
= > [ [ L) wp b)) cost! ! dy
par U

M
= 2/ /Lo(ﬂfmwl) Up(wjs1,Tjt1,w)
= e Js,
i

j j+1
H —Wp, T, Wit1) H cos b dzg dwy - - - dwjtq
-1 =1
= Z/ / Lo(wo,w1) Yp(Wjt1, Tj41,w)
j+1 So
/ I 4in 26,
I /(o wie) I dzxo dby dgy ---dfji1 dgj
=1 =1
M
= Z |So| w12 / Lo(wo(ug,u1),w1) ¥p(wjtr, Tjp1,w)
=0 72i+4
J Zh sin Tu
2
(4.5) I fr(—wnm, ) T1 dug - - - duzji3
=1 =1
M
= Z ‘So| 7TJ+1 / 4 LO(-'I/'O(UO;Ul);UJl) \IJD(wj+1,mj+1,uJ)
=0 Jr2i+a

T(—wl7azl7wl+1) d’UO d’l)1 dF(’UQ, 1)3) N 'dF(U2j+2,'U2j+3)

—
o~
D
=

l <.
b

M

- Z [So| /™ / Lo(zo(vo, v1),w1) ¥p(wjsr, Tjtr,w)

izo 72i+4

(47) dUO dvl dF(UQ,’Ug) d.FT(’U47 1)5) e dFT(Ugj+2,U2j+3)
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where
Ty = h(ﬂ?lfl,wl) forl >0 y
Q = [o g] x [0,27] and
7T .
w = (O, 0) = (§U21=27Tu2l+1) inz_, .

Sp is the surface of the lightsources where Ly > 0. By (vg,v1) we access the point
o on Sy, using an area preserving mapping. For the Monte Carlo evaluation we
now use a (2M + 4)-dimensional low discrepancy sequence (u;) for all decisions of
the random walk. The random walk consists of N paths. For the generation of one
path a particle with radiance % is started in point zq, modeled by (u; o, u;1), and
traced in direction wy, modeled by (u; 2,u;3). In 23 = h(xg,w;) its data (direction,
position, radiance) is recorded. Then the particle is scattered and attenuated by
using (u;4,u;5). This process is repeated for M reflections of the particle with
the surface S. The particles are stored in an enhanced photon map similar to
[JC95] and [Jen95]. A very compact representation is used, by compressing the
particle information with the technique of [War91a]. The particles are arranged
in a 3d-tree suited for range searching. For memory issues and fast traversal, this
tree is balanced and stored without pointers in array representation. This approach
avoids higher order FEM using spherical harmonics or similar attempts. Instead
the storage usually needed for a fine tesselation and the basis coefficients is used
for storing particles, which provide a more accurate information.

The formulation (4.5) is very inefficient, since many samples will be weighted
by small values of the projection term. Importance sampling (or inversion) is used
to avoid this effect in (4.6). The directions (v, 2mvg;41) are modeled with respect
to the projection term:

. 9T
dF (v, v9141) := dsin E'Ugl dvay 11

In the experiments we will compare this kind of sampling to (4.7), where we also
inverted the BRDF f,. For the calculation of F), see [War91b]. This inversion
prevents the samples to be strongly attenuated by specular BRDF | if the direction
does not lie in the main reflection direction.

Indirect Diffuse Illumination. The L4, are calculated during the random walk.
So whenever a particle hits S its radiance attenuated by the diffuse part of the
BRDF f, is added to the surface element in that point. The mean diffuse reflected
radiance is used as a termination criterion. For two numbers N; and N» of iterated
paths, we determine an error by

1 Sn  d(La, (N, L, (N2))? | Ay
iy Lo | Ay Sy A

where the L4, (IV;) is the approximation by N; paths and Ly is the radiance of the
different light sources. Further we select an interval AN for the measurements.
The distance d is the Euclidean distance between the two color vectors L4, (IV;).
The process is terminated if for a fixed T and the smallest n € IV

A((n+t) AN,(n+t+1) AN)<efor0<t<T.

Since the error is weighted by the size of the triangles, after termination the bigger
areas Ay are integrated more exactly than the smaller areas. This makes sense,

A(Nl,NQ) =
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because in the resampling step the bigger areas are hit more often than the smaller
ones. The Monte Carlo evaluation of the indirect diffuse illumination (4.2) is

(Ty,T)(x) = W/Q<ZLA,€ XAk(h(x,w’))) fa(x) dF(vo, v1)
k=1

SCR—-1

K
<o Ja@) Y (k_lLAk XAk<h<z,w;>>>

i=0

Q

The Monte Carlo calculation shoots SCR rays from the point z distributed over
the hemisphere with respect to the cos8'-distribution. The mean radiance of the
element hit then contributes to the sum. The calculation is further enhanced by the
discontinuity buffer (see [Kel94]). This techniques augments the sample number
by using the samples of neighbouring pixels and so reduces the calls to h(z,w) by
roughly the factor 8.

Specular Effects. The specular illumination (4.3) is evaluated by taking one
sample w' in the reflection cone of the specular object generated by the density fs.
At the location hit in that direction we sample the source radiance and evaluate the
diffuse reflected light by using the particles stored in the preprocessing step. For
mathematical notation the P particles are accessible as (Ly,wp, 2,)0_;, where L,
is the radiance, w, is the incoming direction and z,, is the point where the particle
hit the surface. The specular illumination is calculated by recursion:

faly)

wr2

P
(Ty,L)(z,w) = ps <Lo(y= ~w') + > Ly X5,y (@) + (T, L)(y, —w')>
p=1
where y = h(z,w’) is the point hit when tracing the specular sample. If the max-
imum level of recursion is reached, we use the full BRDF f,. to estimate the total
reflected radiance:

P
(7, L) () = py (Lo@, Nt o Yy xm () Frep, w'>>
p=1
To evaluate these functionals, we sum over all particles, which fall into the ball
B,(y). They are found using range searching.

Caustics. Particles which cause caustics are reflected by fs; and then hit a
diffuse surface. Those particles’ indices are recorded in the index set C in the
preprocessing step. The evaluation of (4.4) now averages over the contribution of
all caustic-particles in ball B, (z):

(Ty,Ty,L)(7) = fdf;:) > Ly X, (2) ()

71'
peC

This approximation is very crude and only for reasons of completeness. The major
disadvantage of this method is, that small specular areas may not be hit in the
preprocessing step, and that caustics from them are omitted although they may
have very important contribution to the image.

Summary and Discussion. The algorithm and its implementation presented in
this paper provide a full solution for the global illumination problem. The imple-
mentation uses a random walk preprocessing. Instead of a fine FEM-tesselation of
the scene, particles of this step are stored in a very efficient structure. This struc-
ture enables the fast calculation of several kinds of radiance with very few calls
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to the costly ray tracing function h(z,w). As can be seen in the following section
the number of paths, when using adaptive termination, is about the same order of
magnitude for various scenes. So it would make sense to discard the L4, attached
to the surface elements and to evaluate them by balls, too. Then the storage of the
illumination information would become independent of the scene S and recursive
and procedural scene modeling will be possible, allowing very complex scenes to be
stored in very compact memory. The disadvantage of the algorithm, that caustics
caused by small surface elements are likely to be missed, will be subject of further
work. By omitting all contributions containing fs, this algorithm also applies to the
radiosity problem where f,. = f;. It is then very similar to [Kel94] (the difference
lies in the treatment of fy in the functional for the indirect diffuse illumination).

4.4. Numerical Evidence. The main interest of this work now is the evalu-
ation of the functionals, especially the particle generation phase. For this part of
the algorithm we want to compare the use of random numbers and quasi-random
numbers, i.e. low discrepancy points for modeling particle densities with a large
number of particles. All calculations were performed on an HP9000/735 99MHz
workstation with 64MBytes of main memory in double precision.

For the experiments we used the UNIX random generator drand48() and the
explicit inversive method [Nie92a] for the generation of pseudo-random numbers
and the Halton and Faure [SP87] sequence for the low discrepancy sequences.

To first illustrate the power of using low discrepancy points (see also [Kel95]),
we simplify the integral equation, so that an analytical solution exists for use as

benchmark. Let Lo = % and f, = 24 = % then we have

L Ly +/ i p, cos f(w) dw
Q T

Lo+ Ty L= T} Lo

i=0

where

27 5
Tz/ cos@dwz/ / cosf(w) sinf df dop =«
Q o Jo

simply is the projection of the unit-hemisphere onto the plane. Then the solution
is independent of the scene geometry ! For an illustration we used an empty 3-
dimensional unit cube. In table 1 we see the number of paths needed with the
parameters e = 1074, 2M + 2 = 16, AN = 1000, and 7' = 2. The mean square
deviation A,(N) and the weighted mean square deviation Ay, (V) are defined as

Au(N) = \/ZL(@ 1y

S (T (V) = 1)2] Ay
K Y, [ Al
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where L4, (N) is the mean radiance after N paths of the random walk simulation.
Obviously the low discrepancy points perform superior in this setting, i.e. they
need less samples for the same accuracy than random sampling.

TABLE 1. Monte Carlo vs. quasi-Monte Carlo: Analytical Solution

Monte Carlo

quasi-Monte Carlo

Congr. Inversive Halton Faure
N 59000 64000 45000 50000
A,(N) | 0.00599011 | 0.00632058 || 0.00536554 | 0.00543581
Agw(N) || 0.000724511 | 0.00076198 || 0.000647638 | 0.000659806

In table 2 we show the comparison of Monte Carlo and quasi-Monte Carlo
integration with and without importance sampling. It clearly can be seen, that the
low discrepancy points lead to a faster convergence when using adaptive termination

with the same values for ¢, M and AN as above.

In addition the importance

sampling (the rows are marked by inv. for inversion) increases performance in
specular scenes (the office and the cabin scene are mainly diffuse, and therefore no
improvement is visible). The consequence is that modeling discrete densities, i.e.
inverting as much of the integrand as possible, by low discrepancy points is superior
to using random samples even for non-smooth integrands. The application of low
discrepancy points even saves storage, since less particles are necessary to acquire
the same level of accuracy when using random samples.

TABLE 2. Monte Carlo vs. quasi-Monte Carlo: Realistic Scenes

N
Monte Carlo quasi-Monte Carlo
Elements | Lights || Congr. | Inversive || Halton Faure
office 6070 5 || 48000 51000 || 39000 41000
inv. 48000 51000 || 39000 38000
cabin 35346 8 || 30000 32000 || 25000 28000
inv. 30000 32000 || 25000 28000
doll 3604 89 || 80000 87000 || 86000 73000
inv. 60000 55000 || 48000 46000
soda 41420 5 || 70000 71000 || 65000 66000
inv. 54000 64000 || 55000 49000

To give an impression of the rendering results, we show some pictures of the

scenes used for the measurements in figure 2.
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FIGURE 2. Sample views of the scenes.

5. Conclusion

We presented an algorithm for the full solution of the global illumination prob-
lem in computer graphics. The design of the algorithm was guided by means of
variance reduction techniques from the Monte Carlo method. By experimental ev-
idence we showed, that those techniques, which also can be applied for variation
reduction in quasi-Monte Carlo methods, can be applied even if the integrands
have infinite variation. The experiments also showed, that the quasi-Monte Carlo
methods are superior to Monte Carlo methods, i.e. they converge faster.
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