
Are we done with Ray Tracing?
Alexander Keller

Schedule
Course web page at https://sites.google.com/view/arewedonewithraytracing

� 9:00 Are we done with Ray Tracing?
– Alexander Keller, NVIDIA

� 9:40 Acceleration Data Structure Hardware (and Software)
– Timo Viitanen, NVIDIA

� 10:15 State-of-the-Art and Challenges in Game Ray Tracing
– Colin Barré-Brisebois, SEED - Electronic Arts

� break

� 11:05 Reconstruction for Real-Time Path Tracing
– Christoph Schied, Facebook Reality Labs

� 11:40 From Raster to Rays in Games
– Morgan McGuire, NVIDIA

2

From Rasterization to Ray Tracing
Principles of Image Synthesis

Rasterization

clipping dicing

Z-buffer kind of Z-Buffer

shadow maps shadow maps

3

From Rasterization to Ray Tracing
Principles of Image Synthesis

Rasterization

clipping dicing

Z-buffer kind of Z-Buffer

shadow maps shadow maps

3

From Rasterization to Ray Tracing
Principles of Image Synthesis

Rasterization

clipping

dicing

Z-buffer kind of Z-Buffer

shadow maps shadow maps

3

From Rasterization to Ray Tracing
Principles of Image Synthesis

Rasterization

clipping

dicing

Z-buffer

kind of Z-Buffer

shadow maps shadow maps

3

From Rasterization to Ray Tracing
Principles of Image Synthesis

Rasterization

clipping

dicing

Z-buffer

kind of Z-Buffer

shadow maps shadow maps

3

From Rasterization to Ray Tracing
Principles of Image Synthesis

Rasterization Reyes

clipping dicing

Z-buffer kind of Z-Buffer

shadow maps shadow maps

3

From Rasterization to Ray Tracing
Principles of Image Synthesis

Rasterization Reyes

clipping dicing

Z-buffer kind of Z-Buffer

shadow maps shadow maps

3

From Rasterization to Ray Tracing
Principles of Image Synthesis

Rasterization Reyes Ray Tracing

P

L

Camera

clipping dicing acceleration data structure

Z-buffer kind of Z-Buffer tracing rays with arbitrary origins

shadow maps shadow maps shadow rays

3

Ray Tracing
How it started

� 1974: "brute-force approach" of rasterization "ridiculously expensive"

I A characterization of ten hidden-surface algorithms

� "Ray tracing is the future and ever will be"

I SIGGRAPH 2013 Course

� The Path Tracing Revolution in Movie Industry

I SIGGRAPH 2015 Course

I ACM Transactions on Graphics, Volume 37 Issue 3, August 2018

I Vectorized Production Path Tracing

I The Iray Light Transport Simulation and Rendering System

I SIGGRAPH 2018 Course

4

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=959AD28FA1B761C98F8DA06ACC9B188E?doi=10.1.1.132.8222&rep=rep1&type=pdf
https://sites.google.com/site/raytracingcourse/
https://sites.google.com/site/pathtracingrevolution/
https://dl.acm.org/citation.cfm?id=3243123
https://research.dreamworks.com/wp-content/uploads/2018/07/Vectorized_Production_Path_Tracing_DWA_2017.pdf
https://arxiv.org/abs/1705.01263
https://cgg.mff.cuni.cz/~jaroslav/papers/2018-archvizcourse/index.htm

Ray Tracing
How it started

� 1974: "brute-force approach" of rasterization "ridiculously expensive"

I A characterization of ten hidden-surface algorithms

� "Ray tracing is the future and ever will be"

I SIGGRAPH 2013 Course

� The Path Tracing Revolution in Movie Industry

I SIGGRAPH 2015 Course

I ACM Transactions on Graphics, Volume 37 Issue 3, August 2018

I Vectorized Production Path Tracing

I The Iray Light Transport Simulation and Rendering System

I SIGGRAPH 2018 Course

4

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=959AD28FA1B761C98F8DA06ACC9B188E?doi=10.1.1.132.8222&rep=rep1&type=pdf
https://sites.google.com/site/raytracingcourse/
https://sites.google.com/site/pathtracingrevolution/
https://dl.acm.org/citation.cfm?id=3243123
https://research.dreamworks.com/wp-content/uploads/2018/07/Vectorized_Production_Path_Tracing_DWA_2017.pdf
https://arxiv.org/abs/1705.01263
https://cgg.mff.cuni.cz/~jaroslav/papers/2018-archvizcourse/index.htm

Ray Tracing Hardware

Ray Tracing Hardware
1995: ART’s RenderDrive: Ray Tracing Hardware from before the GPU

� top of bounding volume hierarchy (BVH) cached in each processor
– geometry streamed against ray buffers
– processors flag bounding volume intersection to demand broadcast of children
� processors running idle when rays diverge

� new rays can be started while tracing old ones

� shading processor

� rays sorted by shader in order to increase coherency

� fire-and-forget ray tracing: Results added to pixels

I Cold Chips: ART’s RenderDrive

6

https://www.highperformancegraphics.org/wp-content/uploads/2018/Hot3D/HPG2018_RenderDrive.pdf

Ray Tracing Hardware
1995: ART’s RenderDrive: Ray Tracing Hardware from before the GPU

� top of bounding volume hierarchy (BVH) cached in each processor
– geometry streamed against ray buffers
– processors flag bounding volume intersection to demand broadcast of children
� processors running idle when rays diverge

� new rays can be started while tracing old ones

� shading processor

� rays sorted by shader in order to increase coherency

� fire-and-forget ray tracing: Results added to pixels

I Cold Chips: ART’s RenderDrive

6

https://www.highperformancegraphics.org/wp-content/uploads/2018/Hot3D/HPG2018_RenderDrive.pdf

Ray Tracing Hardware
2005: Ray Processing Unit

� architecture

I RPU: A Programmable Ray Processing Unit for Realtime Ray Tracing

7

https://dl.acm.org/citation.cfm?id=1073211

Ray Tracing Hardware
2005: Ray Processing Unit

� architecture

I RPU: A Programmable Ray Processing Unit for Realtime Ray Tracing

7

https://dl.acm.org/citation.cfm?id=1073211

Ray Tracing Hardware
2014: Imagination Technologies

� architecture

I Introduction to PowerVR Ray Tracing

8

https://www.gdcvault.com/play/1020741/New-Techniques-Made-Possible-by

Ray Tracing Hardware
2014: Imagination Technologies

� queuing rays to nodes

PrimitiveObject 0

Primitive
Object 1

Primitive
Object 2

(coherence queues)

I Introduction to PowerVR Ray Tracing

8

https://www.gdcvault.com/play/1020741/New-Techniques-Made-Possible-by

Ray Tracing Hardware
2014: Imagination Technologies

� streaming bounding volume hierarchy construction

ProcessTriangle() AssembleParents()

Leaf
VoxelCache

VBExtents

O
n

ev
ic

tio
n Tree

VoxelCache

Output Scene
Acceleration

Structure

Select LOD

For each
triangle

Foreach
VBNode in

LOD

Compute
Parent Voxel

On VoxelCache
HIT

VBNode
Pool

Per LOD
VBNode
linked list

head
pointers

GenerateVBNode()

v0

v1

v2

O
n

ev
ic

tio
n

Add
VBNode

I Introduction to PowerVR Ray Tracing

8

https://www.gdcvault.com/play/1020741/New-Techniques-Made-Possible-by

Ray Tracing Hardware
2014: Imagination Technologies

� streaming bounding volume hierarchy construction

Assembling parents...

LOD16

LOD15

LOD10

LOD14

LeafCount=8
TreeCount=0

LeafCount=3
TreeCount=0

LeafCount=0
TreeCount=0

LeafCount=3
TreeCount=0

Leaf Head

Tree Head

Leaf Head

Tree Head

Leaf Head

Tree Head

Leaf Head

Tree Head

Tree VoxelCache

On eviction

Flush Leaf Nodes

VBNode
Pool

GenerateVBNode()

Add VBNode to
linked list of

VBNodes for its LOD

I Introduction to PowerVR Ray Tracing

8

https://www.gdcvault.com/play/1020741/New-Techniques-Made-Possible-by

Auxiliary acceleration data structure
Efficient culling

partitioning space: kd-tree or (nested) uniform grids

partitioning object lists: convex bounding volumes, e.g. axis aligned boxes, spheres, planes, ...

9

Auxiliary acceleration data structure
Efficient culling

partitioning space: kd-tree or (nested) uniform grids

partitioning object lists: convex bounding volumes, e.g. axis aligned boxes, spheres, planes, ...

9

Auxiliary acceleration data structure
Efficient culling

partitioning space: kd-tree or (nested) uniform grids

partitioning object lists: convex bounding volumes, e.g. axis aligned boxes, spheres, planes, ...

9

Auxiliary acceleration data structure
Parallel bounding volume hierarchy (BVH) construction

� linear bounding volume hierarchy (LBVH)

– map object centroids (px ,py ,pz) onto the unit cube

– interleaving the bits of the quantized coordinates yields the Morton code of (px ,py ,pz)

– enumerating the sorted Morton code keys corresponds to a traversal along the Z-curve

I Thinking Parallel, Part III: Tree Construction on the GPU

10

https://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/

Auxiliary acceleration data structure
Parallel bounding volume hierarchy (BVH) construction

� linear bounding volume hierarchy (LBVH)
– map object centroids (px ,py ,pz) onto the unit cube

– interleaving the bits of the quantized coordinates yields the Morton code of (px ,py ,pz)

– enumerating the sorted Morton code keys corresponds to a traversal along the Z-curve

I Thinking Parallel, Part III: Tree Construction on the GPU

10

https://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/

Auxiliary acceleration data structure
Parallel bounding volume hierarchy (BVH) construction

� linear bounding volume hierarchy (LBVH)
– map object centroids (px ,py ,pz) onto the unit cube

– interleaving the bits of the quantized coordinates yields the Morton code of (px ,py ,pz)

– enumerating the sorted Morton code keys corresponds to a traversal along the Z-curve

I Thinking Parallel, Part III: Tree Construction on the GPU

10

https://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/

Auxiliary acceleration data structure
Parallel bounding volume hierarchy (BVH) construction

� n sorted Morton code keys

I Fast and simple agglomerative LBVH construction

11

https://diglib.eg.org/handle/10.2312/cgvc.20141206.041-044

Auxiliary acceleration data structure
Parallel bounding volume hierarchy (BVH) construction

� n sorted Morton code keys stored in an array of leaves

I Fast and simple agglomerative LBVH construction

11

https://diglib.eg.org/handle/10.2312/cgvc.20141206.041-044

Auxiliary acceleration data structure
Parallel bounding volume hierarchy (BVH) construction

� xor-ing neighboring Morton codes yields a metric of how close they are along the Z-curve

I Fast and simple agglomerative LBVH construction

11

https://diglib.eg.org/handle/10.2312/cgvc.20141206.041-044

Auxiliary acceleration data structure
Parallel bounding volume hierarchy (BVH) construction

� the height of the n−1 inner nodes represents this metric, which can be computed on-the-fly

I Fast and simple agglomerative LBVH construction

11

https://diglib.eg.org/handle/10.2312/cgvc.20141206.041-044

Auxiliary acceleration data structure
Parallel bounding volume hierarchy (BVH) construction

� each leaf is assigned an interval, whose boundaries reference its neighboring inner nodes

I Fast and simple agglomerative LBVH construction

11

https://diglib.eg.org/handle/10.2312/cgvc.20141206.041-044

Auxiliary acceleration data structure
Parallel bounding volume hierarchy (BVH) construction

� parent of a node is the most similar one of the two inner nodes indexed by interval boundaries

I Fast and simple agglomerative LBVH construction

11

https://diglib.eg.org/handle/10.2312/cgvc.20141206.041-044

Auxiliary acceleration data structure
Parallel bounding volume hierarchy (BVH) construction

� whenever both children of an inner node are set, its parent can be determined the same way

I Fast and simple agglomerative LBVH construction

11

https://diglib.eg.org/handle/10.2312/cgvc.20141206.041-044

Auxiliary acceleration data structure
Parallel bounding volume hierarchy (BVH) construction

� left children propagate up their left interval boundary (right children in analogy)

I Fast and simple agglomerative LBVH construction

11

https://diglib.eg.org/handle/10.2312/cgvc.20141206.041-044

Auxiliary acceleration data structure
Parallel bounding volume hierarchy (BVH) construction

� the root node interval spans the range of leaves and is copied to the inner node with index 0

I Fast and simple agglomerative LBVH construction

11

https://diglib.eg.org/handle/10.2312/cgvc.20141206.041-044

Ray Tracing
Frameworks and application programming interfaces (API)

� Ray Tracing Engine

I NVIDIA OptiX

� High performance ray tracing kernels

I Intel Embree

� High-efficiency, high performance heterogeneous Ray Tracing Intersection Library

I AMD FireRays SDK

� The Quest for the Ray Tracing API

I SIGGRAPH 2016 Course

I Introduction to NVIDIA RTX and DirectX Ray Tracing

I Introduction to Real-Time Ray Tracing with Vulkan

I Metal for Ray Tracing Acceleration

12

https://developer.nvidia.com/optix
https://www.embree.org
http://developer.amd.com/wordpress/media/2015/07/157205-A_AMD_FireRays_Document_Original_44796.pdf
https://sites.google.com/site/raytracingapi/
https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/
https://devblogs.nvidia.com/vulkan-raytracing/
https://developer.apple.com/videos/play/wwdc2018/606/

Ray Tracing
Frameworks and application programming interfaces (API)

� Ray Tracing Engine

I NVIDIA OptiX

� High performance ray tracing kernels

I Intel Embree

� High-efficiency, high performance heterogeneous Ray Tracing Intersection Library

I AMD FireRays SDK

� The Quest for the Ray Tracing API

I SIGGRAPH 2016 Course

I Introduction to NVIDIA RTX and DirectX Ray Tracing

I Introduction to Real-Time Ray Tracing with Vulkan

I Metal for Ray Tracing Acceleration

12

https://developer.nvidia.com/optix
https://www.embree.org
http://developer.amd.com/wordpress/media/2015/07/157205-A_AMD_FireRays_Document_Original_44796.pdf
https://sites.google.com/site/raytracingapi/
https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/
https://devblogs.nvidia.com/vulkan-raytracing/
https://developer.apple.com/videos/play/wwdc2018/606/

Surface Representation

Surface Representation
Meshes

� patchwork geometry
– irregular topology at top level

– regular topology at bottom level

� watertight along shared edges
– numerical issues

– compression by quantization

� subdivision surfaces
– adaptive subdivision

– mathematically meaningful

I Massively Parallel Stackless Ray Tracing of Catmull-Clark Subdivision Surfaces

14

https://export.arxiv.org/abs/1811.03510

Surface Representation
Meshes

� patchwork geometry
– irregular topology at top level

– regular topology at bottom level

� watertight along shared edges
– numerical issues

– compression by quantization

� subdivision surfaces
– adaptive subdivision

– mathematically meaningful

I Massively Parallel Stackless Ray Tracing of Catmull-Clark Subdivision Surfaces

14

https://export.arxiv.org/abs/1811.03510

Surface Representation
Displacement or no displacement

� diffuse texture

I Direct ray tracing of displacement mapped triangles

15

http://mathinfo.univ-reims.fr/IMG/pdf/paper.pdf

Surface Representation
Displacement or no displacement

� normal mapping

I Direct ray tracing of displacement mapped triangles

15

http://mathinfo.univ-reims.fr/IMG/pdf/paper.pdf

Surface Representation
Displacement or no displacement

� parallax occlusion mapping

I Direct ray tracing of displacement mapped triangles

15

http://mathinfo.univ-reims.fr/IMG/pdf/paper.pdf

Surface Representation
Displacement or no displacement

� displacement mapping

I Direct ray tracing of displacement mapped triangles

15

http://mathinfo.univ-reims.fr/IMG/pdf/paper.pdf

Surface Representation
Displacement or no displacement

� base mesh: 8,750 vertices and 16,636 vertex indices

I Geometry courtesy Henning Sanden

16

http://henningsanden.com/2013/03/31/tutorial-zbrush-to-modo-32-bit-displacement/

Surface Representation
Displacement or no displacement

� displaced mesh: 6,327,463 vertices and 12,629,248 vertex indices

I Geometry courtesy Henning Sanden

16

http://henningsanden.com/2013/03/31/tutorial-zbrush-to-modo-32-bit-displacement/

Surface Representation
Displacement or no displacement

� level of detail may affect visibility

� knowing the level of detail

17

Surface Representation
Displacement or no displacement

� level of detail may affect visibility

� knowing the level of detail

17

Surface Representation
Displacement or no displacement

� level of detail may affect visibility

� knowing the level of detail

17

Surface Representation
Displacement or no displacement

� level of detail may affect visibility

� knowing the level of detail

17

Surface Representation
Displacement or no displacement

� level of detail may affect visibility

� knowing the level of detail

17

Surface Representation
Displacement or no displacement

� level of detail may affect visibility

� knowing the level of detail

17

Surface Representation
Floating point arithmetic

� define 0/0, avoid exceptions, and use consistent numeric formulations

� logarithmic spacing of floating point numbers

– ray direction and scale matter

– self intersection problem

IWhat every computer scientist should know about floating-point arithmetic

18

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.6768

Surface Representation
Floating point arithmetic

� define 0/0, avoid exceptions, and use consistent numeric formulations

� logarithmic spacing of floating point numbers
– ray direction and scale matter

– self intersection problem

IWhat every computer scientist should know about floating-point arithmetic

18

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.6768

Surface Representation
Floating point arithmetic

� define 0/0, avoid exceptions, and use consistent numeric formulations

� logarithmic spacing of floating point numbers
– ray direction and scale matter

– self intersection problem

IWhat every computer scientist should know about floating-point arithmetic

18

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.6768

Surface Representation
Floating point arithmetic

� define 0/0, avoid exceptions, and use consistent numeric formulations

� logarithmic spacing of floating point numbers
– ray direction and scale matter

– self intersection problem

IWhat every computer scientist should know about floating-point arithmetic

18

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.6768

Surface Representation
Floating point arithmetic

� define 0/0, avoid exceptions, and use consistent numeric formulations

� logarithmic spacing of floating point numbers
– ray direction and scale matter

– self intersection problem

IWhat every computer scientist should know about floating-point arithmetic

18

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.6768

Surface Representation
Floating point arithmetic

� define 0/0, avoid exceptions, and use consistent numeric formulations

� logarithmic spacing of floating point numbers
– ray direction and scale matter

– self intersection problem

IWhat every computer scientist should know about floating-point arithmetic

18

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.6768

Surface Representation
Floating point arithmetic

� define 0/0, avoid exceptions, and use consistent numeric formulations

� logarithmic spacing of floating point numbers
– ray direction and scale matter

– self intersection problem

IWhat every computer scientist should know about floating-point arithmetic

18

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.6768

Surface Representation
Dealing with the ill-posed self intersection problem

� post iteration to refine hitpoint and guarantee side of plane

� robust epsilon for offsetting

I It’s really not a rendering bug, you see...

19

https://ieeexplore.ieee.org/document/536271

Ray Tracing Performance

Ray Tracing Performance
Amortizing and balancing the work of a frame

� preprocessing
– bounding volume hierarchy construction and update on demand

– parameter baking on demand

� ray tracing and shading

� shadow rays

� shading

� postprocessing
– filtering

– upscaling

21

Ray Tracing Performance
Amortizing and balancing the work of a frame

� preprocessing
– bounding volume hierarchy construction and update on demand

– parameter baking on demand

� ray tracing

� shadow rays

� shading

� postprocessing
– filtering

– upscaling

21

Ray Tracing Performance
Amortizing and balancing the work of a frame

� preprocessing
– bounding volume hierarchy construction and update on demand

– parameter baking on demand

� ray tracing

� shadow rays

� shading

� postprocessing
– filtering

– upscaling

21

Ray Tracing Performance
Amortizing and balancing the work of a frame

� preprocessing
– bounding volume hierarchy construction and update on demand

– parameter baking on demand

� ray tracing

� shadow rays

� shading

� postprocessing
– filtering

– upscaling

21

Ray Tracing Performance
Geometry

� overlapping bounding volumes
– partitioning vs. memory footprint

– e.g. foliage, fur, hair

� high valence vertices, e.g. triangle fans

� silhouettes, i.e. the cost of missing geometry
– similar for ray tracing distance fields

� parametric, procedural, and on-demand geometry
– instances

– skinning

I Geometry courtesy NVIDIA, Giorgio Luciano, and Epic Games

22

Ray Tracing Performance
Geometry

� overlapping bounding volumes
– partitioning vs. memory footprint

– e.g. foliage, fur, hair

� high valence vertices, e.g. triangle fans

� silhouettes, i.e. the cost of missing geometry
– similar for ray tracing distance fields

� parametric, procedural, and on-demand geometry
– instances

– skinning

I Geometry courtesy NVIDIA, Giorgio Luciano, and Epic Games

22

Ray Tracing Performance
Geometry

� overlapping bounding volumes
– partitioning vs. memory footprint

– e.g. foliage, fur, hair

� high valence vertices, e.g. triangle fans

� silhouettes, i.e. the cost of missing geometry
– similar for ray tracing distance fields

� parametric, procedural, and on-demand geometry
– instances

– skinning

I Geometry courtesy NVIDIA, Giorgio Luciano, and Epic Games

22

Ray Tracing Performance
Geometry

� overlapping bounding volumes
– partitioning vs. memory footprint

– e.g. foliage, fur, hair

� high valence vertices, e.g. triangle fans

� silhouettes, i.e. the cost of missing geometry
– similar for ray tracing distance fields

� parametric, procedural, and on-demand geometry
– instances

– skinning

I Geometry courtesy NVIDIA, Giorgio Luciano, and Epic Games

22

Ray Tracing Performance
Geometry

� overlapping bounding volumes
– partitioning vs. memory footprint

– e.g. foliage, fur, hair

� high valence vertices, e.g. triangle fans

� silhouettes, i.e. the cost of missing geometry
– similar for ray tracing distance fields

� parametric, procedural, and on-demand geometry
– instances

– skinning

I Geometry courtesy NVIDIA, Giorgio Luciano, and Epic Games

22

Ray Tracing Performance
Geometry

� overlapping bounding volumes
– partitioning vs. memory footprint

– e.g. foliage, fur, hair

� high valence vertices, e.g. triangle fans

� silhouettes, i.e. the cost of missing geometry
– similar for ray tracing distance fields

� parametric, procedural, and on-demand geometry
– instances

– skinning

I Geometry courtesy NVIDIA, Giorgio Luciano, and Epic Games

22

Ray Tracing Performance
Geometry and Shading

� geometry vs. α-maps or even procedural trimming and shading

I Inigo Quilez

23

https://iquilezles.org/index.html

Ray Tracing Performance
Shading

� incoherent texture access
– stochastic interpolation of bilinear texture interpolation

I Vectorized Production Path Tracing

� strict separation of material definition and rendering algorithms
– generic BSDF models

– baking BSDF parameters

I The Material Definition Language

I GI Next: Global Illumination for Production Rendering on GPUs

I Manuka: A Batch-Shading Architecture for Spectral Path Tracing in Movie Production

24

https://research.dreamworks.com/wp-content/uploads/2018/07/Vectorized_Production_Path_Tracing_DWA_2017.pdf
https://diglib.eg.org/handle/10.2312/mam20151195
https://dl.acm.org/citation.cfm?id=2927452
https://dl.acm.org/citation.cfm?id=3182161

Ray Tracing Performance
Shading

� incoherent texture access
– stochastic interpolation of bilinear texture interpolation

I Vectorized Production Path Tracing

� strict separation of material definition and rendering algorithms
– generic BSDF models

– baking BSDF parameters

I The Material Definition Language

I GI Next: Global Illumination for Production Rendering on GPUs

I Manuka: A Batch-Shading Architecture for Spectral Path Tracing in Movie Production

24

https://research.dreamworks.com/wp-content/uploads/2018/07/Vectorized_Production_Path_Tracing_DWA_2017.pdf
https://diglib.eg.org/handle/10.2312/mam20151195
https://dl.acm.org/citation.cfm?id=2927452
https://dl.acm.org/citation.cfm?id=3182161

Ray Tracing Performance
What happened since Breakpoint 2005?

� 512 x 384 pixels at 5-10 fps on a Pentium 4M, everything computed live from scratch

I To trace or not to trace - that is the question. State of the art in fast ray tracing (FaRT).

25

https://breakpoint.untergrund.net/2005/seminars.php

Ray Tracing Performance
Load balancing

� tile-based workload distribution

0

1

2 3

26

Ray Tracing Performance
Load balancing

� tile-based workload distribution

2

3

1

0

26

Ray Tracing Performance
Load balancing

� tile-based workload distribution

2

1

0

3

26

Ray Tracing Performance
Load balancing

� tile-based workload distribution

2

0

1 3

26

Ray Tracing Performance
Load balancing

� tile-based workload distribution

0 1

26

Ray Tracing Performance
Load balancing

� scanline-based workload distribution

27

Ray Tracing Performance
Load balancing

� non-uniform cost of pixels/samples
– not known a priori and thus cannot be taken into account to compute the optimal distribution of work

⇒ assign a fixed subset of the workload to each processor per frame

� non-uniform performance of processing units
– common in systems that combine GPUs from different generations with a CPU and in network clusters

⇒ based on performance measurements, adapt size of the subset between frames

28

Ray Tracing Performance
Load balancing

� non-uniform cost of pixels/samples
– not known a priori and thus cannot be taken into account to compute the optimal distribution of work

⇒ assign a fixed subset of the workload to each processor per frame

� non-uniform performance of processing units
– common in systems that combine GPUs from different generations with a CPU and in network clusters

⇒ based on performance measurements, adapt size of the subset between frames

28

Ray Tracing Performance
Load balancing

� non-uniform cost of pixels/samples
– not known a priori and thus cannot be taken into account to compute the optimal distribution of work

⇒ assign a fixed subset of the workload to each processor per frame

� non-uniform performance of processing units
– common in systems that combine GPUs from different generations with a CPU and in network clusters

⇒ based on performance measurements, adapt size of the subset between frames

28

Ray Tracing Performance
Load balancing

� adaptive striping with relative performance weights wk of 10%, 50%, 25%, and 15%

– note how the headlight pixels are distributed among processing units

I Ray Tracing Gems, Ch. 10

29

http://www.realtimerendering.com/raytracinggems/

Ray Tracing Performance
Load balancing

� adaptive striping with relative performance weights wk of 10%, 50%, 25%, and 15%

– note how the headlight pixels are distributed among processing units

I Ray Tracing Gems, Ch. 10

29

http://www.realtimerendering.com/raytracinggems/

The headlight challenge: Sequential singular chains

Are we done with Ray Tracing?
Not quite yet...

� mathematically meaningful level of detail

� separation of shading and geometry

� scalable parallel algorithms for singular chains

� and of course, ray tracing means sampling

31

Are we done with Ray Tracing?
Not quite yet...

� mathematically meaningful level of detail

� separation of shading and geometry

� scalable parallel algorithms for singular chains

� and of course, ray tracing means sampling

31

Are we done with Ray Tracing?
Ray tracing is here to stay

� 9:40 Acceleration Data Structure Hardware (and Software)
– Timo Viitanen, NVIDIA

� 10:15 State-of-the-Art and Challenges in Game Ray Tracing
– Colin Barré-Brisebois, SEED - Electronic Arts

� break

� 11:05 Reconstruction for Real-Time Path Tracing
– Christoph Schied, Facebook Reality Labs

� 11:40 From Raster to Rays in Games
– Morgan McGuire, NVIDIA

� check https://sites.google.com/view/arewedonewithraytracing

32

https://sites.google.com/view/arewedonewithraytracing

	Schedule
	Course web page at https://sites.google.com/view/arewedonewithraytracing

	From Rasterization to Ray Tracing
	Principles of Image Synthesis

	Ray Tracing
	How it started

	Ray Tracing Hardware
	1995: ART's RenderDrive: Ray Tracing Hardware from before the GPU
	2005: Ray Processing Unit
	2014: Imagination Technologies

	Auxiliary acceleration data structure
	Efficient culling
	Parallel bounding volume hierarchy (BVH) construction

	Ray Tracing
	Frameworks and application programming interfaces (API)

	Surface Representation
	Meshes
	Displacement or no displacement
	Floating point arithmetic
	Dealing with the ill-posed self intersection problem

	Ray Tracing Performance
	Amortizing and balancing the work of a frame
	Geometry
	Geometry and Shading
	Shading
	What happened since Breakpoint 2005?
	Load balancing

	Are we done with Ray Tracing?
	Not quite yet...
	Ray tracing is here to stay

