Are We Done With Ray Tracing?
State-of-the-Art and Challenges in Game Ray Tracing

Colin Barré-Brisebois, @ZigguratVertigo
SEED - Electronic Arts

Hello everyone and welcome. Thanks Alex for having me part of this course. My
name is Colin Barré-Brisebois, and | work at SEED. This talk is a snapshot of the
current state of the art in game raytracing, as well as a bunch of challenges the game
dev community is looking into, and might want some help from its friends in
academia. ©

SEED

In case you don’t know who SEED is, we’re a technical and creative research
division of Electronic Arts. We exist at EA as a cross-disciplinary team to deliver
and foster disruptive innovation, for our games and our players. We focus on long-
term applied research, but also try to stay relevant to the present by delivering
artifacts along the way. Actually you might've seen some of our work for the launch
of DirectX Raytracing, in collaboration with NVIDIA and Microsoft. We also have a
bunch of presentations and publications under our belt. Actually, more than 40. |
invite you to check our website, seed.ea.com.

How did we get here?

Let’s start with a question: how did a bunch of game developers started taking ray
tracing seriously, and considered it as a robust solution to ship in their game
products?

B Microsoft | DirectX Developer Blog productiogs . DevOps . Features - Languages . NET . More PC GAMER 1 ciosn aurmoriry on e came

A News Reviews Hardware Indie BestOf Magazine

HARDWARE
Announcing Microsoft DirectX Raytracing!

POPULAR Prime DayDeals Steam Changes BestPCGames Warframe N¢

@ What Microsoft's DirectX

D3D Team

Raytracmg means for gaming

If you just want to see what DirectX Raytracing can do for gaming, check out the
videos from Epic nark and EA, SEED. To leamn about the magic behind the
curtain, keep reading.

Physically based graphics rendering could simplify and improve the way
games look.

3D Graphics is a Lie

For the last thirty years, aimost all games have used the same general technique:
rasterization—to render images on screen. While the internal representation of the NVIDIA Developer Blog PEVROPERIEWE) I SWSCNE |} | WTORLOW VS
game world is maintained as three dimensions, iz,

two d mensions (the pl

GDC 2018 — DXR Unveiled

“Ray tracing is the future and ever will be”

NVIDIA DEVELC

It should be said that several folks have played with and delivered games that rely on
some aspects of ray tracing, so it's not a new topic. But one can’t deny that the world
of gamedev was taken by surprise at GDC 2018, when Microsoft announced DirectX
Ray Tracing. A lot of minds were blown, but also a lot of unanswered questions,
especially in terms of what is possible to achieve, at performance?

[Epic Games, NVIDIA, ILMxLAB]

/
/)

REMEDY & ‘ \"’r'hlighf @ Furun;:-MA;:K

At SEED we felt very lucky to have been involved early on with Microsoft and NVIDIA,
to see what could be done with this technology. The hybrid rendering pipeline we built
for PICA PICA, allowed us to create visuals that are augmented with ray tracing and

feature an almost path-traced quality look, at 2.5 samples per pixel. This was really
challenging to build, but extremely fun too!

There was also this really cool demo from
our Finnish friends at Remedy, featuring a bunch of ray tracing techniques in their
Northlight engine, including reflections, ambient occlusion, indirect lighting and ray
traced shadows. There was also this great demo from the folks at Futuremark.

v Real-Time Ray Tracing
In Software and Hardware

So real-time ray tracing was off to a great start! Especially since a few months later
NVIDIA announced its new architecture titled Turing, which we all know accelerates
ray tracing in hardware.

BATTLEFIELDAVA BATTLEFIELD V

BATTLEFIELD V

DICE’s Battlefield 5 was the first game that shipped with real-time hybrid ray tracing
using DXR, powered by EA’s Frostbite engine. It features really awesome hybrid ray-
traced reflections. Make sure to check our Jan and Johannes talk from GDC 20109.

[https:/idocs.unrealengine.com/en-US/Engine/Rendering/Ray Tracing/index.htmi]

Other big game engines like Unreal 4 also adopted ray tracing, and since release
4.22 ray tracing is now available for all to experiment with. They support both a hybrid
mode, and a path-tracer reference mode, to compare against ground truth.

[Courtesy of Epic Games, Goodbye Kansas, Deep Forest Films]

[Courtesy of Epic Games, Goodbye Kansas, Deep Forest Films]

[Tatarchuk 2019, Courtesy of Unity Technologies]

Left: real-world footage. Right rendered with Unity

[Tatarchuk 2019, Courtesy of Unity Technologies]

In this film they rendered at interactive rates on an RTX 2080Tl in 4K [it was a 28M
poly car], blurring the line between what is real and what is rendered.

Left: real-world footage. Right rendered with Unity

[Tatarchuk 2019, Courtesy of Unity Technologies]

This video shows off some of the effect they support, such as global reflections,
multi-layer transparency with refraction, area lights, shadows, ambient occlusion
and so much more

14

Left: real-world footage. Right rendered with Unity

[Tatarchuk 2019, Courtesy of Unity Technologies]

And here they placed a CG car into the filmed scene with the real-world car.
Unless you look at subtitles, it's hard to tell which one is real.

BOooEO8

“‘”?i :

- ———
—— =

REMEDY &
n®rthlight

B RTX

s
=N

GEFORCE™ | - -TCMB RAIDER

RTX

NVIDIA.

[Christophe Schied, NVIDIA Lightspeed Studios™]

e A bunch of games have also announced support for ray tracing, including Control,
Metro Exodus, and Shadow of The Tombraider.

e Lately, Quake 2 was modified by Christoph Schied and features real-time path
tracing, with reflections, refraction, shadows, ambient occlusion and GlI.

e That's not the quake 2 | remember, and back then it looked awesome.

e This version just looks amazing. Mind completely blown.

And many More...

Assetto Corsa - JX3
Atomic Heart « Mech Warrior V: Mercenaries
Call of Duty: Modern Warfare « Project DH
Cyberpunk 2077 - Stay in the Light
Enlisted - Vampire: The Masquerade — Bloodlines 2
Justice - Watch Dogs: Legion
Wolfenstein: Youngblood

Just the beginning of real-time ray tracing making its way into game products

We're in for a great ride, and the work is not done! This is super exciting! ©

And this is just the beginning of real-time ray tracing making its way into our products.
So no, we're not done with ray tracing. We're in for a great ride, and we actually have
guite a lot of work to do, which is super exciting!

Future Consoles

Holiday 2020

- Microsoft: E3 2019 Keynote, June 9t 2019,
- SONY: What to Expect From SONY’s Next-Gen PlayStation, Wired Magazine, April 16" 2019,

e Ohyeah, and let’s not forget that two major console makers have announced
support for ray tracing in their next iteration.
e S0 awesome!

State of the Art

Hybrid Rend

Deferred shading Direct shadows ‘ Reflections

(raster) (ray trace or raster) (v trace) (ray trace or

-
Do

Global lllumination Ambient occlusion Transparency & Translucency Post processing

and ray trace) (ray trace or) (ray trace and) ()

e The common denominator of these products is that they are mostly all built with a
hybrid rendering pipeline that takes advantage of the best of rasterization, compute
and raytracing

e The idea is that some techniques are built by chaining some stages after another,
because that stage is best at doing what it does. For example, chaining ray tracing
after generating relevant info stored in a UAV from a compute shader. Or grabbing
all the hits from ray tracing, and shading them in a compute shader.

e To do this most have a standard deferred renderer with compute-based lighting,
and a pretty standard post-fx stack.

e Parts of the pipeline are injected with ray tracing.

Reflections

Let’s first talk about reflections!

21

LN

"It Just Works": Ray-Traced Reflections in 'Battlefield V'’ [Deligiannis‘2019]

Like | said Battlefield shipped with awesome reflections.
This short video is an exert from Jan and Johannes’ presentation, and really
shows how much proper reflections add to a scene

Reﬂecﬂons

®
e

K""l'"

e The currentidea with real-time ray-traced reflections is that we need more than 1
ray per pixel to fully capture the range of rough-to-smooth materials that a
physically-based pipeline can describe.

e This becomes even more complex with multi-layer materials, even for the simple
case like a material that has a base layer, and a finish.

e Perfectly sharp reflections are somewhat easy. The fun really starts when
roughness goes up, or when surfaces become smooth.

Launch rays from G-Buffer

Trace at half resolution

Supports arbitrary normal & roughness

Extensive spacial & temporal reconstruction

PROJECT //PICA PICA
SEED//SEARCH FOR EXTRAORDINARY EXPERIENCES DIVISIONS

e In the context of a hybrid pipeline, reflections rays are launched from the g-buffer

e You can trace in full resolution, but for performance reason people have doneiit in
half-resolution, which gives you one reflection ray for every 4 pixels.

e Then at the hit point, shadows will typically be sampled with another ray. This
totals to ¥ ray per pixel. Alternatively you can sample your existing shadow maps,
if don’t want to launch a recursive rays, for performance reasons.

e If you want to support varying roughness and arbitrary normals, you will have to do
some amount of reconstruction and filtering.

e Some approaches have a maximal roughness level, so you will have to find
another source, like prefiltered environment maps. You can also combine this with
screen space reflections for performance.

Reflection Pipeline ‘

N2 NG)

Importance Screen-space ,
sampling reflection Raytracing Envmap gap fill

Temporal Spatial

Bilateral cleanup ; .
accumulation reconstruction

e Here’s a high-level summary of a hybrid ray tracing pipeline for reflections.

e First you generate rays via BRDF importance sampling, which gives you rays that
follow the properties of materials.

e Scene intersection can then be done either by screen-space raymarching or ray
tracing. In the video | just showed we only ray trace.

e Once intersections are found, you reconstruct the reflected image. This is either
done in-place, or separately forimproved coherency. I'll talk about this in a few
slides.

e Your upsampling kernel reuses ray hit information across pixels when upsampling
the image to full-resolution.

e Often a last-chance noise cleanup in the form of a cross-bilateral filter runs as the
last step.

P % Importance
avv Ra\/ Trace OUtDUt " TealeEe sampling Ray Tracing

Looking only at the reflections, this is the raw results we get at 1 reflection ray
every 4 pixels.

Spatial

tialReconstruction «f R e
’Q‘*\ 5 : \ % _— r?econstruction

e And this is what the spatial filter does with it. The output is still noisy, but it is
now full rez, and it gives us variance reduction similar to actually shooting 16
rays per pixel.

e Every full resolution pixel basically uses a set of ray hits to reconstruct its
reflection.

e It's a fancy weighted average where the local pixel’'s BRDF is used to weigh
contributions.

Temporal

lemporal Accumulation o
\ - : ' \\ o= accumulation

e Followed by temporal accumulation

Secondary bilateral filter
Only run where variance high
Variance from spatial reconstruction
Temporally smoothed with hysteresis = 0.5

Much dumber than reconstruction
Introduces blur
Variable kernel width, sample count

And finally by a much simpler bilateral filter that removes up some of the
remaining noise.

It overblurs a bit, but it's needed for some of the rougher reflections.
Compared to SSR, ray tracing is trickier because we can’t cheat with a blurred
version of the screen for pre-filtered radiance

There’s much more noise compared to SSR, so our filters need to be more
aggressive too.

To prevent it from overblurring, the variance estimate from the spatial
reconstruction pass is used to scale down the bilateral kernel size and sample
count

+Bilatefal cleanup

\\ -~ Bilateral cleanup

And then of course we sprinkle some TAA on top, because TAA "fixes
everything” and the remaining noise, and we get a pretty clean image.
Considering this comes from one quarter rays per pixel per frame, and works
with dynamic camera and object movement, it's quite awesome what can be
done when reusing spatial and temporal data

e Going back to the raw output, for comparison

- =] —F
/

4

BRPAN |~

LA T
Hybrld RT - SSR

[Deligiannis 2019]

As mentioned, you can also combine screen space reflections with ray tracing. This is
what Jan and Johannes from DICE have presented back at GDC, and featured in
Battlefield 5.

R0y

Hybrid RT & SSR v e &

- Figure out which pixels can rely on

screen space results
= Otherwise, trace in world

SEEENEED NUNEAEGE

RAY B!NNING "It Just Works":

- Performance [Deligiannis 2019] el Ray-Traced

: ; Reflections in
= Variable Rate Tracing . ‘Battlefield V'
[Deligiannis 2019]

. More rays for water & grazing angles
Ray Binning

. .;
Screen |

Ray Spatial Temporal Image

i Binning |t :;‘;f': > B > > L > i Fiter gl Filter

e The general idea when blending between SSR and ray tracing is that one has to
figure out which pixels can rely on screen-space results. If that’s the case, you can
use that result. Otherwise you trace in the world.

e The challenge here is achieving that fine balance and aligning results from screen
space, with results from world space tracing.

e Once done the results can look great, as shown here. Here’s an overview of their
whole pipeline, with some performance numbers on a 2080TI. This should give you
a good idea of some of the steps needed to achieve this.

e Additionally the folks at DICE have presented an approach that tweaking the ray
count shows significant performance improvement, and binning the rays.

e Red high ray count
e Blue low ray count
e Yellow in Between

Managing Coherency
Coherency is key for RTRT performance
- adjacent work performing

similar operations & memory access
Camera rays, texture-space shading

- thrash caches, kills
performance
Reflection, shadows, refraction, Monte
Carlo

You're on your own: hardware won't take

care of it for you

e Managing coherency is key for real-time ray tracing performance

e You will get some adjacent rays that perform similar operations and memory
accesses, and those will perform well, while some might trash cache and
affect performance

e Depending on what techniques you implement, you will have to keep this in
mind, as the current hardware won'’t do this for you.

e Can’t expect out-of-core ray sorting and coherency construction from total
mess. Still need to tackle coherency upfrontin the technigues & algorithms we
develop.

Managing Coherency

Inspiration from Offline
Sort large out-of-core ray

~

Secondary . Rays

batches & ray-hits for rays A n
i N Compression & binnin
deferred sharing — 4(p g)
A

Directional bins &

Ready stack

A few options: [Aalto2018]

[Benyoub2019]

[Deligiannis 2019]

« Use shadow maps for

reflection shadows _(Decompression & sorting)
Split ray tracing and shading o
Group shading per material Emission splats batches
Limit tracing on roughness

Secondary rays

Sorted Deferred Shading for Production Path Tracing [Eisenacher 2013]

e Here we can take inspiration from offline, and this is what several have
demonstrated.

e You can use shadow maps for reflection shadows, and therefore not do
recursive rays.

e You can bin rays, and split tracing and shading

You can group shading per material

e And also limit tracing based on roughness.

Bin 3011 Bin 3012 8in 30
1000 1002 1002

Ray Binning

Group rays that are directionally aligned to
maximize coherency [Deligiannis 2019]
[Benyoub 2019] [Majercik 2019]

Split the screen in (32x32) tiles "It Just Works”: Ray-Traced Reflections in
Generate (random) rays ‘Battlefield ' [Deligiannis 2019]
Sort rays in octahedral space for ray
direction binning

For each bin, launch rays

Gather hit results in G-Buffer
Shade in Compute Shader

A Survey of Efficient Representations for
Independent Unit Vectors [Cigolle 2014]

e Speaking of managing coherency, grouping rays that are directionally aligned to
maximize coherency

e The general idea here is to split the screen in tiles, and sort randomly generated
rays in some kind of space that allows you to bucket them by direction.

e Octahedral space is perfect for this.

e Then, for each bin you launch the rays and gather the hits, and output to a UAV or
Gbuffer

e You can then light and shade those hits results in a compute shader, which gives
you better control over SIMD usage.

Ambient Occlusion

e Another technique that maps and scales well to real-time ray tracing is of course
ambient occlusion.

Being the integral of the visibility function over the hemisphere, we get more
grounded results because all the random directions used during sampling actually
end up in the scene, unlike with screen space techniques where rays can go
outside the screen or behind geometry, where the hitpoint is not visible.

Just like in the literature, this is done by doing cosine hemispherical sampling
around the normal.

Rays are typically launched from the gbuffer, and the miss shader is used to figure
out if we've hit something

You can launch more than 1 ray per frame, but if you limit the ray distance distance
even with one ray per frame you should get some nice gradients

You'll most likely need to filter and reconstruct, as AO can be a bit noisy.

Remedy’'s Ray-traced Ambient Occlusion in Northlight Engine [Aalto2018]

Some really great results from the folks at Remedy, in the Northlight Engine

L1 8 ¢ V/l/l/j/ A0

And if we compare with screen space AO, we can totally see that ray traced AO takes
it to another level

Ray-traced AO

Overall it looks so much more grounded!

Shadows

e Raytraced shadows is obviously another technique where ray tracing shines.
Those are great because they perfectly ground objects in the scene.

[https:/idocs.unrealengine.com/en-US/Engine/Rendering/Ray Tracing/index.htmi]

Here a scene from Unreal Engine 4 that shows how perfect shadows really help in
making a visually-convincing and cohesive image.

Launch ray towards the light

Ray misses = Notin shadow
Soft Shadows?

Random cone directions. Width drives penumbra

-l .

e This is not too complicated to implement. Just launch a ray towards the light, and if
the ray misses you're not in shadow

e Hard shadows are great... but soft shadows are definitely better to convey scale
and more representative of the real world

e This can be implemented by sampling random directions in a cone towards the
light, treating it like an area light

e The wider the cone angle, the softer shadows get but the more noise you'll get, so
we have to filter it

e You can launch more than one ray, but will still require some filtering

Hard Raytraced Shadows Soft Raytraced Shadows (Unfiltered) Soft Raytraced Shadows (Filtered)

e Let's zoom on some details. We get nice contact hardening and it just works.
e But much better can be done here.

Combining Analytic Direct lllumination and Stochastic Shadows [Heitz2018]

e And to this, Heitz, Hill and McGuire have demonstrated an approach that combined
analytic direct illumination and stochastic shadows.

e This approach is also implemented in Unity, their soft area light shadows.

e In their paper, they propose a ratio estimator that allows correctly combining
analytic illumination techniques with stochastic raytraced shadows.

-

Combining Analytic Direct lllumination and Stochastic Shadows [Heitz2018]

e By splitting shadowed illumination in two parts -- the analytical part and the
stochastic part -- their method demonstrates how one can obtain sharp and noise-
free shading in the unshadowed part of the image, analytically, and visually-
convincing shadows via stochastic ray tracing.

e The advantage of stochastic evaluation only where needed is that the final result
only has noise in the shadows, whereas the rest is handled analytically.

e They also denoise shadows separately from illumination, so high-frequency
shading details is kept. This technique is really awesome.

Transparent
Shadows

Shadows from transparency
Hard to get right with raster [McGuirel7]

Let's flip it around
Trace towards light, like opaque
Accumulate absorption
Product of colors
Thin film approximation
Density absorption easy extension
Can also be soft!

e Opaque shadows are cool, but transparent shadows for thick homogenous
mediums are even better!

e Transparency is a hard problem in real-time graphics, but with ray tracing new
alternatives are possible

e In our case we replace the regular shadow tracing code with a recursive ray trace
through transparent surfaces

e As the light travels through the medium we accumulate absorption, multiplicatively

e Our currentimplementation treats this as a thin film approximation, where we
assume all the color is on the surface, for performance

e Just like our opaque shadows, transparent shadows can also be soft! We filter
them with a similar SVGF-inspired filter.

Transparent Shadows (1/)
Keep tracing until

This is a simple illustration of what happens

For any surface that needs shadowing, we shoot a ray towards the light

If we hit an opaque surface, or if we miss everything, we can stop

If we hit a transparent surface however, we accumulate absorption based on the
albedo of the object

e We keep doing this until 1. all light is absorbed, or 2. We miss in in the trace. 2. We
hit an opaque surface

Translucent Shadows (Soft)

e This is not caustics, as we ignore caustic effects with out approach

e We do take Fresnel into account on the boundaries though

e |t is also important to note that the regular Schlick approximation falls apart when
the IOR on the incident side of the medium is higher than the far side

e \We use Total-Internal-Reflection Fresnel, and filter the results with our tweaked
SVGF that we mentioned in previous talks

Unfiltered results on the left, and filtered results on the right.

r Transparent Shadows (hard)

%

Once again, and notice how the colors blend together as the light travels inside the
glass.

rTransparent Shadows (soft)

4

Same thing here, but softly filtered.

This allows us to fix super important issues like these, where the shadow of the
pen’s ink tube clearly shows from the light travelling in the plastic casing.

Transparency & Translucency

Transparency & Translucency

Raytracing enables accurate light scattering

Transparency
Order-independent (OIT)
Multiple index-of-refraction transitions
Variable roughness, refractions and absorption

Translucency
Light scattering inside homogeneous medium

We do this in texture-space
Handle view-dependent terms & dynamic changes to
the environment Texture-Space Glass and Translucency)

e Ray tracing enables accurate light scattering for both transparency and subsurface
translucency

e It's now possible to properly represent order independent transparency, variable
roughness, IOR transitions as well as absorption

e For PICA PICA we did this in texture space

Translucency Breakdown

- For every valid position & normal

ar,‘?‘?«'u 1“«]"(‘
6D e

JEER] | &P

~
A

- 25rp

Here’s a breakdown of how we compute translucency

Translucency Breakdown

For every valid position & normal
Flip normal and push (ray) inside

Here’s a breakdown of how we compute translucency

Translucency Breakdown

For every valid position & normal
Flip normal and push (ray) inside

Launch rays in uniform sphere dist.
(Importance-sample phase function)

Here’s a breakdown of how we compute translucency

Translucency Breakdown

For every valid position & normal
Flip normal and push (ray) inside

Launch rays in uniform sphere dist.
(Importance-sample phase function)

Compute lighting at intersection

Here’s a breakdown of how we compute translucency

Translucency Breakdown

For every valid position & normal
Flip normal and push (ray) inside

Launch rays in uniform sphere dist.
(Importance-sample phase function)

Compute lighting at intersection
Gather all samples

Here’s a breakdown of how we compute translucency

Translucency Breakdown

For every valid position & normal
Flip normal and push (ray) inside

Launch rays in uniform sphere dist.
(Importance-sample phase function)

Compute lighting at intersection
Gather all samples
Update value in texture

Here’s a breakdown of how we compute translucency

This is the kind of results we get. At GDC we talked about how we interpolate
results to make them reactive, so check out the slides on our website for additional
details.

Works for clear and rough glass

Clear
No filtering required

Rough

Microfacet Models for Refraction
through Rough Surfaces
[Walter2007]

More samples + temporal filtering

Apply phase function & BTDF

e Transparency on the other hand works both clear and rough glass

e For clear glass no filtering is required

e Forrough glass, we use Walter’'s parametrization and importance sample GGX
roughness

e For super rough, more samples are needed to get rid of noise, but one can also
use temporal filtering. Easier to do in texture-space!

e The examples here show a very simple material model for glass, but something
more complex can be done

Rough [ransparency.

e And so transparent surfaces, you need a model that can handle refraction as well
as reflection

e This is what it looks like with Walter

e Walter handles the rough light interactions on air to object boundaries, but also
provides physically accurate solutions for any surface-to-surface light transport

e We importance sample the GGX distribution, using this method, for both reflected
and refracted rays on internal and external boundaries

e This is obviously more expensive, but still manageable and quite nice. We feel like
we can optimize it more.

e Naive Implementation @ 512x512 in texture space is 3.5ms on Turing

Many Lights

O alle d g O 00Se
A
eléera @) e-D4d =0 lle ®) 777771
amera-oriented acceleratio e o d o
) . ® . O g 0 B oub 20
De OubD d(a
B D, 019
» O O dl plane Iig ellgla PER
POrta RS d D g
», ») Y
Dyna a g ampling for Rea e Ra 0
®
a e orea 0
ocha g el 20

A lot of the things I've just discussed handle a limited number of lights.

While one can decide to process all the lights, sometimes that’s not an option, for
performance reasons

A few approaches are possible here.

Unity relies on a camera oriented acceleration structure, like the image on the right.
We a hit is shaded, the light of lights from where that hit resides is queried, so you
don’t end up sampling the whole scene. Battlefield 5 relies on a horizontal plane
light list.

The first kind relies on acceleration structures to tell a pixel which lights are to be
sampled. This is common for deferred and clustered shading.

The second kind, are importance-sampling based.

Recently Moreau, Phar and Clarbeg have released a paper at HPG a few weeks
ago. Their paper describes a hierarchical light sampling data structure based on a
two-level BVH, that enables interactive direct lighting from 10,000s emissive
triangles. This enables a future where real-time scenes could be lit with only
emissive meshes, which is really awesome. | really recommend checking it out!

Particles? ‘}

What about particles? Having VFX support for ray tracing is key to make sure
explosions appear in the upside down as they appear in the scene.

72

[Deligiannis 2019]

The problem is that particles are built as billboards, and expected to be facing the
camera. That doesn’t work in reflections.

Particles

Particles have to be ray-aligned
Not perfect since VFX are often designed
assuming view-aligned particles

Battlefield V [Deligiannis 2019]
Shoot ray in Opaque TLAS
Shoot again in Particle TLAS
Limit length from opaque hit
Blend particles with opaque hit

Rotate odd particles 90 deg. around Y

[Deligiannis 2019]

e The way the folks at DICE have solved this is by orienting the particles towards the
ray.

e The general scheme is to maintain two top level acceleration structures: one for
opaque geometry, and one for particles

e You first shoot a ray in the opaque one, and if there’s a hit you store that length

e You then launch another ray, this time in the particle acceleration structure, and
limit that ray length from the opaque hit length

e You then blend particles in the scene accordingly

e Another trick that seems to have worked for them is to rotate odd particles by 90
degrees.

74

So again without aligning particles towards the ray

[Deligiannis 2019]

75

[Deligiannis 2019]

And here’s the final result.
It's not perfect, but can work very well for your case as well. Especially for fast
explosions and smoke.

Other Things
(yet still super important!)

Ray-traced Gl

Ray-traced approaches making their way:
Surfels [Stachowiak 2018]
Grid [Aalto 2018]
Probes [Majercik 2019]

e We've also seen a bunch of techniques benéefit of the ray tracing hardware
capabilities

e These techniques rely on various caching mechanisms to accumulate results over
multiple frames, and accelerate sampling

e Could do a full talk on this, but that will have to be for some other day.

Culling

Can't rely on Frustum Culling,
since rays are in world space

In the case one can't have all ey
objects in the BVH, have to g = o @
find new culling heuristic Sl Tkl el :

R

//,/ \\\
Projected bounding sphere / \
[Deligiannis 2019] e\

"It Just Works”: Ray-Traced Reflections in
'Battlefield V'’ [Deligiannis 2019]

e Culling is another interesting one, since you can’t rely on frustum culling anymore.
For example, you can see reflections from objects behind you

e Also in the case where you can’t have all your objects in the BVH, you have to find
a new heuristic

e Can'tjust use distance, as you might want some far away buildings in reflections

e The DICE guys have relied on a projected bounding sphere, which seems to do
the job

Texture LOD

No automatic texture LOD with ray tracing
Inherent of the rasterization pipeline: pixel quad derivatives

In Ray Tracing Gems [Akenine-Moller 2019]
Ray Differentials [Igehy 1999] vs Ray Cones [Amanatides 1984]
Heuristic based on triangle properties, a curvature estimate,
distance, and incident angle
Similar quality to ray differentials with single trilinear lookup. Single
value stored in the payload

Barely scratched the surface — still work to do!
Still some needed improvements. Come get inspired at the talk! ©
Texture Level of Detail Strategies for Real-Time Ray Tracing. @Nf
In Ray Tracing Gems 1.1 Session Room: 501AB Wed @ 2PM N /
Ray Cones

e Texture LOD is another interesting one: there is no automatic texture mip
selection with ray tracing, because pixel quad derivatives exist only for
rasterization

e People have often relied on ray differentials, but it has some performance
implications

e Inray tracing gems, we discuss an alternative technique based on cones.

I'll talk about this on Wednesday at 2PM

e Butyou'll see thatit’s not perfect, and we still have some things to improve

Performance GovodPractices

Minimize recursion: favor fire-and-forget / tail-recursive techniques

Consider manual scheduling (sorting/binning) [Aalto 2018] [Deligiannis 2019]

Minimize/pack payload and attributes

Optimize your any-hit shaders (or don’t use them at all)

BLAS build & update on an async queue: define update vs rebuild metric for
your case, over multiple frames, overlapped with raster

TLAS: Build instead of Update & don’t include the skybox (do in Miss Shader)

More [Dunn 2019]

e A bunch of performance good practices have emerged from the initial group of
products that have adopted real-time ray tracing.

e Some are obvious, and some are based on limitations of the current hardware and
APl implementations

e Alot of itis case by case for your game, but the following should be generally good
advice for now

e Especially minimizing recursion and adopting fire-and-forget tail-recursive
techniques

e And building your own metric for BVH update vs refit

e There’s this great article by Alex Dunn from NVIDIA, and | really recommend
checking it out.

Challenges

Let’s briefly touch on some open challenges for real-time ray tracing and video
games, where you could possibly have an impact as a researcher.

Game Constraints

!x\\ NN l__—_/

Need robust techniques

for video games:
Many animated characters
Dynamic environments
Moving foliage & vegetation
_ ; Massive open worlds
“# - : - User generated content
User created experiences

Complex & La e Environment

e In the context of a game we need to support many animated characters, lots of
foliage, potentially in a massive open world that evolves

e Also possibly some user generated content and created experiences that you
might not able to process on the fly, without any art clean-up

e Techniques have to be robust, and constraints well exposed in publications.
This last one really really helps!

Transparency

Transparency is far from being solved!
Glass
Clear/rough + filtered + shadowed
Particles & Volumetric Effects
Can use miss shader to update volumes / clipmaps
Ray marching in hit shaders?
Non-trivial blending & filtering

PICA PICA: texture-space OIT with

refractions and scattering
Not perfect, but one step closer

-

Transparency in the Maxwell Renderer

Denoising techniques don’t work so well with transparency (and 1-2 spp)

e Transparency. Even with real-time raytracing, this is definitely not solved.

e Whenone looks at the images on the right... we still have work to do to reach
that quality level in real-time, at 1 sample per pixel

e Actually a lot of transparent effects require non-trivial blending with the rest of
the scene, and non-trivial filtering.

e It's also a challenge when it comes to blending volumetrics, particles and fog
with other effects....

e Fortransparency we came up with a texture-space OIT technique, but you
have to deal with temporal issues.

e The thingis, with 1 sample per pixel, and throwing some Monte Carlo in there,
most denoising techniques generally don’t work so well with transparency or
partial coverage

Partial Coverage

Foliage
Can still do alpha test (i.e.: any-hit)
Animated becomes a real problem

)

Defocus effects such as motion blur
and depth of field are still intractable

Need partial coverage denoising
@ 1-2 spp

Disney / Pixar

e Same thing if we talk about partial coverage

e We can still do alpha testing in the hit shaders, and could use some pre-
filtering. But as soon as it starts moving, it can become a problem both for
performance and visually.

e If you're building a jungle or a scene like PBRT, or the forest on the island
from Moana, it’s a different story than just a tree here and there.

e Some folks have even considered not using any-hit shaders, and modeled
leaves with triangles. Can work too depending on your case.

e Other types of partial coverage effects that get affected such as DOF and
motion blur also fall into this trap

e And so, current denoising techniques don’t work well with this kind of partial
visibility in real-time. And often this is because we only have 1 sample per
pixel and assume everything is opaque.

Future Ray Tracing Research

Literature has to adjust to real-time game ray tracing constraints
Games = budgeted amount rays/frame, rays/pixel, fixed frame times & memory budgets
Games > Light transport caches: surfels, voxels, lightmaps

Moving towards decoupled shading & variable rate ray tracing
Texture-space Techniques
Caching of materials and partial solutions
Split the BRDF: view vs view-independent terms

Perf R&D: Efficient sampling / integration strategies & reconstruction filtering

e Interms of future ray tracing research, if we talk about literature, literature has
to adjust itself to real-time constraints, and not just “correct raytracing”.

e The metrics listed here become important for papers to get adopted by games

e Ray tracing also funnels exploration of texture space techniques, and variable
rate ray tracing

e Wesstill have a bunch of work to do on sampling and integration strategies,
and reconstruction

Global lllumination

Open problem even in offline rendering
Variance still too high
Can reduce frequency
Prefiltering, path-space filtering
Denoising & reconstruction
Pinhole Gl & lighting is not solved

Incoherent shading = intractable performance

Have to resort to caching to amortize shading
PICA PICA: caching of Gl via surfels
Issues: only spawn surfels from what you see

Need to solve Gl for user-generated content >

e Glis another good one: Real-time raytracing doesn't completely solve real-
time Gl

e It’s still a problem for offline, where scenes can take hours to resolve, with
difficult paths with caustics for example.

e There are many workarounds in offline, but they don’t necessarily map to real-
time.

e Forreal-time we absolutely have to resort to caching, like techniques |
mentioned a few slides ago. Some techniques work better than others,
especially if artists don’t have to do manual UV unwraps for lightmaps or proxy
geometry for Gl.

e Wealso need to solve Gl for user-generated content, where you can’t expect
any upfront parametrization

e So even with RTRT, we’re definitely not done here

Sparse BVH Tracing

We assume ray-triangle intersection as the end-all-be-all, but whatif we

stopped the ray higher up the tree?
Treat AABBs like voxels
Akin to beam tracing [Heckbert 1984], or “ray bundles”

Explore algorithms that would benefit from broad tracing
Global lllumination Using Ray-Bundle Tracing {Tokuyoshi 2012]
Dynamic Diffuse Global lllumination with Ray-Traced Irradiance Fields [Majercik 2019]
Cone Tracing [Crassin 2011]
Sound Propagation

Accelerationis currently ray-tri & ray-AABB
Feels like it’s all here.
Expose trace “LOD” controls to developersat APl level

e The current model for real-time ray tracing also assumes that ray-triangle
intersection is the end-all-be-all, but what if we stopped the ray higher up the
tree

e This could enable new types of tracing, like beam tracing or ray bundles

e Could unlock a family of algorithms that require broad tracing, in real-time

e Right now, it feels like it's all there, and one just needs to expose this as a
LOD control for developers.

Evolving Engines for Hybrid RT

Bindless

Visibility-Buffer

Texture-space Ray Tracing

Raster still shows some advantages for

primary opaque visibility over RT

Scene Management for RT (

Shader Compilation [Deligiannis 2019] There | Fixed It

e Right now it might be a bit duct-tapey for the first round of products, but we
also have a bunch of work on the engine side to evolve our engines to
maximize this hybrid pipeline idea

e Runtime is important, but also pipeline related challenges around the massive
number of shader permutation engines generate

Summary.

Real-time ray tracing brings the game to another level

Still have a lots of work to dotobridge offline adal—time

DXR provides a playground whereé research.and edQ/S&n

collaborate even more, and solve challenges toget

.\

Thank Youl!

- SEED

- Alex Keller (NVIDIA)

- Natasha Tatarchuk (Unity Technologies)
- Marcus Wassmer (Epic Games)
- Jan Schmid and Johannes Dgligiannis (DICE)

g

- Jon Greenberg (for BVH & beaf tracing discussions)

References

acing in Remedy’s Northlight Engine”, onli

—
Amanatides, John. “Ray Tracing with Cones”, X -

] Heckbert, Paul and Hanrahan, Pat. Beam Tracing Polygonal Objects”,

y 1999] Igehy, Homan. “Tracing Ray Differentials”,

1el, Tobias et

hristoph

Engin

SEED // SEARCH FOR EXTRAORDINARY EXPERIENCES DIVISION

STOCKHOLM - LOS ANGELES — MONTREAL - REMOTE

SEED.EA.COM

WE'RE HIRING!

On one last note, we would like to point out that we’re hiring for multiple positions at
SEED. If you’re interested, please give us a shout!

