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Path Tracing

Happy if we can actually even afford n=1

Path Tracing '
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Main challenges

 Better sampling — less noise

 Reconstruction filters (Denoising)
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Stochastic Ray Tracing vs. Path Tracing

 Current games: stochastic ray tracing

« Stochastically sample individual effects (e.g. BRDF or area light)
* Direct illumination at bounces is usually noise-free! (no need to denoise mirrors)

* Path tracing stochastically samples everything

* Light selection
* Area lights
* Indirect Bounces

* In this talk: general reconstruction filters for full path tracing in real-time
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No stochastic sampling of primary visibility
— Nearby surfaces close in screen-space
— G-Buffer noise-free



Albedo demodulation

ddulate
Ibedo

Demodulate Reconstruction

Path Tracer Albedo Filter

* Essentially used by all of the reconstruction filters
* Much easier to filter “untextured” illumination

* Problems:

* Fresnel term
* Layered materials
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Combining Analytic Direct lllumination and Stochastic Shadows

Eric Heitz Stephen Hill Morgan McGuire
Unity Technologies Lucasfilm NVIDIA
Should be noise-free!
¥
unshadowed illumination illumination-weighted shadow our result offline reference
U = [ BRDF x Ligt v BEDF % Light < Visibilily UxW BRDF x Light x Visibility
J —/) x Light = _[;ZBRDFxLighI Fex /0 x Light x Visibility

A —

e

analytic (real-time) stochastic denoised

 Can be thought of as better albedo demodulation

 Cannot trivially be used with stochastic light selection
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Wavelet-based reconstruction filters
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Edge-Avoiding A-Trous Wavelet Transform for fast Global
INlumination Filtering

e Fast

Holger Dammertz, Daniel Sewtz, Johannes Hanika, Hendrik P.A. Lensch

Ulm University, Germany d SO mead rt | fa Cts
N

* Requires parameter tweaking

Figure 1: Using our edge-avoiding A-Trous wavelet transform we filter highly noisy path traced images at interactive rates resulting
in smooth indirect illumination while retaining important detail like sharp shadows and hard edges. The images show the (noisy) input
into our algorithim and next to them the output we compute.

Abstract

We present a fast and simple filtering method designed for ray traced Monte Carlo global illumination images
which achieves real-time rates. Even on modern hardware only few samples can be traced for interactive appli-
cations, resulting in very noisy outputs. Taking advantage of the fact that Monte Carlo computes hemispherical
integrals that may be very similar for neighboring pixels we derive a fast edge-avoiding filtering method in screen
space using the A-Trous wavelet transform that operates on the full noisy image and produces a result that is close
to a solution with many more samples per pixel.
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Edge-Avoiding A-Trous Wavelet Transform for fast Global
INlumination Filtering

Holger Dammertz, Daniel Sewtz, Johannes Hanika, Hendrik P.A. Lensch

Ulm University, Germany

Figure 1: Using our edge-avoiding A-Trous wavelet transform we filter highly noisy path traced images at interactive rates resulting
in smooth indirect illumination while retaining important detail like sharp shadows and hard edges. The images show the (noisy) input
into our algorithim and next to them the output we compute.

Abstract

We present a fast and simple filtering method designed for ray traced Monte Carlo global illumination images
which achieves real-time rates. Even on modern hardware only few samples can be traced for interactive appli-
cations, resulting in very noisy outputs. Taking advantage of the fact that Monte Carlo computes hemispherical
integrals that may be very similar for neighboring pixels we derive a fast edge-avoiding filtering method in screen
space using the A-Trous wavelet transform that operates on the full noisy image and produces a result that is close
to a solution with many more samples per pixel.

e Fast
* Some artifacts

* Requires parameter tweaking

) qseq @) -w(p, q) - ci(q
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Edge-Avoiding A-Trous Wavelet Transform for fast Global
INlumination Filtering

Holger Dammertz, Daniel Sewtz, Johannes Hanika, Hendrik P.A. Lensch

Ulm University, Germany

Figure 1: Using our edge-avoiding A-Trous wavelet transform we filter highly noisy path traced images at interactive rates resulting

in smooth indirect illumination while retaining important detail like sharp shadows and hard edges. The images show the (noisy) input
into our algorithim and next to them the output we compute.

Abstract

We present a fast and simple filtering method designed for ray traced Monte Carlo global illumination images
which achieves real-time rates. Even on modern hardware only few samples can be traced for interactive appli-
cations, resulting in very noisy outputs. Taking advantage of the fact that Monte Carlo computes hemispherical
integrals that may be very similar for neighboring pixels we derive a fast edge-avoiding filtering method in screen
space using the A-Trous wavelet transform that operates on the full noisy image and produces a result that is close
to a solution with many more samples per pixel.

OO0 @

e Fast
* Some artifacts

* Requires parameter tweaking
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Edge-stopping functions S o h@) w(p,q) !} é(q)
Ci+1(p) — quﬂ h(q) ‘ rw(p, q)

Input No edge-stopping RT-Buffer + Normal + Position

[Dammertz et al. 2010]
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Builds on Edge-avoiding A-trous Wavelets

* Improved geometric edge-stopping functions
» Adapt automatically

* Hierarchical noise estimation

* Integrates temporal filtering
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Spatiotemporal Variance-Guided Filtering: Real-Time
Reconstruction for Path-Traced Global Illumination

Christoph Schied Anton Kaplanyan Chakravarty R. Alla Chaitanya
NVIDIA Chris Wyman NVIDIA
Karlsruhe Institute of Technology Anjul Patney L'm've@ty f:f-;\lumreal
NVIDIA McGill University
John Burgess Carsten Dachsbacher Aaron Lefohn
Shiqiu Liu Karlsruhe Institute of Technology Marco Salvi
NVIDIA NVIDIA
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Figure 1: Our filter takes (left) 1 sample per pixel path-traced input and (center) reconstructs a temporally stable 1920x 1080
image in just 10 ms. Compare to (right) a 2048 samples per pixel path-traced reference. Insets compare our input, our filtered
results, and a reference on two regions, and show the impact filtered global illumination has over just direct illumination.
Given the noisy input, notice the similarity to the reference for glossy reflections, global illumination, and direct soft shadows.

ABSTRACT

We introduce a reconstruction algorithm that generates a tempo-
rally stable sequence of images from one path-per-pixel global
illumination. To handle such noisy input, we use temporal accu-
mulation to increase the effective sample count and spatiotemporal
luminance variance estimates to drive a hierarchical, image-space
wavelet filter [Dammertz et al. 2010]. This hierarchy allows us to
distinguish between noise and detail at multiple scales using local
luminance variance.

Physically based light transport is a long-standing goal for real-
time computer graphics. While modern games use limited forms of
ray tracing, physically based Monte Carlo global illumination does
not meet their 30 Hz minimal performance requirement. Looking
ahead to fully dynamic real-time path tracing, we expect this to
only be feasible using a small number of paths per pixel. As such,
image reconstruction using low sample counts is key to bringing

HPG "17, Low Angeles, CA, USA

© 207 ACM. This is the authee’s versice of the work. It is posted here for your
perwonsl we. Not for redistribation. The definitive Version of Recond wis published in
Proceedings of HPG “17, July 2830, 2017, hitge e doi org 101145/ 3105762 3 105770

path tracing to real-time. When compared to prior interactive
reconstruction filters, our work gives approximately 10x more
temporally stable results, matches reference images 5-47% better
(according to SSIM), and runs in just 10ms (£ 15%) on modern
graphics hardware at 1920x 1080 resolution.

CCS CONCEPTS
«Computing methodologies —Ray tracing:

KEYWORDS

global illumination, reconstruction, real-time rendering

ACM Reference format:

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty
R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron
Lefohn, and Marco Salvi. 2017. Spatiotemporal Variance-Guided Filter
ing: Real-Time Reconstruction for Path-Traced Global Illumination. In
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Spatiotemporal Variance-Guided Filter (SVGF)
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Filter hierarchically, starting small

« Estimate temporal stability after each filter
iteration

Analyze input over time

— Strong blur more likely in early iterations
* Temporally unstable — blur more

 Temporally stable — blur less
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Demodulate
Albedo
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Reference SVGF

Overblurring at high-frequency normal maps
and materials

[Schied et al. 2017]



One sample per pixel (input)



Temporal filtering
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Screen-space Reprojection

Facebook Reality Labs | Reconstruc
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&) =lal ¢ (x) H({A — a)| &1 (x)

* Set a according to changes of the shading function
» Moving shadows, glossy highlights, flickering light sources, ...

» Make a per-pixel weight for local adaptivity
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Gradient Estimation for Real-Time Adaptive Temporal
Filtering

CHRISTOPH SCHIED, CHRISTOPH PETERS, and CARSTEN DACHSBACHER, Karlsruhe
Institute of Technology, Germany

Q Frame 408 Q Frame 410 Q Frame 412 Q Frame 414

Q Frame 404 Q Frame 406
4 1 ’
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Adaptive @ A-SVGF (ours)

Fig. 1. Results of our novel spatio-temporal reconstruction filter (A-SVGF) for path tracing at one sample per
pixel (cyan inset in frame 404) with a resolution of 1280x720. The animation includes a moving camera and
a flickering, blue area light. Previous work (SVGF) [Schied et al. 2017] introduces temporal blur such that
lighting is still present when the light source is off and glossy highlights leave a trail (magenta box in frame
412). Our temporal filter estimates and reconstructs sparse temporal gradients and uses them to adapt the
temporal accumulation factor a per pixel. For example, the regions lit by the flickering blue light have a large
a in frames 406 and 412 where the light has been turned on or off. Glossy highlights also receive a large «
due to the camera movement. Overall, stale history information is rejected reliably.

With the push towards physically based rendering, stochastic sampling of shading, e.g. using path tracing,
is becoming increasingly important in real-time rendering. To achieve high performance, only low sample
counts are viable, which necessitates the use of sophisticated reconstruction filters. Recent research on such
filters has shown dramatic improvements in both quality and performance. They exploit the coherence of
consecutive frames by reusing temporal information to achieve stable, denoised results. However, existing
temporal filters often create objectionable artifacts such as ghosting and lag. We propose a novel temporal filter
which analyzes the signal over time to derive adaptive temporal accumulation factors per pixel. It repurposes
a subset of the shading budget to sparsely sample and reconstruct the temporal gradient. This allows us to
reliably detect sudden changes of the sampled signal and to drop stale history information. We create gradient
samples through forward-projection of surface samples from the previous frame into the current frame and by
reevaluating the shading samples using the same random sequence. We apply our filter to improve real-time
path tracers. Compared to previous work, we show a significant reduction of lag and ghosting as well as

Authors’ address: Christoph Schied, schied@kit.edu; Christoph Peters, christoph.peters@kit.edu; Carsten Dachsbacher,
dachsbacher@kit.edu, Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131, Karlsruhe, Germany.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:
//doi.org/10.1145/3233301.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 24. Publication date: August 2018.
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i Path tracer output
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Adaptive temporal filter weight

Reconstructed temporal gradient

« Sample and reconstruct temporal gradient

 Change a according to relative rate of change
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Gradient Estimation for Real-Time Adaptive Temporal
Filtering

CHRISTOPH SCHIED, CHRISTOPH PETERS, and CARSTEN DACHSBACHER, Karlsruhe
Institute of Technology, Germany

Q Frame 404 Q Frame 408 Q Frame 410 Q Frame 412 Q Frame 414

Q Frame 406

Reference

SVGF

Adaptive @ A-SVGF (ours)

Fig. 1. Results of our novel spatio-temporal reconstruction filter (A-SVGF) for path tracing at one sample per
pixel (cyan inset in frame 404) with a resolution of 1280x720. The animation includes a moving camera and
a flickering, blue area light. Previous work (SVGF) [Schied et al. 2017] introduces temporal blur such that
lighting is still present when the light source is off and glossy highlights leave a trail (magenta box in frame
412). Our temporal filter estimates and reconstructs sparse temporal gradients and uses them to adapt the
temporal accumulation factor a per pixel. For example, the regions lit by the flickering blue light have a large
a in frames 406 and 412 where the light has been turned on or off. Glossy highlights also receive a large
due to the camera movement. Overall, stale history information is rejected reliably.

A-SVGF

ove
res

Reconstruction
Filter
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Temporal
Antialiasing

Temporal Variance

Accumulation Estimation

A-trous wavelet
filter
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SVGF (slowed) A-SVGF (ours, slowed)
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 Experiment: how far can we push the

state of the art

e Basis for NVIDIA’s Quake 2 RTX

* A-SVGF for denoising

* Why Quake 2:

* Lot’s of area light sources
» Manageable complexity for a prototype
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Regression-based reconstruction
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* Screen-space multi-order regression in tiles
* Fast (2.4ms at 720p, Titan X Pascal)

» Two temporal filters

* Pre- and post-filtering the Regression result
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Blockwise Multi-Order Feature Regression for Real-Time Path Tracing

Reconstruction

MATIAS KOSKELA, KALLE IMMONEN, MARKKU MAKITALO, ALESSANDRO FOI, TIMO VIITANEN,
PEKKA JAASKELAINEN, HEIKKI KULTALA, and JARMO TAKALA, Tampere University, Finland

Fig. 1. In all image sets, left: 1 sample per pixel path-traced input, center: result of the proposed post-processing denoising/reconstruction pipeline, and right:
4096 samples per pixel reference. Leftmost highlights: the lion is barely visible in the input, but the proposed pipeline is able to produce realistic illumination
results without blurring the edges and high-frequency albedo details. Center highlights: the best case for the pipeline is geometry with sufficient light in the
input. Rightmost highlights: the worst case for the pipeline is the one with occlusions and almost no light, resulting in blurry artifacts.

Path tracing produces realistic results including global illumination using
a unified simple rendering pipeline. Reducing the amount of noise to im-
perceptible levels without post-processing requires thousands of samples
per pixel (spp), while currently it is only possible to render extremely noisy
1 spp frames in real time with desktop GPUs. However, post-processing can
utilize feature buffers, which contain noise-free auxiliary data available in
the rendering pipeline. Previously, regression-based noise filtering methods
have only been used in offline rendering due to their high computational cost.
In this paper we propose a novel regression-based reconstruction pipeline,
called Blockwise Multi-Order Feature Regression (BMFR), tailored for path-
traced 1 spp inputs that runs in real time. The high speed is achieved with a

fast impl, ion of aug d QR factorization and by using stochastic
Authors’ address: Matias Koskela, matias koskel i.fi; Kalle I kalle.
immonen@aspekt.fi; Markku Mikitalo, markkumakitalo@tuni fi; Al dro Foi,

alessandro.foi@tuni.fi; Timo Viitanen, gmail com; Pekka Jaaskel pekka.
jaaskelainen@tuni.fi; Heikki Kultala, heikkikultala@tuni.fi; Jarmo Takala, jarmo.
takala@tuni fi, Tampere University, Tampere, 33720, Finland.

© 2019 Association for Computing Machinery.

This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/0000001.0000001.

regularization to address rank-deficient feature data. The proposed algo-
rithm is 1.8x faster than the previous state-of-the-art real-time path tracing
reconstruction method while producing better quality frame sequences.

CCS Concepts: « Computing methodologies — Ray tracing: Rendering:
Image processing;

Additional Key Words and Phrases: path tracing, reconstruction, regression,
real-time

ACM Reference Format:

Matias Koskela, Kalle Immonen, Markku Mikitalo, Alessandro Foi, Timo
Viitanen, Pekka Jaaskeldinen, Heikki Kultala, and Jarmo Takala. 2019. Block-
wise Multi-Order Feature Regression for Real-Time Path Tracing Recon-
struction. ACM Trans. Graph. X, Y, Article Z (May 2019), 14 pages. https:
//doi.org/0000001.0000001

1 INTRODUCTION

Real-time path tracing has been a long-standing goal of graphics
rendering research due to its ability to produce natural soft shad-
ows, reflections, refractions, and global illumination effects using
a conceptually simple unified drawing method. However, its com-
putational complexity is a major challenge: contemporary ray trac-
ing frameworks [AMD 2017; Parker et al. 2010; Wald et al. 2014]
-43-
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Under motion Without temporal filter Converged temporal filter
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Deep Learning approaches
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Interactive Reconstruction of Monte Carlo Image Sequences using a
Recurrent Denoising Autoencoder

CHAKRAVARTY R. ALLA CHAITANYA, NVIDIA, University of Montreal and McGill University
ANTON S. KAPLANYAN, NVIDIA

CHRISTOPH SCHIED, NVIDIA and Karlsruhe Institute of Technology

MARCO SALVI, NVIDIA

AARON LEFOHN, NVIDIA

DEREK NOWROUZEZAHRAI, McGill University

TIMO AILA, NVIDIA

(¢} SURE-based filter (d) Recurrent autoencoder (e) Reference

(b) Edge-avoidmg wavelets

(a) Lspp noisy mput
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Fig. 1. Left ta right: (a) moisy image generated using path-traced global lumination with one indirect inter-reflection and 1 sample/pixel; (b) edge-avoiding
wavelet filter [Dammertz et al 2010] (10.3ms at 720p, SSIM: 0.7737); (c) SURE-based filter [Li et al 2012] (74.2ms, SSIM: 0.5960). (d) our recurrent dencising
autoencoder (54.9ms, SSIM: 0.8438), (¢} reference path-traced image with 4096 samples/pixel.

RCNN

Encoder Decoder |

* Direct prediction with U-Net architecture

(Autoencoder with skips)

 Recurrent blocks for temporal stability

* 55ms @ 720p, NVIDIA Titan X (Pascal)
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Kernel-Predicting Convolutional Networks for Denoising

Monte Carlo Renderings

STEVE BAKQ?, University of California, Santa Barbara
THIJS VOGELS®, ETH Ziirich & Disney Research
BRIAN MCWILLIAMS, Disney Research

MARK MEYER, Pixar Animation Studios

JAN NOVAK, Disney Research

ALEX HARVILL, Pixar Animation Studios

PRADEEP SEN, University of California, Santa Barbara
TONY DEROSE, Pixar Animation Studios

FABRICE ROUSSELLE, Disney Research

TRAINING

enoisetyjrz.sp‘p‘)'

TEST

Fig. 1. We introduce a deep learning approach for denoising Monte Carlo-rendered images that produces high-quality results suitable for production. We
train a convolutional neural network to learn the complex relationship between noisy and reference data across a large set of frames with varying distributed
effects from the film Finding Dory (left). The trained network can then be applied to denoise new images from other films with significantly different style and

content, such as Cars 3 (right), with production-quality results.

Regression-based algorithms have shown to be good at denoising Monte
Carlo (MC) renderings by leveraging its inexpensive by-products (e.g., fea-
ture buffers). However, when using higher-order models to handle complex
cases, these techniques often overfit to noise in the input. For this reason,
supervised learning methods have been proposed that train on a large col-
lection of reference examples, but they use explicit filters that limit their
denoising ability. To address these problems, we propose a novel, supervised
learning approach that allows the filtering kernel to be more complex and
general by leveraging a deep convolutional neural network (CNN) architec-
ture. In one embodiment of our framework, the CNN directly predicts the
final denoised pixel value as a highly non-linear combination of the input
features. In a second approach, we introduce a novel, kernel-prediction net-
work which uses the CNN to estimate the local weighting kernels used to
compute each denoised pixel from its neighbors. We train and evaluate our

*Joint first authors

© 2017 Copyright held by the owner/author(s). This is the author’s version of the
work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in ACM Transactions on Graphics, https://doi.org/http:
//dx.doi.org/10.1145/3072959.3073708.

networks on production data and observe improvements over state-of-the-
art MC denoisers, showing that our methods generalize well to a variety of
scenes. We conclude by analyzing various components of our architecture
and identify areas of further research in deep learning for MC denoising.

CCS Concepts: « Computing methodologies — Computer graphics;
Rendering; Ray tracing;

Additional Key Words and Phrases: Monte Carlo rendering, Monte Carlo
denoising, global illumination

ACM Reference format:
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1 INTRODUCTION
In recent years, physically-based image synthesis has become wide-

spread in feature animation and visual effects [Keller et al. 2015].

ACM Transactions on Graphics, Vol. 36, No. 4, Article 97. Publication date: July 2017.

 Output of the network is a per-pixel convolution kernel

* Filter kernel could be computed at lower precision

* Int4/int8 inference?

* Has not been demonstrated for real-time / interactive yet
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* Training with non-converged references is possible

e Training data is much cheaper

* More variation in data — better generalization

* Online-learning for specializing denoiser to current inputs

possible
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Noise2Noise: Learning Image Restoration without Clean Data

Jaakko Lehtinen'? Jacob Munkberg' Jon Hasselgren' Samuli Laine' Tero Karras' Miika Aittala’ Timo Aila'

Abstract

We apply basic statistical reasoning to signal re-
construction by machine learning — learning to
map corrupted observations to clean signals — with
a simple and powerful conclusion: it is possi-
ble to learn to restore images by only looking at
corrupted examples, at performance at and some-
times exceeding training using clean data, without
explicit image priors or likelihood models of the
corruption. In practice, we show that a single
model learns photographic noise removal, denois-
ing synthetic Monte Carlo images, and reconstruc-
tion of undersampled MRI scans — all corrupted
by different processes — based on noisy data only.

1. Introduction

Signal reconstruction from corrupted or incomplete mea-
surements is an important subfield of statistical data analysis.
Recent advances in deep neural networks have sparked sig-
nificant interest in avoiding the traditional, explicit a priori
statistical modeling of signal corruptions, and instead learn-
ing to map corrupted observations to the unobserved clean
versions. This happens by training a regression model, e.g.,
a convolutional neural network (CNN), with a large number
of pairs (2;, y;) of corrupted inputs Z; and clean targets y;
and minimizing the empirical risk

;]Igéllillzj-'(fg(i'x)- i), M

where fy is a parametric family of mappings (e.g., CNNs),
under the loss function L. We use the notation & to un-
derline the fact that the corrupted input & ~ p(Z|y;) is a
random variable distributed according to the clean target.
Training data may include, for example, pairs of short and
long exposure photographs of the same scene, incomplete
and complete k-space samplings of magnetic resonance
images, fast-but-noisy and slow-but-converged ray-traced

'NVIDIA 2Aalto University *MIT CSAIL. Correspondence to:
Jaakko Lehtinen <jlehtinen@nvidia.com>.

Proceedings of the 35'" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

renderings of a synthetic scene, etc. Significant advances
have been reported in several applications, including Gaus-
sian denoising, de-JPEG, text removal (Mao et al., 2016),
super-resolution (Ledig et al., 2017), colorization (Zhang
et al., 2016), and image inpainting (lizuka et al., 2017). Yet,
obtaining clean training targets is often difficult or tedious:
a noise-free photograph requires a long exposure; full MRI
sampling precludes dynamic subjects; etc.

In this work, we observe that we can often learn to furn
bad images into good images by only looking at bad images,
and do this just as well — sometimes even better — as if we
were using clean examples. Further, we require neither an
explicit statistical likelihood model of the corruption nor
an image prior, and instead learn these indirectly from the
training data. (Indeed, in one of our examples, synthetic
Monte Carlo renderings, the non-stationary noise cannot
be characterized analytically.) In addition to denoising, our
observation is directly applicable to inverse problems such
as MRI reconstruction from undersampled data. While our
conclusion is almost trivial from a statistical perspective, it
significantly eases practical learned signal reconstruction by
lifting requirements on availability of training data.

The reference TensorFlow implementation for Noise2Noise
training is available on GitHub.!

2. Theoretical Background

Assume that we have a set of unreliable measurements
(41, Y2, ...) of the room temperature. A common strategy
for estimating the true unknown temperature is to find a
number = that has the smallest average deviation from the
measurements according to some loss function L:

argminE, {L(z, y)}. 2)

For the Ly loss L(z,y) = (z — y)?, this minimum is found
at the arithmetic mean of the observations:

2 =Ey{u}. ®

The L, loss, the sum of absolute deviations L(z,y) = |z —
y|, in turn, has its optimum at the median of the observations.
The general class of deviation-minimizing estimators are

"ttps://github. aon/N'\Flabs,fnoisednois'éo'
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 Impose blue-noise characteristic on Monte Carlo Error

Distributing Monte Carlo Errors as a Blue Noise in Screen Space
by Permuting Pixel Seeds Between Frames seeds 7 seeds 7 + |

E. Heitz and L. Belcour

Unity Technologies

permute
B

Our method (1 spp)

Figure 1: Distributing Monte Carlo errors as a blue noise in screen space. Monte Carlo noise in raytraced renderings has usually a white
spectrum because of the randomization used to decorrelate pixel estimates. Our temporal algorithm correlates pixel estimates to obtain a
noise with a blue spectrum like dithered images. This makes the images appear less noisy despite the errors having statistically the same
amplitudes. In this scene, the dragon is a participating medium rendered with up to 20 scattering events under coherent motion. rende r

Abstract
Recent work has shown that distributing Monte Carlo errors as a blue noise in screen space improves the perceptual qual-
ity of rendered images. However, obtaining such distributions remains an open problem with high sample counts and high-

di [ rendering integrals. In this paper, we introduce a temporal algorithm that aims at overcoming these limitations.
Our algorithm is applicable wh ltiple frames are rendered, typically for anij d seq or i tive applica-
tions. Our algorithm locally | the pixel seq (rep d by their seeds) to improve the error distribution across

frames. Our approach works regardless of the sample count or the di lity and significantly imp the images in
low-varying screen-space regions under coh motion. Furth , it adds negligibl head compared to the rendering
times. Note: our supplemental material provides more results with interactive comparisons against previous work.
CCS Concepts
o C ; hodologies — Rendering;
puting 8 5
1. Introduction Inspired by halftoning algorithms, Georgiev and Fajardo [GF16] in-

troduced another option that achieves superior results. They noticed
that distributing the errors as a blue noise makes it less apparent

Rendering via Monte Carlo (MC) integration is subject to numer-
ical errors. The amplitude of these integration errors is best atten-
uated via variance-reduction techniques such as importance sam-
pling combined with high-convergence-rate sequences. Neverthe-
less, the errors remain present and their visual impact depends on
their screen-space distribution. Classically, two options are consid-
ered: either aliasing (the pixels use the same sequence) or white
noise (the pixels use decorrelated random sequences).

submitted to Eurographics Symposium on Rendering (2019)

and thus improves the perceptual quality of the images. This can be

hieved by correlating pixel esti (the pixels use different but
correlated sequences). Figure 1 illustrates this effect by comparing
blue-noise-error renderings (the spectrum has no low-frequencies)
to classic white-noise-error renderings (the spectrum is flat). The
former appear less noisy despite the errors having statistically the
same amplitudes.
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Not there yet!

Are we there yet?

Reconstruction Path Tracing

« Robustness (no history, high variance) * Robustness

e Mirrors  Offline techniques do not directly translate to
real-time

e Qverblurred materials

Viable path forward: CNN Sampling

. Temporal stability  Design patterns with reconstruction filters in

mind
* Performance
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