
My favorite Samples
Alexander Keller

Schedule
Course web page at https://sites.google.com/view/myfavoritesamples

� 9:00 My favorite Samples
– Alexander Keller, NVIDIA

� 9:40 Progressive Multi-Jittered Sequences
– Per Christensen, Pixar

� 10:15 Warp and Effect
– Matt Pharr, NVIDIA

� break

� 11:05 Low-Discrepancy Blue Noise Sampling
– Abdalla Ahmed, King Abdulla University and Victor Ostromoukhov, Université Claude Bernard Lyon 1

� 11:40 Blue-Noise Dithered Sampling
– Iliyan Georgiev, Autodesk

2

My favorite Samples
For modeling

� discrete density approximation

I Fast primitive distribution for illustration

3

https://vccimaging.org/Publications/Secord2002FPD/Secord2002FPD.pdf

My favorite Samples
For approximation

� displays and textures represented by rank-1 lattices

I Image Synthesis by Rank-1 Lattices

I Efficient Search for Two-Dimensional Rank-1 Lattices with Applications in Graphics

4

https://doi.org/10.1007/978-3-540-74496-2_12
https://doi.org/10.1007/978-3-642-04107-5_16

My favorite Samples
For approximation

� displays and textures represented by rank-1 lattices

I Image Synthesis by Rank-1 Lattices

I Efficient Search for Two-Dimensional Rank-1 Lattices with Applications in Graphics

4

https://doi.org/10.1007/978-3-540-74496-2_12
https://doi.org/10.1007/978-3-642-04107-5_16

My favorite Samples
For simulation

� Fourier transform on rank-1 lattices

I Simulation on Rank-1 Lattices

5

https://link.springer.com/chapter/10.1007/978-3-540-74496-2_11

My favorite Samples
For integration

� Monte Carlo methods∫
[0,1)s

f (x)dx

≈ 1
n

n

∑
i=1

f (xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

6

My favorite Samples
For integration

� Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

6

My favorite Samples
For integration

� Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

6

My favorite Samples
For integration

� Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

6

My favorite Samples
For integration

� Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

6

My favorite Samples
For integration

� Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

6

My favorite Samples
For integration

� Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

6

My favorite Samples
For integration

� Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

6

My favorite Samples
For integration

� Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

6

My favorite Samples
For integration

� Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

6

My favorite Samples
For integration

� Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

6

My favorite Samples
For integration

� Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods∫
[0,1)s

f (x)dx ≈ 1
n

n

∑
i=1

f (xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

6

My favorite Samples
For integro-approximation

� Monte Carlo methods

g(y) =
∫

[0,1)s
f (y ,x)dx ≈ 1

n

n

∑
i=1

f (y ,xi)

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
rr

rr rr

rrr
rr

r

r r
rrr
r

rrr
rr r

rr
rr
rr

rrr r
rr

r r
r rr
r

r r
rr

rr

rrr
rr r

rr
rr rr

rr r
rr

r

r r
r rrr

� quasi-Monte Carlo methods

g(y) =
∫

[0,1)s
f (y ,x)dx ≈ 1

n

n

∑
i=1

f (y ,xi)

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

7

Random or Deterministic?
What matters

� deterministic
– may improve speed of convergence

– reproducible and simple to parallelize

8

Random or Deterministic?
What matters

� deterministic
– may improve speed of convergence

– reproducible and simple to parallelize

� unbiased
– zero difference between expectation and mathematical object

– not sufficient for convergence

8

Random or Deterministic?
What matters

� deterministic
– may improve speed of convergence

– reproducible and simple to parallelize

� biased
– allows for ameliorating the problem of insufficient techniques

– can tremendously increase efficiency

� consistent
– error vanishes with increasing set of samples

– no persistent artifacts introduced by algorithm

I Quasi-Monte Carlo image synthesis in a nutshell

I The Iray light transport simulation and rendering system

8

http://www.mcqmc2012.unsw.edu.au/slides/MCQMC2012_Keller_Tutorial.pdf
https://arxiv.org/abs/1705.01263

Random or Deterministic?
What matters

� deterministic
– may improve speed of convergence

– reproducible and simple to parallelize

� biased
– allows for ameliorating the problem of insufficient techniques

– can tremendously increase efficiency

� consistent
– error vanishes with increasing set of samples

– no persistent artifacts introduced by algorithm

I Quasi-Monte Carlo image synthesis in a nutshell

I The Iray light transport simulation and rendering system

8

http://www.mcqmc2012.unsw.edu.au/slides/MCQMC2012_Keller_Tutorial.pdf
https://arxiv.org/abs/1705.01263

Random or Deterministic?
What matters

� deterministic
– may improve speed of convergence

– reproducible and simple to parallelize

� biased
– allows for ameliorating the problem of insufficient techniques

– can tremendously increase efficiency

� consistent
– error vanishes with increasing set of samples

– no persistent artifacts introduced by algorithm

I Quasi-Monte Carlo image synthesis in a nutshell

I The Iray light transport simulation and rendering system

8

http://www.mcqmc2012.unsw.edu.au/slides/MCQMC2012_Keller_Tutorial.pdf
https://arxiv.org/abs/1705.01263

Numerical Integration and Integro-Approximation
Sampling

� transform your problem onto the s-dimensional unit cube [0,1)s

� generate uniformly distributed points in [0,1)s

– pseudo random numbers

– points with blue noise characteristic (on the unit torus)

– radical inverse based points

– rank-1 lattice

� compute your averages

I Non-uniform random variate generation

I Massively parallel construction of radix tree forests for the efficient sampling of discrete probability distributions

I Neural importance sampling

9

http://luc.devroye.org/handbooksimulation1.pdf
https://arxiv.org/abs/1901.05423
https://tom94.net/data/publications/mueller18neural/mueller18neural.pdf

Numerical Integration and Integro-Approximation
Sampling

� transform your problem onto the s-dimensional unit cube [0,1)s

� generate uniformly distributed points in [0,1)s

– pseudo random numbers

– points with blue noise characteristic (on the unit torus)

– radical inverse based points

– rank-1 lattice

� compute your averages

I Non-uniform random variate generation

I Massively parallel construction of radix tree forests for the efficient sampling of discrete probability distributions

I Neural importance sampling

9

http://luc.devroye.org/handbooksimulation1.pdf
https://arxiv.org/abs/1901.05423
https://tom94.net/data/publications/mueller18neural/mueller18neural.pdf

Numerical Integration and Integro-Approximation
Sampling

� transform your problem onto the s-dimensional unit cube [0,1)s

� generate uniformly distributed points in [0,1)s

– pseudo random numbers

– points with blue noise characteristic (on the unit torus)

– radical inverse based points and randomizations

– rank-1 lattice and randomizations

� compute your averages

I Non-uniform random variate generation

I Massively parallel construction of radix tree forests for the efficient sampling of discrete probability distributions

I Neural importance sampling

9

http://luc.devroye.org/handbooksimulation1.pdf
https://arxiv.org/abs/1901.05423
https://tom94.net/data/publications/mueller18neural/mueller18neural.pdf

Quasi-Monte Carlo Points

Quasi-Monte Carlo Points
Uniform sampling in Monte Carlo and quasi-Monte Carlo methods

� randomq
qqqq

q qqqq qqqq
qqq q ∪ qq qq qq qqqq q

q qq qq qq ∪ q qqqq qq qq qq qqq qqq q ∪ qqq qq q
q qqq qq qqq q qq =

q
qqqq

q qqqq qqqq
qqq q qq qq qq qqqq q
q qq qq qqq
qqqq qq qq qq qqq qqq q qqq qq q

q qqq qq qqq q qq

� stratified random

qq qq
qq
qqq qq
q
q qqqq
q
∪ qqq q
q q

qqqq
qq

qqqqq
q
∪ qqq q

qq
qq qq
qq

qqq qq q∪ qq qq
qq qqq qq
q

q qq q
qq

= qq qq
qq
qqq qq
q
q qqqq
q

qqq q
q q

qqqq
qq

qqqqq
q

qqq q
qq
qq qq
qq

qqq qq qqq qq
qq qqq qq
q

q qq q
qq

� deterministic low discrepancy

q qq qq qq qq
qq qq qq qq q
∪ q qq qq qq qq

qq qq qq qq q
∪ q qq qq qq qq

qq qq qq qq q
∪ q qq qq qq qq

qq qq qq qq q
= q qq qq qq qq

qq qq qq qq q
q qq qq qq qq

qq qq qq qq q
q qq qq qq qq

qq qq qq qq q
q qq qq qq qq

qq qq qq qq q

11

Quasi-Monte Carlo Points
Uniform sampling in Monte Carlo and quasi-Monte Carlo methods

� randomq
qqqq

q qqqq qqqq
qqq q ∪ qq qq qq qqqq q

q qq qq qq ∪ q qqqq qq qq qq qqq qqq q ∪ qqq qq q
q qqq qq qqq q qq =

q
qqqq

q qqqq qqqq
qqq q qq qq qq qqqq q
q qq qq qqq
qqqq qq qq qq qqq qqq q qqq qq q

q qqq qq qqq q qq
� stratified random

qq qq
qq
qqq qq
q
q qqqq
q
∪ qqq q
q q

qqqq
qq

qqqqq
q
∪ qqq q

qq
qq qq
qq

qqq qq q∪ qq qq
qq qqq qq
q

q qq q
qq

= qq qq
qq
qqq qq
q
q qqqq
q

qqq q
q q

qqqq
qq

qqqqq
q

qqq q
qq
qq qq
qq

qqq qq qqq qq
qq qqq qq
q

q qq q
qq

� deterministic low discrepancy

q qq qq qq qq
qq qq qq qq q
∪ q qq qq qq qq

qq qq qq qq q
∪ q qq qq qq qq

qq qq qq qq q
∪ q qq qq qq qq

qq qq qq qq q
= q qq qq qq qq

qq qq qq qq q
q qq qq qq qq

qq qq qq qq q
q qq qq qq qq

qq qq qq qq q
q qq qq qq qq

qq qq qq qq q

11

Quasi-Monte Carlo Points
Uniform sampling in Monte Carlo and quasi-Monte Carlo methods

� randomq
qqqq

q qqqq qqqq
qqq q ∪ qq qq qq qqqq q

q qq qq qq ∪ q qqqq qq qq qq qqq qqq q ∪ qqq qq q
q qqq qq qqq q qq =

q
qqqq

q qqqq qqqq
qqq q qq qq qq qqqq q
q qq qq qqq
qqqq qq qq qq qqq qqq q qqq qq q

q qqq qq qqq q qq
� stratified random

qq qq
qq
qqq qq
q
q qqqq
q
∪ qqq q
q q

qqqq
qq

qqqqq
q
∪ qqq q

qq
qq qq
qq

qqq qq q∪ qq qq
qq qqq qq
q

q qq q
qq

= qq qq
qq
qqq qq
q
q qqqq
q

qqq q
q q

qqqq
qq

qqqqq
q

qqq q
qq
qq qq
qq

qqq qq qqq qq
qq qqq qq
q

q qq q
qq

� deterministic low discrepancy

q qq qq qq qq
qq qq qq qq q
∪ q qq qq qq qq

qq qq qq qq q
∪ q qq qq qq qq

qq qq qq qq q
∪ q qq qq qq qq

qq qq qq qq q
= q qq qq qq qq

qq qq qq qq q
q qq qq qq qq

qq qq qq qq q
q qq qq qq qq

qq qq qq qq q
q qq qq qq qq

qq qq qq qq q
11

Quasi-Monte Carlo Points
Radical inversion

� van der Corput sequence in base b

Φb : N0 → Q∩ [0,1)

i =
∞

∑
l=0

al (i)b
l 7→ Φb(i) :=

∞

∑
l=0

al (i)b
−l−1

, e.g. Φ2(i)≡ s0

� properties
– subsequent points that “fall into biggest holes”

– not completely uniform distributed (CUD)

– contiguous blocks of stratified points xi for kbm ≤ i < (k + 1)bm−1
� for each block the Φb(i) are equidistant

� for each block the integers bbmΦb(i)c are a permutation of {0, . . . ,bm−1}

12

Quasi-Monte Carlo Points
Radical inversion

� van der Corput sequence in base b

Φb : N0 → Q∩ [0,1)

i =
∞

∑
l=0

al (i)b
l 7→ Φb(i) :=

∞

∑
l=0

al (i)b
−l−1, e.g. Φ2(i)≡ s0

� properties
– subsequent points that “fall into biggest holes”

– not completely uniform distributed (CUD)

– contiguous blocks of stratified points xi for kbm ≤ i < (k + 1)bm−1
� for each block the Φb(i) are equidistant

� for each block the integers bbmΦb(i)c are a permutation of {0, . . . ,bm−1}

12

Quasi-Monte Carlo Points
Radical inversion

� van der Corput sequence in base b

Φb : N0 → Q∩ [0,1)

i =
∞

∑
l=0

al (i)b
l 7→ Φb(i) :=

∞

∑
l=0

al (i)b
−l−1, e.g. Φ2(i)≡ s0 s1

� properties
– subsequent points that “fall into biggest holes”

– not completely uniform distributed (CUD)

– contiguous blocks of stratified points xi for kbm ≤ i < (k + 1)bm−1
� for each block the Φb(i) are equidistant

� for each block the integers bbmΦb(i)c are a permutation of {0, . . . ,bm−1}

12

Quasi-Monte Carlo Points
Radical inversion

� van der Corput sequence in base b

Φb : N0 → Q∩ [0,1)

i =
∞

∑
l=0

al (i)b
l 7→ Φb(i) :=

∞

∑
l=0

al (i)b
−l−1, e.g. Φ2(i)≡ s0 s1s2

� properties
– subsequent points that “fall into biggest holes”

– not completely uniform distributed (CUD)

– contiguous blocks of stratified points xi for kbm ≤ i < (k + 1)bm−1
� for each block the Φb(i) are equidistant

� for each block the integers bbmΦb(i)c are a permutation of {0, . . . ,bm−1}

12

Quasi-Monte Carlo Points
Radical inversion

� van der Corput sequence in base b

Φb : N0 → Q∩ [0,1)

i =
∞

∑
l=0

al (i)b
l 7→ Φb(i) :=

∞

∑
l=0

al (i)b
−l−1, e.g. Φ2(i)≡ s0 s1s2 s3

� properties
– subsequent points that “fall into biggest holes”

– not completely uniform distributed (CUD)

– contiguous blocks of stratified points xi for kbm ≤ i < (k + 1)bm−1
� for each block the Φb(i) are equidistant

� for each block the integers bbmΦb(i)c are a permutation of {0, . . . ,bm−1}

12

Quasi-Monte Carlo Points
Radical inversion

� van der Corput sequence in base b

Φb : N0 → Q∩ [0,1)

i =
∞

∑
l=0

al (i)b
l 7→ Φb(i) :=

∞

∑
l=0

al (i)b
−l−1, e.g. Φ2(i)≡ s0 s1s2 s3

� properties
– subsequent points that “fall into biggest holes”

– not completely uniform distributed (CUD)

– contiguous blocks of stratified points xi for kbm ≤ i < (k + 1)bm−1
� for each block the Φb(i) are equidistant

� for each block the integers bbmΦb(i)c are a permutation of {0, . . . ,bm−1}

12

Quasi-Monte Carlo Points
Radical inversion

� van der Corput sequence in base b

Φb : N0 → Q∩ [0,1)

i =
∞

∑
l=0

al (i)b
l 7→ Φb(i) :=

∞

∑
l=0

al (i)b
−l−1, e.g. Φ2(i)≡ s0 s1s2 s3d dd d4 56 7

� properties
– subsequent points that “fall into biggest holes”

– not completely uniform distributed (CUD)

– contiguous blocks of stratified points xi for kbm ≤ i < (k + 1)bm−1
� for each block the Φb(i) are equidistant

� for each block the integers bbmΦb(i)c are a permutation of {0, . . . ,bm−1}

12

Quasi-Monte Carlo Points
Radical inversion

� van der Corput sequence in base b

Φb : N0 → Q∩ [0,1)

i =
∞

∑
l=0

al (i)b
l 7→ Φb(i) :=

∞

∑
l=0

al (i)b
−l−1, e.g. Φ2(i)≡ s0 s1s2 s3s ss s4 56 7

� properties
– subsequent points that “fall into biggest holes”

– not completely uniform distributed (CUD)

– contiguous blocks of stratified points xi for kbm ≤ i < (k + 1)bm−1
� for each block the Φb(i) are equidistant

� for each block the integers bbmΦb(i)c are a permutation of {0, . . . ,bm−1}

12

Quasi-Monte Carlo Points
Radical inversion

� van der Corput sequence in base b

Φb : N0 → Q∩ [0,1)

i =
∞

∑
l=0

al (i)b
l 7→ Φb(i) :=

∞

∑
l=0

al (i)b
−l−1, e.g. Φ2(i)≡ s0 s1s2 s3s ss s4 56 7s ss ss ss s8 910 1112 1314 15

� properties
– subsequent points that “fall into biggest holes”

– not completely uniform distributed (CUD)

– contiguous blocks of stratified points xi for kbm ≤ i < (k + 1)bm−1
� for each block the Φb(i) are equidistant

� for each block the integers bbmΦb(i)c are a permutation of {0, . . . ,bm−1}

12

Quasi-Monte Carlo Points
Halton sequence and Hammersley points

� let the bj be co-prime, for example the j-th prime number

Halton sequence

xi :=
(
Φb1 (i), . . . ,Φbs (i)

)

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q

q
(Φ2(i),Φ3(i))63

i=0

– contiguous blocks of stratified points xi for k ∏
s
j=1 b

mj
j ≤ i < (k + 1)∏

s
j=1 b

mj
j −1

13

Quasi-Monte Carlo Points
Halton sequence and Hammersley points

� let the bj be co-prime, for example the j-th prime number

Halton sequence Hammersley point sets

xi :=
(
Φb1 (i), . . . ,Φbs (i)

)
xi :=

(
i
n ,Φb1 (i), . . . ,Φbs−1 (i)

)

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q

q q
qq
q
q
qq
q
q
qq
q
q
qq
q

q
qq
q
q
qq
q
q
qq
q
q
qq
q

q
qq
q
q
qq
q
q
qq
q
q
qq
q

q
qq
q
q
qq
q
q
qq
q
q
qq
q

(Φ2(i),Φ3(i))63
i=0 (i

64 ,Φ2(i))63
i=0

– contiguous blocks of stratified points xi for k ∏
s
j=1 b

mj
j ≤ i < (k + 1)∏

s
j=1 b

mj
j −1

13

Quasi-Monte Carlo Points
Halton sequence and Hammersley points

� let the bj be co-prime, for example the j-th prime number

Halton sequence Hammersley point sets

xi :=
(
Φb1 (i), . . . ,Φbs (i)

)
xi :=

(
i
n ,Φb1 (i), . . . ,Φbs−1 (i)

)

q q q q q q q
q q q q q q q

q q qq q

q q q q q q q
q q q q q q q

qq q q q

q q q q q q q
q q q q q qq q q q q q

q q q q q q q q
qq
q
q
qq
q
q
qq
q
q
qq
q

q
qq
q
q
qq
q
q
qq
q
q
qq
q

q
qq
q
q
qq
q
q
qq
q
q
qq
q

q
qq
q
q
qq
q
q
qq
q
q
qq
q

(Φ17(i),Φ19(i))63
i=0 (i

64 ,Φ2(i))63
i=0

– correlations in low dimensional projections

13

Quasi-Monte Carlo Points
Halton sequence and Hammersley points

� let the bj be co-prime, for example the j-th prime number

Halton sequence Hammersley point sets

xi :=
(
Φb1 (i), . . . ,Φbs (i)

)
xi :=

(
i
n ,Φb1 (i), . . . ,Φbs−1 (i)

)

a a a a a a a
a a a a a a a

a a aq q

q q q q q q q
q q q q q q q

qq q q q

q q q q q q q
q q q q q qq q q q q q

q q q q q q q q
qq
q
q
qq
q
q
qq
q
q
qq
q

q
qq
q
q
qq
q
q
qq
q
q
qq
q

q
qq
q
q
qq
q
q
qq
q
q
qq
q

q
qq
q
q
qq
q
q
qq
q
q
qq
q

(Φ17(i),Φ19(i))63
i=0 (i

64 ,Φ2(i))63
i=0

– correlations in low dimensional projections

13

Quasi-Monte Carlo Points
Scrambling

� algorithm: start with H = Is and for each axis j

1. slice H into bj equally sized volumes H1,H2, . . . ,Hbj along the axis

2. permute these volumes

3. for each Hh recursively repeat the procedure with H = Hh

� stratification invariant under scrambling

� many variants, simplifications, and generalizations
– example:

14

Quasi-Monte Carlo Points
Scrambling

� algorithm: start with H = Is and for each axis j

1. slice H into bj equally sized volumes H1,H2, . . . ,Hbj along the axis

2. permute these volumes

3. for each Hh recursively repeat the procedure with H = Hh

� stratification invariant under scrambling

� many variants, simplifications, and generalizations
– example: unit square [0,1)2

14

Quasi-Monte Carlo Points
Scrambling

� algorithm: start with H = Is and for each axis j

1. slice H into bj equally sized volumes H1,H2, . . . ,Hbj along the axis

2. permute these volumes

3. for each Hh recursively repeat the procedure with H = Hh

� stratification invariant under scrambling

� many variants, simplifications, and generalizations
– example: xor-scrambling bit 1 of x

14

Quasi-Monte Carlo Points
Scrambling

� algorithm: start with H = Is and for each axis j

1. slice H into bj equally sized volumes H1,H2, . . . ,Hbj along the axis

2. permute these volumes

3. for each Hh recursively repeat the procedure with H = Hh

� stratification invariant under scrambling

� many variants, simplifications, and generalizations
– example: xor-scrambling bit 2 of x

14

Quasi-Monte Carlo Points
Scrambling

� algorithm: start with H = Is and for each axis j

1. slice H into bj equally sized volumes H1,H2, . . . ,Hbj along the axis

2. permute these volumes

3. for each Hh recursively repeat the procedure with H = Hh

� stratification invariant under scrambling

� many variants, simplifications, and generalizations
– example: xor-scrambling bit 3 of x

14

Quasi-Monte Carlo Points
Scrambling

� algorithm: start with H = Is and for each axis j

1. slice H into bj equally sized volumes H1,H2, . . . ,Hbj along the axis

2. permute these volumes

3. for each Hh recursively repeat the procedure with H = Hh

� stratification invariant under scrambling

� many variants, simplifications, and generalizations
– example: xor-scrambling all bits of x

14

Quasi-Monte Carlo Points
Scrambling

� algorithm: start with H = Is and for each axis j

1. slice H into bj equally sized volumes H1,H2, . . . ,Hbj along the axis

2. permute these volumes

3. for each Hh recursively repeat the procedure with H = Hh

� stratification invariant under scrambling

� many variants, simplifications, and generalizations
– example: xor-scrambling all bits of x and y

14

Quasi-Monte Carlo Points
Scrambled radical inversion

� example: deterministic permutations σb by Faure

i =
∞

∑
j=0

aj (i)b
j 7→

∞

∑
j=0

σb(aj (i))b−j−1

– b is even: Take 2σ b
2

and append 2σ b
2

+ 1

– b is odd: Take σb−1, increment each value ≥ b−1
2 and insert b−1

2 in the middle

q q q q q
q q q q q

q q q q q
q qq q

q q q q q
q q q q q

q q q q q
q q q q

q q q q q
q q q q q

q q qq q q q q
q

q q q q q
q q

→

σ2 = (0,1)

σ3 = (0,1,2)

σ4 = (0,2,1,3)

σ5 = (0,3,2,1,4)

σ6 = (0,2,4,1,3,5)

...

→

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q

15

Quasi-Monte Carlo Points
Scrambled radical inversion

� example: deterministic permutations σb by Faure

i =
∞

∑
j=0

aj (i)b
j 7→

∞

∑
j=0

σb(aj (i))b−j−1

– b is even: Take 2σ b
2

and append 2σ b
2

+ 1

– b is odd: Take σb−1, increment each value ≥ b−1
2 and insert b−1

2 in the middle

q q q q q
q q q q q

q q q q q
q qq q

q q q q q
q q q q q

q q q q q
q q q q

q q q q q
q q q q q

q q qq q q q q
q

q q q q q
q q

→

σ2 = (0,1)

σ3 = (0,1,2)

σ4 = (0,2,1,3)

σ5 = (0,3,2,1,4)

σ6 = (0,2,4,1,3,5)

...

→

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q

15

Quasi-Monte Carlo Points
Scrambled radical inversion

� example: deterministic permutations σb by Faure

i =
∞

∑
j=0

aj (i)b
j 7→

∞

∑
j=0

σb(aj (i))b−j−1

– b is even: Take 2σ b
2

and append 2σ b
2

+ 1

– b is odd: Take σb−1, increment each value ≥ b−1
2 and insert b−1

2 in the middle

q q q q q
q q q q q

q q q q q
q qq q

q q q q q
q q q q q

q q q q q
q q q q

q q q q q
q q q q q

q q qq q q q q
q

q q q q q
q q →

σ2 = (0,1)

σ3 = (0,1,2)

σ4 = (0,2,1,3)

σ5 = (0,3,2,1,4)

σ6 = (0,2,4,1,3,5)

...

→

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q

15

Quasi-Monte Carlo Points
Scrambled radical inversion

� example: deterministic permutations σb by Faure

i =
∞

∑
j=0

aj (i)b
j 7→

∞

∑
j=0

σb(aj (i))b−j−1

– b is even: Take 2σ b
2

and append 2σ b
2

+ 1

– b is odd: Take σb−1, increment each value ≥ b−1
2 and insert b−1

2 in the middle

q q q q q
q q q q q

q q q q q
q qq q

q q q q q
q q q q q

q q q q q
q q q q

q q q q q
q q q q q

q q qq q q q q
q

q q q q q
q q →

σ2 = (0,1)

σ3 = (0,1,2)

σ4 = (0,2,1,3)

σ5 = (0,3,2,1,4)

σ6 = (0,2,4,1,3,5)

...

→

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q

15

Quasi-Monte Carlo Points
Efficient generation of the Faure-scrambled radical inverse

double RadicalInverse(const int Base, int i)

{

double Digit, Radical, Inverse = 0.0;

Digit = Radical = 1.0 / (double) Base;

while(i)

{

Inverse += Digit * (double) (i % Base);

Digit *= Radical;

i /= Base;

}

return Inverse;

}

16

Quasi-Monte Carlo Points
Efficient generation of the Faure-scrambled radical inverse

double IntegerRadicalInverse(int Base, int i)

{

int numPoints, inverse;

numPoints = 1;

for(inverse = 0; i > 0; i /= Base)

{

inverse = inverse * Base + (i % Base);

numPoints = numPoints * Base;

}

return (double) inverse / (double) numPoints;

}

17

Quasi-Monte Carlo Points
Efficient generation of the Faure-scrambled radical inverse

� compact branchless code using one look-up table for multiple digits
– example: σ5 = (0,3,2,1,4)

σ5×σ5 =



(0,0) (0,3) (0,2) (0,1) (0,4)

(3,0) (3,3) (3,2) (3,1) (3,4)

(2,0) (2,3) (2,2) (2,1) (2,4)

(1,0) (1,3) (1,2) (1,1) (1,4)

(4,0) (4,3) (4,2) (4,1) (4,4)



∼=



0 3 2 1 4

25 28 27 26 29

10 13 12 11 14

5 8 7 6 9

20 23 22 21 24



18

Quasi-Monte Carlo Points
Efficient generation of the Faure-scrambled radical inverse

� compact branchless code using one look-up table for multiple digits
– example: σ5 = (0,3,2,1,4)

σ5×σ5 =



(0,0) (0,3) (0,2) (0,1) (0,4)

(3,0) (3,3) (3,2) (3,1) (3,4)

(2,0) (2,3) (2,2) (2,1) (2,4)

(1,0) (1,3) (1,2) (1,1) (1,4)

(4,0) (4,3) (4,2) (4,1) (4,4)


∼=



0 3 2 1 4

25 28 27 26 29

10 13 12 11 14

5 8 7 6 9

20 23 22 21 24



18

Quasi-Monte Carlo Points
Efficient generation of the Faure-scrambled radical inverse

� compact branchless code using one look-up table for multiple digits
– example: σ5 = (0,3,2,1,4), for b = 5 and 3 digits, i.e. σ5×σ5×σ5

static const unsigned short perm5[] = { 0, 75, 50, 25, 100, 15, 90, 65, 40, 115, 10, 85, 60, 35, 110, 5, 80, 55,

30, 105, 20, 95, 70, 45, 120, 3, 78, 53, 28, 103, 18, 93, 68, 43, 118, 13, 88, 63, 38, 113, 8, 83, 58, 33, 108,

23, 98, 73, 48, 123, 2, 77, 52, 27, 102, 17, 92, 67, 42, 117, 12, 87, 62, 37, 112, 7, 82, 57, 32, 107, 22, 97,

72, 47, 122, 1, 76, 51, 26, 101, 16, 91, 66, 41, 116, 11, 86, 61, 36, 111, 6, 81, 56, 31, 106, 21, 96, 71, 46,

121, 4, 79, 54, 29, 104, 19, 94, 69, 44, 119, 14, 89, 64, 39, 114, 9, 84, 59, 34, 109, 24, 99, 74, 49, 124 };

inline float halton5(const unsigned index)

{

return (perm5[index % 125u] * 1953125u +

perm5[(index / 125u) % 125u] * 15625u +

perm5[(index / 15625u) % 125u] * 125u +

perm5[(index / 1953125u) % 125u]) * (0x1.fffffep-1 / 244140625u); // For results < 1.

}

19

Quasi-Monte Carlo Points
(t ,s)-sequences and (t ,m,s)-nets in base b

� elementary interval

E :=
s

∏
j=1

[
aj

blj
,
aj + 1

blj

)
⊆ Is for integers lj ≥ 0 and 0≤ aj < blj

with volume λs(E) = ∏
s
j=1

1
blj

= 1
b∑

s
j=1 lj

� For two integers 0≤ t ≤m, a finite point set of bm points in s dimensions is called a (t ,m,s)-net in

base b, if every elementary interval of volume λs(E) = bt−m contains exactly bt points.

� For t ≥ 0, an infinite point sequence is called a (t ,s)-sequence in base b, if for all k ≥ 0 and

m ≥ t , the vectors xkbm , . . . ,x(k+1)bm−1 ∈ Is form a (t ,m,s)-net.

20

Quasi-Monte Carlo Points
(t ,s)-sequences and (t ,m,s)-nets in base b

� elementary interval

E :=
s

∏
j=1

[
aj

blj
,
aj + 1

blj

)
⊆ Is for integers lj ≥ 0 and 0≤ aj < blj

with volume λs(E) = ∏
s
j=1

1
blj

= 1
b∑

s
j=1 lj

� For two integers 0≤ t ≤m, a finite point set of bm points in s dimensions is called a (t ,m,s)-net in

base b, if every elementary interval of volume λs(E) = bt−m contains exactly bt points.

� For t ≥ 0, an infinite point sequence is called a (t ,s)-sequence in base b, if for all k ≥ 0 and

m ≥ t , the vectors xkbm , . . . ,x(k+1)bm−1 ∈ Is form a (t ,m,s)-net.

20

Quasi-Monte Carlo Points
(t ,s)-sequences and (t ,m,s)-nets in base b

� elementary interval

E :=
s

∏
j=1

[
aj

blj
,
aj + 1

blj

)
⊆ Is for integers lj ≥ 0 and 0≤ aj < blj

with volume λs(E) = ∏
s
j=1

1
blj

= 1
b∑

s
j=1 lj

� For two integers 0≤ t ≤m, a finite point set of bm points in s dimensions is called a (t ,m,s)-net in

base b, if every elementary interval of volume λs(E) = bt−m contains exactly bt points.

� For t ≥ 0, an infinite point sequence is called a (t ,s)-sequence in base b, if for all k ≥ 0 and

m ≥ t , the vectors xkbm , . . . ,x(k+1)bm−1 ∈ Is form a (t ,m,s)-net.

20

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r

r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r

r
rr

r
r

rr
r r

rr
r

r
rr

r
– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r

r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

r

r
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r

r
rr

r
r

rr
rr

rr
r

r
rr

r r rr
rr

rr
rr

rr
rr

rr
r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

r

r
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r

r
rr

r
r

rr
rr

rr
r

r
rr

r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
(t ,s)-sequences are sequences of (t ,m,s)-nets in base b

� example: stratification properties of the Sobol’ (0,2)-sequence in base 2

– the sequence of (0,3,2)-nets

r
rr

rr
rr

r r
rr

rr
rr

r
r

rr
r

r
rr

r r
rr

r
r

rr
r

– the sequence of (0,4,2)-nets

r
rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r r rr

rr
rr

rr
rr

rr
rr

r
r

rr
r

r
rr

rr
rr

r
r

rr
r

– all components of the Sobol’ sequence are (0,1)-sequences in base 2⇒ deterministic LHS

21

Quasi-Monte Carlo Points
Digital (t ,s)-sequences in base b

� use one m×m generator matrix Cj for each component

x(j)
i =


b−1

...

b−m


T

Cj


a0(i)

...

am−1(i)


︸ ︷︷ ︸

multiplication in Fb

double x_base_2(uint i, uint r = 0)

{

for (uint k = 0; i; i »= 1, ++k)

if (i & 1)

r ˆ= C[k]; // SIMD addition of column

return (double) r / (double) (1 « m);

}

� optimized implementation similar to scrambled radical inverse as before

I Sobol sequence generator matrices

I Fast Sobol’ sequence generator (including pixel enumeration), inverse matrices, and Faure scrambled Halton sampler

22

http://web.maths.unsw.edu.au/~fkuo/sobol/index.html
http://gruenschloss.org/

Quasi-Monte Carlo Points
Digital (t ,s)-sequences in base b

� use one m×m generator matrix Cj for each component

x(j)
i =


b−1

...

b−m


T

Cj


a0(i)

...

am−1(i)


︸ ︷︷ ︸

multiplication in Fb

double x_base_2(uint i, uint r = 0)

{

for (uint k = 0; i; i »= 1, ++k)

if (i & 1)

r ˆ= C[k]; // SIMD addition of column

return (double) r / (double) (1 « m);

}

� optimized implementation similar to scrambled radical inverse as before

I Sobol sequence generator matrices

I Fast Sobol’ sequence generator (including pixel enumeration), inverse matrices, and Faure scrambled Halton sampler

22

http://web.maths.unsw.edu.au/~fkuo/sobol/index.html
http://gruenschloss.org/

Quasi-Monte Carlo Points
Rank-1 lattices

� given generator vector (g0, . . . ,gs−1) ∈ Ns

xi :=
i
n

(g0, . . . ,gs−1) mod [0,1)s

q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

� generator vectors
– Korobov form (1,a,a2,a3, . . .)

– rare constructions

� example: Fibonacci lattice with n = Fk and (g0,g1) = (1,Fk−1)

– usually tabulated coefficients a or gj

� search by certain criteria, e.g. maximized minimum distance, projections, . . .

� component by component construction (CBC)

23

Quasi-Monte Carlo Points
Rank-1 lattices

� given generator vector (g0, . . . ,gs−1) ∈ Ns

xi :=
i
n

(g0, . . . ,gs−1) mod [0,1)s

q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

� generator vectors
– Korobov form (1,a,a2,a3, . . .)

– rare constructions

� example: Fibonacci lattice with n = Fk and (g0,g1) = (1,Fk−1)

– usually tabulated coefficients a or gj

� search by certain criteria, e.g. maximized minimum distance, projections, . . .

� component by component construction (CBC)

23

Quasi-Monte Carlo Points
Rank-1 lattices

� given generator vector (g0, . . . ,gs−1) ∈ Ns

xi :=
i
n

(g0, . . . ,gs−1) mod [0,1)s

q
q
a

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

� generator vectors
– Korobov form (1,a,a2,a3, . . .)

– rare constructions

� example: Fibonacci lattice with n = Fk and (g0,g1) = (1,Fk−1)

– usually tabulated coefficients a or gj

� search by certain criteria, e.g. maximized minimum distance, projections, . . .

� component by component construction (CBC)

23

Quasi-Monte Carlo Points
Rank-1 lattices

� given generator vector (g0, . . . ,gs−1) ∈ Ns

xi :=
i
n

(g0, . . . ,gs−1) mod [0,1)s

q
q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

� generator vectors
– Korobov form (1,a,a2,a3, . . .)

– rare constructions

� example: Fibonacci lattice with n = Fk and (g0,g1) = (1,Fk−1)

– usually tabulated coefficients a or gj

� search by certain criteria, e.g. maximized minimum distance, projections, . . .

� component by component construction (CBC)

23

Quasi-Monte Carlo Points
Rank-1 lattices

� given generator vector (g0, . . . ,gs−1) ∈ Ns

xi :=
i
n

(g0, . . . ,gs−1) mod [0,1)s

q
q
q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

� generator vectors
– Korobov form (1,a,a2,a3, . . .)

– rare constructions

� example: Fibonacci lattice with n = Fk and (g0,g1) = (1,Fk−1)

– usually tabulated coefficients a or gj

� search by certain criteria, e.g. maximized minimum distance, projections, . . .

� component by component construction (CBC)

23

Quasi-Monte Carlo Points
Rank-1 lattices

� given generator vector (g0, . . . ,gs−1) ∈ Ns

xi :=
i
n

(g0, . . . ,gs−1) mod [0,1)s

q
q
q
q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

� generator vectors
– Korobov form (1,a,a2,a3, . . .)

– rare constructions

� example: Fibonacci lattice with n = Fk and (g0,g1) = (1,Fk−1)

– usually tabulated coefficients a or gj

� search by certain criteria, e.g. maximized minimum distance, projections, . . .

� component by component construction (CBC)

23

Quasi-Monte Carlo Points
Rank-1 lattices

� given generator vector (g0, . . . ,gs−1) ∈ Ns

xi :=
i
n

(g0, . . . ,gs−1) mod [0,1)s

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

� generator vectors
– Korobov form (1,a,a2,a3, . . .)

– rare constructions

� example: Fibonacci lattice with n = Fk and (g0,g1) = (1,Fk−1)

– usually tabulated coefficients a or gj

� search by certain criteria, e.g. maximized minimum distance, projections, . . .

� component by component construction (CBC)

23

Quasi-Monte Carlo Points
Rank-1 lattices

� given generator vector (g0, . . . ,gs−1) ∈ Ns

xi :=
i
n

(g0, . . . ,gs−1) mod [0,1)s

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

� generator vectors
– Korobov form (1,a,a2,a3, . . .)

– rare constructions

� example: Fibonacci lattice with n = Fk and (g0,g1) = (1,Fk−1)

– usually tabulated coefficients a or gj

� search by certain criteria, e.g. maximized minimum distance, projections, . . .

� component by component construction (CBC)

23

Quasi-Monte Carlo Points
Rank-1 lattices

� given generator vector (g0, . . . ,gs−1) ∈ Ns

xi :=
i
n

(g0, . . . ,gs−1) mod [0,1)s

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

� generator vectors
– Korobov form (1,a,a2,a3, . . .)

– rare constructions

� example: Fibonacci lattice with n = Fk and (g0,g1) = (1,Fk−1)

– usually tabulated coefficients a or gj

� search by certain criteria, e.g. maximized minimum distance, projections, . . .

� component by component construction (CBC)

23

Quasi-Monte Carlo Points
Rank-1 lattice sequences

� replace i
n by radical inverse

xi = φb(i) · (g0, . . . ,gs−1) mod [0,1)s

, where gj =b · · ·gj ,3gj ,2gj ,1gj ,0 are infinite sequences of digits

� ~xkbm , . . . ,~x(k+1)bm−1 form a shifted lattice

– shift ∆ in the k + 1st block for n = bm

φb(i + kbm) ·~g =
(
φb(i) + φb(kbm)

)
·~g

= φb(i) ·~g + φb(k)b−m−1~g︸ ︷︷ ︸
=:∆ q

qq
q

q
qq

qq
q

q
q

q
q

q
qq

qq
q

q
qq

q
q

qq
q

q
qq

qq
qq

q
q

qq
qq

qq
q

q
q

q
qq

qq
q

q
qq

qq
q

q
q

q
qq

qq
qq

q
q

q
q

qq
qq

q
q

qq
qq

q
q

q
q

qq
qq

qq
q

q
qq

q
� similar to (t ,s)-sequences

– for b and gj relatively prime, φb(i)gj mod [0,1) are (0,1)-sequences

I Lattice rule generating vectors

I Construction of a rank-1 lattice sequence based on primitive polynomials

24

http://web.maths.unsw.edu.au/~fkuo/lattice/index.html
https://www.cambridge.org/de/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/applied-algebra-and-number-theory?format=HB&isbn=9781107074002

Quasi-Monte Carlo Points
Rank-1 lattice sequences

� replace i
n by radical inverse

xi = φb(i) · (g0, . . . ,gs−1) mod [0,1)s, where gj =b · · ·gj ,3gj ,2gj ,1gj ,0 are infinite sequences of digits

� ~xkbm , . . . ,~x(k+1)bm−1 form a shifted lattice

– shift ∆ in the k + 1st block for n = bm

φb(i + kbm) ·~g =
(
φb(i) + φb(kbm)

)
·~g

= φb(i) ·~g + φb(k)b−m−1~g︸ ︷︷ ︸
=:∆ q

qq
q

q
qq

qq
q

q
q

q
q

q
qq

qq
q

q
qq

q
q

qq
q

q
qq

qq
qq

q
q

qq
qq

qq
q

q
q

q
qq

qq
q

q
qq

qq
q

q
q

q
qq

qq
qq

q
q

q
q

qq
qq

q
q

qq
qq

q
q

q
q

qq
qq

qq
q

q
qq

q
� similar to (t ,s)-sequences

– for b and gj relatively prime, φb(i)gj mod [0,1) are (0,1)-sequences

I Lattice rule generating vectors

I Construction of a rank-1 lattice sequence based on primitive polynomials

24

http://web.maths.unsw.edu.au/~fkuo/lattice/index.html
https://www.cambridge.org/de/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/applied-algebra-and-number-theory?format=HB&isbn=9781107074002

Quasi-Monte Carlo Points
Rank-1 lattice sequences

� replace i
n by radical inverse

xi = φb(i) · (g0, . . . ,gs−1) mod [0,1)s, where gj =b · · ·gj ,3gj ,2gj ,1gj ,0 are infinite sequences of digits

� ~xkbm , . . . ,~x(k+1)bm−1 form a shifted lattice

– shift ∆ in the k + 1st block for n = bm

φb(i + kbm) ·~g =
(
φb(i) + φb(kbm)

)
·~g

= φb(i) ·~g + φb(k)b−m−1~g︸ ︷︷ ︸
=:∆ q

qq
q

q
qq

qq
q

q
q

q
q

q
qq

qq
q

q
qq

q
q

qq
q

q
qq

q

a
a

a
a

a
aa

aa
aa

a
a

aa
a

a
aa

a
a

aa
aa

aa
a

a
a

a
a

q
qq

q
q

qq
qq

qq
q

q
q

q
qq

qq
q

q
qq

qq
q

q
q

q
qq

qq
qq

q
q

q
q

qq
qq

q
q

qq
qq

q
q

q
q

qq
qq

qq
q

q
qq

q
� similar to (t ,s)-sequences

– for b and gj relatively prime, φb(i)gj mod [0,1) are (0,1)-sequences

I Lattice rule generating vectors

I Construction of a rank-1 lattice sequence based on primitive polynomials

24

http://web.maths.unsw.edu.au/~fkuo/lattice/index.html
https://www.cambridge.org/de/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/applied-algebra-and-number-theory?format=HB&isbn=9781107074002

Quasi-Monte Carlo Points
Rank-1 lattice sequences

� replace i
n by radical inverse

xi = φb(i) · (g0, . . . ,gs−1) mod [0,1)s, where gj =b · · ·gj ,3gj ,2gj ,1gj ,0 are infinite sequences of digits

� ~xkbm , . . . ,~x(k+1)bm−1 form a shifted lattice

– shift ∆ in the k + 1st block for n = bm

φb(i + kbm) ·~g =
(
φb(i) + φb(kbm)

)
·~g

= φb(i) ·~g + φb(k)b−m−1~g︸ ︷︷ ︸
=:∆ q

qq
q

q
qq

qq
q

q
q

q
q

q
qq

qq
q

q
qq

q
q

qq
q

q
qq

qq
q

q
q

q
qq

qq
qq

q
q

qq
q

q
qq

q
q

qq
qq

qq
q

q
q

q
q

q
qq

q
q

qq
qq

qq
q

q
q

q
qq

qq
q

q
qq

qq
q

q
q

q
qq

qq
qq

q
q

q
q

qq
qq

q
q

qq
qq

q
q

q
q

qq
qq

qq
q

q
qq

q
� similar to (t ,s)-sequences

– for b and gj relatively prime, φb(i)gj mod [0,1) are (0,1)-sequences

I Lattice rule generating vectors

I Construction of a rank-1 lattice sequence based on primitive polynomials

24

http://web.maths.unsw.edu.au/~fkuo/lattice/index.html
https://www.cambridge.org/de/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/applied-algebra-and-number-theory?format=HB&isbn=9781107074002

Quasi-Monte Carlo Points
Rank-1 lattice sequences

� replace i
n by radical inverse

xi = φb(i) · (g0, . . . ,gs−1) mod [0,1)s, where gj =b · · ·gj ,3gj ,2gj ,1gj ,0 are infinite sequences of digits

� ~xkbm , . . . ,~x(k+1)bm−1 form a shifted lattice

– shift ∆ in the k + 1st block for n = bm

φb(i + kbm) ·~g =
(
φb(i) + φb(kbm)

)
·~g

= φb(i) ·~g + φb(k)b−m−1~g︸ ︷︷ ︸
=:∆ q

qq
q

q
qq

qq
q

q
q

q
q

q
qq

qq
q

q
qq

q
q

qq
q

q
qq

qq
q

q
q

q
qq

qq
qq

q
q

qq
q

q
qq

q
q

qq
qq

qq
q

q
q

q
q

q
qq

q
q

qq
qq

qq
q

q
q

q
qq

qq
q

q
qq

qq
q

q
q

q
qq

q

q
qq

q
q

q
q

qq
qq

q
q

qq
qq

q
q

q
q

qq
qq

qq
q

q
qq

q
� similar to (t ,s)-sequences

– for b and gj relatively prime, φb(i)gj mod [0,1) are (0,1)-sequences

I Lattice rule generating vectors

I Construction of a rank-1 lattice sequence based on primitive polynomials

24

http://web.maths.unsw.edu.au/~fkuo/lattice/index.html
https://www.cambridge.org/de/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/applied-algebra-and-number-theory?format=HB&isbn=9781107074002

Quasi-Monte Carlo Points
Rank-1 lattice sequences

� replace i
n by radical inverse

xi = φb(i) · (g0, . . . ,gs−1) mod [0,1)s, where gj =b · · ·gj ,3gj ,2gj ,1gj ,0 are infinite sequences of digits

� ~xkbm , . . . ,~x(k+1)bm−1 form a shifted lattice

– shift ∆ in the k + 1st block for n = bm

φb(i + kbm) ·~g =
(
φb(i) + φb(kbm)

)
·~g

= φb(i) ·~g + φb(k)b−m−1~g︸ ︷︷ ︸
=:∆ q

qq
q

q
qq

qq
q

q
q

q
q

q
qq

qq
q

q
qq

q
q

qq
q

q
qq

qq
q

q
q

q
qq

qq
qq

q
q

qq
q

q
qq

q
q

qq
qq

qq
q

q
q

q
q

q
qq

q
q

qq
qq

qq
q

q
q

q
qq

qq
q

q
qq

qq
q

q
q

q
qq

qq
qq

q
q

q
q

qq
qq

q
q

qq
qq

q
q

q
q

qq
qq

qq
q

q
qq

q
� similar to (t ,s)-sequences

– for b and gj relatively prime, φb(i)gj mod [0,1) are (0,1)-sequences

I Lattice rule generating vectors

I Construction of a rank-1 lattice sequence based on primitive polynomials

24

http://web.maths.unsw.edu.au/~fkuo/lattice/index.html
https://www.cambridge.org/de/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/applied-algebra-and-number-theory?format=HB&isbn=9781107074002

Light transport simulation using a rank-1 lattice sequence based on primitive polynomials

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

q
q
qq q q q

q qqqq
q q

q
q q qqq

qq
qqqqq

q
q q qq qq

qq
qq q q q
qq

q
q qq qq
q

q qq
q q

q qqqq
qqq q

q
q

qqq
q

qq q
q q qqq

q
qq q qq qq qq q

q qq q
q q
q

qq
qqq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

q
q
qq q

q q
q qqqq

q qq
q q qqq

q q
qqq

q q
q

q q qq qq
qq
qq q q q
qq

q
q qq qq q

q

q
q

q q
qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q

qq qq qq q
qqq q

q q
q

qq
qqq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q q
q qqq q

q qq
q q qqq

q q
qqq

q q
q

q q qq qq qq
qq q q q
qq

q
q qq qq q

q

q
q

q q
qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
qqq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q q
q qqq q

q qq
q q q
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q q
qq

q
q qq qq q

q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
qqq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q q
q qqq q

q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q q
q qqq q

q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q q
q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

qq
qq q

q
q

q qq
q
q
q qq
q qq
qq

q q
qqq

q

q
q

q q qq qq qq
qq q q qq

q
q

q qq qq q
q

q
qq
q

qqqqq
qqq q

q
q

qqq
q

qq q
q qqq

q

q
qq

q
qq qq qqq

qqq q
q q
q

qq
q qq

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

� low discrepancy

D∗(Pn) := sup
A=∏

s
j=1[0,aj)⊆[0,1)s

∣∣∣∣∣
∫

[0,1)s
χA(x)dx − 1

n

n−1

∑
i=0

χA(xi)

∣∣∣∣∣ ∈ O

(
logs n

n

)

26

Quasi-Monte Carlo Points
Uniformity of a point set Pn := {x0, . . . ,xn−1} ∈ [0,1)s

� maximum minimum distance dmin(Pn) := min0≤i<n mini<j<n ‖xj −xi‖T on torus T

� low discrepancy

D∗(Pn) := sup
A=∏

s
j=1[0,aj)⊆[0,1)s

∣∣∣∣∣
∫

[0,1)s
χA(x)dx − 1

n

n−1

∑
i=0

χA(xi)

∣∣∣∣∣ ∈ O

(
logs n

n

)
� Let (X ,B,µ) be an arbitrary probability space and let M be a nonempty subset of B. A point set

Pn of n elements of X is called (M ,µ)-uniform if

n−1

∑
i=0

χM (~xi) = µ(M) ·n for all M ∈M ,

where χM (~xi) = 1 if~xi ∈M, zero otherwise.

26

Quasi-Monte Carlo Points
Error bounds depend on function classes

� Lipschitz continuous functions∣∣∣∣∣
∫

[0,1]s
f (x)dx − 1

n

n−1

∑
i=0

f (xi)

∣∣∣∣∣≤ L · r(n,g)

– maximum minimum distance r(n,g) of rank-1 lattice

� Koksma-Hlawka inequality for functions of bounded variation∣∣∣∣∣
∫

[0,1)s
f (x)dx − 1

n

n−1

∑
i=0

f (xi)

∣∣∣∣∣≤ V (f)D∗(Pn)

– variation often unbounded in practical settings

� functions with sufficiently fast vanishing Fourier coefficients
– another bound for rank-1 lattices

27

Quasi-Monte Carlo Points
Error bounds depend on function classes

� Lipschitz continuous functions∣∣∣∣∣
∫

[0,1]s
f (x)dx − 1

n

n−1

∑
i=0

f (xi)

∣∣∣∣∣≤ L · r(n,g)

– maximum minimum distance r(n,g) of rank-1 lattice

� Koksma-Hlawka inequality for functions of bounded variation∣∣∣∣∣
∫

[0,1)s
f (x)dx − 1

n

n−1

∑
i=0

f (xi)

∣∣∣∣∣≤ V (f)D∗(Pn)

– variation often unbounded in practical settings

� functions with sufficiently fast vanishing Fourier coefficients
– another bound for rank-1 lattices

27

Quasi-Monte Carlo Points
Error bounds depend on function classes

� Lipschitz continuous functions∣∣∣∣∣
∫

[0,1]s
f (x)dx − 1

n

n−1

∑
i=0

f (xi)

∣∣∣∣∣≤ L · r(n,g)

– maximum minimum distance r(n,g) of rank-1 lattice

� Koksma-Hlawka inequality for functions of bounded variation∣∣∣∣∣
∫

[0,1)s
f (x)dx − 1

n

n−1

∑
i=0

f (xi)

∣∣∣∣∣≤ V (f)D∗(Pn)

– variation often unbounded in practical settings

� functions with sufficiently fast vanishing Fourier coefficients
– another bound for rank-1 lattices

27

Quasi-Monte Carlo Points
More uniform than random points can be

Hammersley Sobol‘ L.-P’hammer opt. (0,m,2) Perm.-nets Rank-1 lattice

q
q q
q
q
q q
q
q
q q
q
q
q q
q

q
qq

qq
qq

qq
qq

qq
qq

q q
q q q
q
q q
q q q q

q
q
q q q q

q
q q
q
q
q q
q
q
q q q
q
q q q q

q q
q q
q q

q q
q q

q q
qq

q q
q q
q q
q q
q q
q q
q q
q q

dmin = 0.0884 dmin = 0.0884 dmin = 0.1768 dmin = 0.2253 dmin = 0.2253 dmin = 0.25

q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q

q
qq

qq
qq

qq
qq

qq
qq

q
q

qq
q

q
qq

qq
qq

q
q

qq
qq

qq
qq

qq
qq

qq
qq

qq
q

q
qq

q
q

qq
qq

qq
q

q
qq

q q
qqq
q
qq
qqqq
q
q
qqq
q
qq
q
q
qqqq
qqq
q
qq
qqqq
q
q
qqqq
qqq
q
qq
q
q
qqq
q
qq
qqqq
q
q
qqq q

qq
q
q
qq
qq
q
q
qq
q
q
qq
q
q
qq
q
q
q
q
qq
q
q
qq
q
q
qq
q
q
qq
qq
q
q
qq
q
q
qq
q
q
qq
q
q
q
q
qq
q
q
qq
q

qqqq
qqqq

qqqq
qqqq

qqqq
qqqq

qqqq
qqqq

qqqq
qqqq

qqqq
qqqq

qqqq
qqqq

qqqqqqq
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

dmin = 0.0221 dmin = 0.0442 dmin = 0.0884 dmin = 0.1127 dmin = 0.1138 dmin = 0.1259

28

Quasi-Monte Carlo Points
Searching for (t ,m,s)-nets in base b = 2

� verifying the t = 0 property for a point with integer coordinates (i , j) ∈ [0,2m)2

for (k = 1; k < m; k++)

{

// combine k bits of i and m-k bits of j to form index

idx = (i >> (m - k)) + (j & (0xFFFFFFFF << k));

if(elementaryInterval[k][idx]++) // already one point there?

break; // t > 0 !

}

I (t ,m,s)-Nets and Maximized Minimum Distance

I (t ,m,s)-Nets and Maximized Minimum Distance, Part II

29

https://link.springer.com/chapter/10.1007/978-3-540-74496-2_23
http://gruenschloss.org/diag0m2/diag0m2.pdf

Questions over Questions

Low- or High-Dimensional?
Light transport simulation

� ways to formulate the radiance Lr reflected in a surface point x

Lr (x ,ωr)

=
∫
S 2
−(x)

Li (x ,ω)fr (ωr ,x ,ω)cosθx dω

P

L

Camera

= lim
r(x)→0

∫
S 2
−(x)

∫
B(x) w(x ,x ′)Li (x ′,ω)dx ′∫

B(x) w(x ,x ′)dx ′
fr (ωr ,x ,ω)cosθx dω

=
∫

∂V
V (x ,y)Li (x ,ω)fr (ωr ,x ,ω)cosθx

cosθy

|x −y |2
dy

=

� actually an integro-approximation problem: Integrals depend on x and reflection direction ωr

31

Low- or High-Dimensional?
Light transport simulation

� ways to formulate the radiance Lr reflected in a surface point x

Lr (x ,ωr)

=
∫
S 2
−(x)

Li (x ,ω)fr (ωr ,x ,ω)cosθx dω

P

L

Camera

= lim
r(x)→0

∫
S 2
−(x)

∫
B(x) w(x ,x ′)Li (x ′,ω)dx ′∫

B(x) w(x ,x ′)dx ′
fr (ωr ,x ,ω)cosθx dω

=
∫

∂V
V (x ,y)Li (x ,ω)fr (ωr ,x ,ω)cosθx

cosθy

|x −y |2
dy

=

� actually an integro-approximation problem: Integrals depend on x and reflection direction ωr

31

Low- or High-Dimensional?
Light transport simulation

� ways to formulate the radiance Lr reflected in a surface point x

Lr (x ,ωr)

=
∫
S 2
−(x)

Li (x ,ω)fr (ωr ,x ,ω)cosθx dω

P

L

Camera

= lim
r(x)→0

∫
S 2
−(x)

∫
B(x) w(x ,x ′)Li (x ′,ω)dx ′∫

B(x) w(x ,x ′)dx ′
fr (ωr ,x ,ω)cosθx dω

=
∫

∂V
V (x ,y)Li (x ,ω)fr (ωr ,x ,ω)cosθx

cosθy

|x −y |2
dy

= lim
r(x)→0

∫
∂V

∫
S 2
−(y)

χB(x −h(y ,ω))

πr(x)2 Li (h(y ,ω),ω)fr (ωr ,h(y ,ω),ω)cosθy dωdy

� actually an integro-approximation problem: Integrals depend on x and reflection direction ωr

31

Low- or High-Dimensional?
Light transport simulation

� ways to formulate the radiance Lr reflected in a surface point x

Lr (x ,ωr)

=
∫
S 2
−(x)

Li (x ,ω)fr (ωr ,x ,ω)cosθx dω

P

L

Camera

= lim
r(x)→0

∫
S 2
−(x)

∫
B(x) w(x ,x ′)Li (x ′,ω)dx ′∫

B(x) w(x ,x ′)dx ′
fr (ωr ,x ,ω)cosθx dω

=
∫

∂V
V (x ,y)Li (x ,ω)fr (ωr ,x ,ω)cosθx

cosθy

|x −y |2
dy

= lim
r(x)→0

∫
∂V

∫
S 2
−(y)

χB(x −h(y ,ω))

πr(x)2 Li (h(y ,ω),ω)fr (ωr ,h(y ,ω),ω)cosθy dωdy

� actually an integro-approximation problem: Integrals depend on x and reflection direction ωr

31

Low- or High-Dimensional?
Light transport simulation

� ways to formulate the radiance Lr reflected in a surface point x

Lr (x ,ωr)

=
∫
S 2
−(x)

Li (x ,ω)fr (ωr ,x ,ω)cosθx dω

P

L

Camera

= lim
r(x)→0

∫
S 2
−(x)

∫
B(x) w(x ,x ′)Li (x ′,ω)dx ′∫

B(x) w(x ,x ′)dx ′
fr (ωr ,x ,ω)cosθx dω

=
∫

∂V
V (x ,y)Li (x ,ω)fr (ωr ,x ,ω)cosθx

cosθy

|x −y |2
dy

= lim
r(x)→0

∫
∂V

∫
S 2
−(y)

χB(x −h(y ,ω))

πr(x)2 Li (h(y ,ω),ω)fr (ωr ,h(y ,ω),ω)cosθy dωdy

� actually an integro-approximation problem: Integrals depend on x and reflection direction ωr

31

Low- or High-Dimensional?
Light transport simulation

� radiance L is light sources Le plus transported radiance Tf L

L = Le + Tf L

=
∞

∑
i=0

T iLe

� reinforcement learning to compute low-dimensional approximation

L′c = (1−α)Lc + α (Le + Tf Lc)

to guide high-dimensional paths
– itself using approximation instead of tracing paths with higher variance

32

Low- or High-Dimensional?
Light transport simulation

� radiance L is light sources Le plus transported radiance Tf L

L = Le + Tf L =
∞

∑
i=0

T iLe

� reinforcement learning to compute low-dimensional approximation

L′c = (1−α)Lc + α (Le + Tf Lc)

to guide high-dimensional paths
– itself using approximation instead of tracing paths with higher variance

32

Low- or High-Dimensional?
Light transport simulation

� radiance L is light sources Le plus transported radiance Tf L

L = Le + Tf L =
∞

∑
i=0

T iLe

� reinforcement learning to compute low-dimensional approximation

L′c = (1−α)Lc + α (Le + Tf Lc)

to guide high-dimensional paths
– itself using approximation instead of tracing paths with higher variance

32

Low- or High-Dimensional?
Light transport simulation

� radiance L is light sources Le plus transported radiance Tf L

L = Le + Tf L =
∞

∑
i=0

T iLe

� reinforcement learning to compute low-dimensional approximation

L′c = (1−α)Lc + α (Le + Tf Lc)

to guide high-dimensional paths
– itself using approximation instead of tracing paths with higher variance

32

approximate solution Q stored on discretized hemispheres across scene surface

2048 paths traced with BRDF importance sampling in a scene with challenging visibility

Path tracing with online reinforcement learning at the same number of paths

Low- or High-Dimensional?
Simultaneous Simulation of Markov Chains

� reordering to benefit from uniformity

� algorithm
– simultaneously trace multiple paths bounce by bounce

– enumerate points along route of proximity (e.g. Z-curve) to make sub-sequence property work

36

Low- or High-Dimensional?
Simultaneous Simulation of Markov Chains

� reordering to benefit from uniformity

� algorithm
– simultaneously trace multiple paths bounce by bounce

– enumerate points along route of proximity (e.g. Z-curve) to make sub-sequence property work

36

What do you want to see?
Anti-aliasing

� given α ∈ (0,1], integrating

f (x) =

1 x < 1−α

1
α

else

1−α 1

1
α

1
seems simple

∫ 1

0
f (x)dx = (1−α) ·1 + α

1
α

= 2−α ≈ 1
n

n−1

∑
i=0

f (xi)

but numerical integration becomes increasingly difficult for a→ 0

– example: each sample f (xi) of brightness 1
α

= 1026 (e.g. the sun)

requires at least n ∼ 1026 more samples to average out

37

What do you want to see?
Anti-aliasing

� given α ∈ (0,1], integrating

f (x) =

1 x < 1−α

1
α

else

1−α 1

1
α

1
seems simple

∫ 1

0
f (x)dx = (1−α) ·1 + α

1
α

= 2−α

≈ 1
n

n−1

∑
i=0

f (xi)

but numerical integration becomes increasingly difficult for a→ 0

– example: each sample f (xi) of brightness 1
α

= 1026 (e.g. the sun)

requires at least n ∼ 1026 more samples to average out

37

What do you want to see?
Anti-aliasing

� given α ∈ (0,1], integrating

f (x) =

1 x < 1−α

1
α

else

1−α 1

1
α

1
seems simple

∫ 1

0
f (x)dx = (1−α) ·1 + α

1
α

= 2−α ≈ 1
n

n−1

∑
i=0

f (xi)

but numerical integration becomes increasingly difficult for a→ 0

– example: each sample f (xi) of brightness 1
α

= 1026 (e.g. the sun)

requires at least n ∼ 1026 more samples to average out

37

What do you want to see?
Anti-aliasing

� given α ∈ (0,1], integrating

f (x) =

1 x < 1−α

1
α

else

1−α 1

1
α

1
seems simple

∫ 1

0
f (x)dx = (1−α) ·1 + α

1
α

= 2−α ≈ 1
n

n−1

∑
i=0

f (xi)

but numerical integration becomes increasingly difficult for a→ 0

– example: each sample f (xi) of brightness 1
α

= 1026 (e.g. the sun)

requires at least n ∼ 1026 more samples to average out

37

What do you want to see?
Anti-aliasing

� 1 random sample per pixel

– artifacts covered by noise

– however, freckled edges

38

What do you want to see?
Anti-aliasing

� 1 random sample per pixel

– artifacts covered by noise

– however, freckled edges

38

What do you want to see?
Anti-aliasing

� 16 random samples per pixel

– slower

– reduced variance

– looks better

39

What do you want to see?
Anti-aliasing

� 4 × 4 stratified random samples per pixel

– often converges faster

40

What do you want to see?
Anti-aliasing

� 1024 × 1024 stratified random samples per pixel

– at the horizon

– in the middle

– in the front

41

What do you want to see?
Anti-aliasing

� 1024 × 1024 stratified random samples per pixel, looking at 2 × 2 pixels

– at the horizon

– in the middle

– in the front

41

What do you want to see?
Anti-aliasing

� 1024 × 1024 stratified random samples per pixel, looking at 2 × 2 pixels

– at the horizon

– in the middle

– in the front

41

What do you want to see?
Anti-aliasing

� 1024 × 1024 stratified random samples per pixel, looking at 2 × 2 pixels

– at the horizon

– in the middle

– in the front

41

What do you want to see?
Anti-aliasing

� isotropic vs. anisotropic rank-1 lattices select by project normal

I Efficient Search for Two-Dimensional Rank-1 Lattices with Applications in Graphics

42

https://link.springer.com/chapter/10.1007/978-3-642-04107-5_16

Images or Pixels?
Independence of pixels vs. independence of samples

� anti-aliasing a zone plate at 4 samples per pixel

jittered sampling (t ,s)-sequence rank-1 lattice

– error bounds depend on a function class

43

Images or Pixels?
Independence of pixels vs. independence of samples

� anti-aliasing a zone plate at 4 samples per pixel

jittered sampling (t ,s)-sequence rank-1 lattice

– error bounds depend on a function class

43

Ambient occlusion at 16 rank-1 lattice samples per pixel

Ambient occlusion at 16 random samples per pixel

Ambient occlusion at 16 rank-1 lattice samples per pixel with Cranley-Patterson-rotation

My favorite Samples

My favorite Samples
Quasi-Monte Carlo points

� deterministic low discrepancy sequences
– especially rank-1 lattice sequences

I proceedings of the MCQMC conference series

I Quasi-Monte Carlo image synthesis in a nutshell

I Myths of Computer Graphics

I The Iray light transport simulation and rendering system

’For every randomized algorithm, there is a clever deterministic one.’

Harald Niederreiter, Claremont, 1998.

48

http://www.mcqmc2012.unsw.edu.au/slides/MCQMC2012_Keller_Tutorial.pdf
https://link.springer.com/chapter/10.1007/3-540-31186-6_14
https://arxiv.org/abs/1705.01263

My favorite Samples
Quasi-Monte Carlo points

� deterministic low discrepancy sequences
– especially rank-1 lattice sequences

I proceedings of the MCQMC conference series

I Quasi-Monte Carlo image synthesis in a nutshell

I Myths of Computer Graphics

I The Iray light transport simulation and rendering system

’For every randomized algorithm, there is a clever deterministic one.’

Harald Niederreiter, Claremont, 1998.

48

http://www.mcqmc2012.unsw.edu.au/slides/MCQMC2012_Keller_Tutorial.pdf
https://link.springer.com/chapter/10.1007/3-540-31186-6_14
https://arxiv.org/abs/1705.01263

My favorite Samples
Schedule

� 9:40 Progressive Multi-Jittered Sequences
– Per Christensen, Pixar

� 10:15 Warp and Effect
– Matt Pharr, NVIDIA

� break

� 11:05 Low-Discrepancy Blue Noise Sampling
– Abdalla Ahmed, King Abdulla University and Victor Ostromoukhov, Université Claude Bernard Lyon 1

� 11:40 Blue-Noise Dithered Sampling
– Iliyan Georgiev, Autodesk

� check https://sites.google.com/view/myfavoritesamples

49

https://sites.google.com/view/myfavoritesamples

	Schedule
	Course web page at https://sites.google.com/view/myfavoritesamples

	My favorite Samples
	For modeling
	For approximation
	For simulation
	For integration
	For integro-approximation

	Random or Deterministic?
	What matters

	Numerical Integration and Integro-Approximation
	Sampling

	Quasi-Monte Carlo Points
	Quasi-Monte Carlo methods
	Uniform sampling in Monte Carlo and quasi-Monte Carlo methods
	Radical inversion
	Halton sequence and Hammersley points
	Scrambling
	Scrambled radical inversion
	Efficient generation of the Faure-scrambled radical inverse
	(t,s)-sequences and (t,m,s)-nets in base b
	(t,s)-sequences are sequences of (t,m,s)-nets in base b
	Digital (t,s)-sequences in base b
	Rank-1 lattices
	Rank-1 lattice sequences
	Uniformity of a point set Pn := { x0, …, xn-1} [0,1)s
	Error bounds depend on function classes
	More uniform than random points can be
	Searching for (t, m, s)-nets in base b = 2

	Questions over Questions
	Low- or High-Dimensional?
	Light transport simulation
	Simultaneous Simulation of Markov Chains

	What do you want to see?
	Anti-aliasing

	Images or Pixels?
	Independence of pixels vs. independence of samples

	My favorite Samples
	Quasi-Monte Carlo points
	Schedule

