
Efficient Markov Chain Monte Carlo Methods
for Global Illumination Algorithms

Robert Kraus

Master Thesis
Advisor: dr Andrzej Lukaszewski

University of Wroc law
Department of Mathematics and Computer Science

Institute of Computer Science
September 30, 2016

(the slightly refined after-defense version)

Abstract

The point of this thesis is to discuss the usage of algorithms based on ray tracing combined
with Monte Carlo and Markov Chain Monte Carlo integration methods for the purpose of
solving global illumination problem. The main advantage of MCMC methods is their ability
to share information about light found during computations between a number of pixels or
let’s say ability to focus sampling efforts on important domain regions. The spatial inter-
pixel coherency in path space is exploited so the cost of rendering is amortized over all image
pixels. We aim to deliver clarified description and refined variants of presented techniques
that will help with any programming/engineering work and scientific research, both academic
and industrial, involved with these techniques.

The structure of this document is organized in the following manner. In the first chapter
we bring an introduction to Computer Graphics and the two major topics, the Global Illumi-
nation and Light Transport Simulation. The second chapter describes some of the path space
properties. The third chapter brings a theoretical background for Monte Carlo integration
along with analysis of its properties in the context of global illumination. The fourth chap-
ter is an introduction to Markov Chains and their role in Monte Carlo integration. In the
fifth chapter we present clarified Energy Redistribution Path Tracing algorithm along with
experiments and suggestions for further improvements.

Key Words and Related Fields

computer graphics, computational graphics, computational physics, physically based ren-
dering, physically valid rendering, physically accurate rendering, realistic image synthesis,
light transport simulation, global illumination, ray tracing, rendering systems, numerical in-
tegration, Monte Carlo methods, Markov Chain Monte Carlo methods, Markov Chains.

Efektywne Metody Markov Chain Monte Carlo
Dla Algorytmow Globalnego Oswietlenia

Streszczenie

Celem tej pracy jest omowienie algorytmow sledzenia promieni w polaczeniu z metodami
Monte Carlo oraz metodami Markov Chain Monte Carlo dla rozwiazywania problemu global-
nego oswietlenia. Glowna zaleta metod MCMC jest ich zdolnosc do wspoldzielenia informacji
zwiazanej z oswietleniem pomiedzy pikselami lub innymi slowy ich zdolnosc do skupienia
wysilku zwiazanego z probkowaniem w najbardziej istotnych obszarach dziedziny calkowania.
Koherencja przestrzenna, pomiedzy pikselami, jest wykorzystana w przestrzeni sciezek, dzieki
czemu koszt renderingu jest zamortyzowany wzgledem wszystkich pikseli obrazu. Naszym
celem jest dostarczenie klarownego opisu i udoskonalonych wersji prezentowanych technik
renderingu, ktore moga pomoc w przyszlych pracach inzynieryjnych/programistycznych oraz
badaniach naukowych, na poziome akademickim oraz przemyslowym, zwiazanych z tymi tech-
nikami.

Struktura dokumentu zorganizowana jest w nastepujacy sposob. Pierwszy rozdzial jest
wprowadzeniem do grafiki komputerowej oraz dwoch waznych zagadnien, globalnego os-
wietlenia i symulacji transportu swiatla. Rozdzial drugi przedstawia niektore wlasciwosci
przestrzeni sciezek. Rozdzial trzeci dostarcza teoretycznych podstaw metod Monte Carlo
wraz z analiza ich wlasciwosci w kontekscie globalnego oswietlenia. Rozdzial czwarty jest
wprowadzeniem do lancuchow Markova oraz ich roli w calkowaniu metodami Monte Carlo. W
rozdziale piatym prezentujemy przejrzysty i uporzadkowany opis algorytmu Energy Redistri-
bution Path Tracing wraz z eksperymentami oraz sugestiami dotyczacymi jego udoskonalenia.

Slowa kluczowe

grafika komputerowa, grafika obliczeniowa, fizyka obliczeniowa, rendering bazowany na
fizyce, rendering poprawny fizycznie, synteza fotorealistycznego obrazu, symulacja transportu
swiatla, globalne oswietlenie, sledzenie promieni, systemy renderingu, calkowanie numeryczne,
metody Monte Carlo, metody Markov Chain Monte Carlo. lancuchy Markova.

Contents

1 Introduction 6
1.1 A Brief History of Rendering in Computer Graphics 6
1.2 Introduction to Global Illumination and Light Transport 10

1.2.1 The Global Illumination . 10
1.2.2 The Light Transport Simulation . 10

2 The Structure and Properties of the Path Space Fabric 11

3 Monte Carlo Integration for Global Illumination Setting 13
3.1 General Idea of Monte Carlo Integration . 13
3.2 Behavioural Properties of Monte Carlo Estimators 14
3.3 Ray Paths and Path Space . 15
3.4 Energy and Spectrum-Valued Functions . 17
3.5 Types of Stochastic Noise . 19
3.6 Monte Carlo Path Tracing . 20
3.7 Construction of Monte Carlo Path Tracing algorithm 23
3.8 Empirical Depth-Based Analysis of MC Integration in Path Space 23

4 Markov Chain Monte Carlo Methods 34
4.1 Introduction . 34
4.2 Correlated Integrals . 38
4.3 Energy Flow . 39
4.4 Review of Metropolis Sampling . 41

5 Energy Redistribution Path Tracing 42
5.1 A Quick Analysis of Deposition Constant . 45
5.2 Core Control Parameters . 46
5.3 Algorithm Outline and Correction . 46
5.4 Implementing the Mutations . 48
5.5 Designing Good Mutations . 52
5.6 Optical Type System as a Tool for User-Controllable Transition Schemes . . . 58
5.7 MC Sample-Set Entropy . 59
5.8 Trade-Off Between Number of MC Samples and MCMC Samples 59
5.9 Workflow, Work-splitting Schemes and Accumulation Styles 60

6 Conclusion 63

7 Bibliography 65

5

1 Introduction

1.1 A Brief History of Rendering in Computer Graphics

Rendering (or forward rendering) is a process in which a picture or a synthetic photograph
gets created by performing computational processes on a given digital description of a scene.
There is a lot of freedom in terms of geometrical information, a scene can be represented in the
form of triangles, polygons, surfels or voxels. Usually these geometric objects are associated
with some kind of appearance information, here we can employ shading functions, BxDF
functions, color coefficients, textures, etc.

The before mentioned computational processes handle the whole magic behind the image
creation, their principles vary wildly and the goals that they try to achieve are also strongly
different. Our expectations from a rendered image may be different depending on the context,
in some cases we want to get perfect photographic quality of a picture, but on the other hand
we may not require a perfectly matching photographic results, instead we want a strongly
photographic impression with slightly artistic or unnatural appearance. This may be desired
in film production, short movies or some artwork. In some cases we would like to achieve high
or constant framerate in order to employ a rendering method into a real-time environment,
an obvious example here are computer games. Sometimes we would like to perform offline
rendering technique that pushes it hard to the shortest rendering time that is possible to
achieve through sharing lighting information between pixels and frames. As we have figured
out the challenges we can now think of methods that will let us solve them.

Traditionally, the 3D rendering was performed by employing the so called rasterization
algorithms. They rely on discretizing each triangle directly into pixels. Rasterization often
works together with shading methods that are appearance-oriented, that means they strive to
recreate the visual phenomena on an object surface instead of simulating physical phenomena
that will in turn lead to a visual appearance creation. This of course has advantages and
disadvantages. The main advantage is the high performance, rendering techniques designed
to work with rasteraztion are usually very fast and when accelerated by the hardware they
can easily bring high framerates that have critical value for games. On the other hand these
methods suffer from hardships in the context of available visual effects and the overall image
quality. They may struggle to produce some of photographic or cinematic visual effects in
an accurate and consistent manner as the time goes by and scene content changes due to
motion and destruction. We refer to these method as appearance-based having in mind that
they are often called ad-hoc shading (or lighting) techniques or simply hacks. The latter two
pretty much explain their selective nature along with inability to capture the global context
of shading and lighting. In some cases it may be hard or even impossible to combine a few
such techniques to achieve a complete result that shows added visual richness of all employed
methods.

The appearance-based rendering techniques may be very useful in some use cases, as we
discussed, but there are situations in which they fail badly. When materials are very com-
plex, when geometry complexity is very high, when scenes are animated, when complex camera
models are employed and when photo-realistic quality is desired, these methods may be insuf-
ficient. Fortunately they have their counterparts, the physically-based rendering techniques.
They employ physical principles and models of phenomena involved with light travel along
with numerical methods to bring effective and efficient computational models and algorithms.
Examples of computational models are density functions describing material optical proper-

ties that can accurately reproduce microscopic phenomena at the macroscopic level and light
elements carrying density of some measurable radiometric quantity. Examples of computa-
tional algorithms are Monte Carlo methods and Markov Chain Monte Carlo methods. Key
concepts that often appear in these methods are light ray, light beam, light path, photon
(particle). Some people think that these techniques are brute-force solutions. This comes
from the fact that they are usually more computationally demanding. Let’s say they are
expensive in terms of CPU or GPU cycles, they are often involved with non-trivial memory
access patterns which leads to low memory performance through cache eviction, they may
also suffer from necessity for clever buffering or caching for temporary results when multi-
threading is used. On the other hand, they are very intelligent, they do not apply physical
models straightly, meaning they do not process billions of billions of rays or photons in order
to reproduce the nature of light in the complete sense. Instead they are based on clever obser-
vations and assumptions that bring simplicity. The most fundamental thing here is a concept
of steady-state (or stationary) distribution, many physical phenomena that we will want to
model or re-create will be expressed by some distribution, often it will be some kind of density
function. For a nearly comprehensive coverage of the topic along with rich bibliography we
refer reader to the highly valued work, [7] Physically Based Rendering.

In three-dimensional computer graphics, the rendering process refers to making an image
from a given geometric data, including vertices, triangles, polygons, meshes. If an output
image is desired to have photo-realistic quality, then rendering is performed by light transfer.
Methods that create such synthetic photographs by measuring light transport are collectively
known as global illumination algorithms. In a very real sense, the process of global illumina-
tion is a physically based computer simulation in which virtual light is traced or propagated
through a virtual scene and recorded on a virtual film plane. Optically correct mathematical
models of light transport are computationally extremely expensive. From a point of view
of a rendering system there is no need to process complete information about light flowing
through a virtual scene.

The most versatile global illumination algorithms currently available are based on ray
tracing and numerical integration.

7

An example of scene with translucent materials

An example of scene with caustic light

8

An example of scene with refractive materials

An example of interor rendering

9

1.2 Introduction to Global Illumination and Light Transport

1.2.1 The Global Illumination

The illumination in which perceived surface get its appearance from light striking it directly
from some light source or set of light emitting objects is called direct illumination. More
formally we can say that the direct illumination terms describes lighting that passes through
only one reflection or transmission along the way. Majority of the brightness in an image
comes exactly from this kind of lighting, but astonishingly majority of visual richness in an
image is brought by the indirect illumination. The term ’indirect’ simply means that light
travelled through at least two reflections before reaching an eye or a camera. So the global
illumination is the one in which both direct and indirect parts are being taken into account,
and it guarantees that any observable surface will show appearance that is dependent on the
entire scene characteristics instead of a local properties of a single material. This kind of
lighting brings us all the natural visual effects along with photographic or cinematic quality,
hence it is so important for us.

Within the time of last 40 years researchers developed a lot of algorithms based on different
principles. Important examples are ray tracing, unidirectional path tracing [6], bidirectional
path tracing [10], metropolis light transport [1], energy redistribution path tracing [2], photon
mapping [9], radiosity, instant radiosity, many-lights and lightcuts [11], point-based color
bleeding [12].

1.2.2 The Light Transport Simulation

The nature of light is very complex and not all of its properties play a role in image creation,
therefore applying complete set of physical laws that govern light flow through a scene is
definitely not the best solution. As stated previously, they key concept is a steady-state
distribution of some measurable quantity. We have to consider two media, space and time,
let’s say that light flows through volumes or between surfaces and does so over the time. To
construct distributions expressed by density functions we often forget about time, we do that
by computing our quantities in a ’per unit of time’ manner, thus we are usually interested
in power instead of energy. The same thing applies to the measurements over space, we
construct density functions by defining quantities ’per unit solid angle’, ’per unit surface
area’ or ’per unit of volume’. All that gives us the ability to define quantities that are in some
scene area-less, volume-less and time-less. Such quantities allow us to express meaningful
values on points and rays (lines), this in turn provides us with the ability to draw a finite
and relatively small set of discrete samples, these samples are processed by some magic which
in turn leads to the final solution. To put it in other words, what we do is not exactly light
transport simulation in its very strict meaning, we do not reconstruct every single event that
occurs during light travel, how waves or particles are scattering and interact with matter at
the atomic or quantum level. Instead, we try to analytically define stationary distributions
of all the relevant properties of light transport and we aim to reconstruct them numerically.
So by employing numerical integration over space or space-time we determine what will be
on a camera film in terms of color and brightness for every pixel.

10

2 The Structure and Properties of the Path Space Fabric

The path space depth. This is the quantity that determines how long are the longest paths
that contribute to our global illumination solution. Theoretically, for a perfect solution we
should set this parameter to infinity. In practice, it often makes no sense because extremely
long paths contribute very little to the image, let’s say that values such as 5, 10, 20 (or let’s
say less than 50) are often good enough.

The maximal ray trace depth. It is a threshold that a ray tracing engine must not exceed.
It often has the same value as the path space depth.

The lighting deepness. There is a bit of trickery when it comes to defining a ray depth.
Light reflected off a mirror forms an imaginary image on the mirror’s surface. When dealing
with a set of mirrors, we observe virtual images within already virtual images. Here comes a
problem, assuming that the lighting deepness is expected to be N , we can observe that every
bounce off a mirror within a consecutive/unbroken chain of mirrors drops one lighting layer.
In other words, as the number of off-mirror deflections grows the lighting quality gets more
shallow. Assuming that the expected lighting deepness equals 4, after 3 off-mirror bounces
we will perceive our scene with direct lighting only. Well, we could increase the maximal ray
trace depth to some level to overcome this issue, but this would lead to excessive rendering
times, as some rays would be constructing very long light paths, rays mentioned here are
those not involved with mirrors seen straightly from the camera. To resolve this problem we
introduce concepts of physical and virtual ray depth. The physical ray depth is simply the
total number of deflections performed, and this is the quantity that is checked against the
maximal ray trace depth. The virtual ray depth is the total number of deflections performed
since the last primordiality state, its a state in which ray has been shot from a camera or
bounced off a first mirror chain.

11

Now let’s take a look at different path types with respect to a basic type system known as
Heckbert’s notation. Let’s recall this notation, the D symbol denotes highly diffusive node,
the G symbol denotes glossy node, the S symbol denotes a generally specular or mirror-like
node, the T symbol denotes a transparent surface, the L symbol denotes a light source and
the E symbol denotes an eye. These come together with the set of operators, + denoting 1
or more repetitions, ∗ denoting 0 or more repetitions. Let’s see some examples.

• EDD+L : a path contributing to the color bleeding effect

• ED(D|G)+L : a more general form of a path contributing to the color bleeding effect

• ESDD+L : a path contributing to the color bleeding seen through a mirror

• ES+DD+L : a path contributing to the color bleeding seen through a chain of mirrors

• ETTDD+L : a path contributing to the color bleeding seen through a glass

• EDSL : a path contributing to the caustic effect created by a single curved mirror

• EDS+L : a path contributing to the caustic effect created by a chain of mirrors (flat
or curved)

• EDTTL : a path contributing to the caustic effect made by a single transparent object

• ED(TT)+L : a path contributing to the caustic effect made by multiple transmis-
sions/refractions

• ED(T |S)+L : a path creating the caustic effect through any mixture of mirrors and
glasses

• ETDTL : a path shows matte surface that is observed and illuminated through a glass

• ESTDTD∗L : the same as above, but seen through a mirror and involved with complete
bleeding

• EL : a path with no reflections, light seen directly by an eye

12

3 Monte Carlo Integration for Global Illumination Setting

This section gives an overview of sampling ideas in the context of basic (conventional) Monte
Carlo methods, leading up to a construction of standard Monte Carlo path tracer. We present
the concepts of spectrum-valued functions, ray paths, path space, absolute and relative path
density, random variables (estimators), importance sampling, and implicit and explicit light
paths. We also introduce a hierarchy of type classes related with different scattering modes
(light flow events).

3.1 General Idea of Monte Carlo Integration

Consider the problem of integrating the function f over some domain Ω:∫
Ω

f(x̄) dµ(x̄).

We place a bar over the x to indicate that it may be a vector rather than just a scalar quantity.
Monte Carlo integration solves this integral by creating a random variable Xf with expected
value equal to the integral:

E[Xf] =
∫

Ω
f(x̄) dµ(x̄).

Xf is constructed starting with a sampling procedure Sp which generates samples from Ω
according to some probability distribution, p. To complete Xf , a sample location x̄ is chosen
using Sp, and Xf (x̄) is evaluated

Xf (x̄) =
f(x̄)
p(x̄)

.

This expression forms an unbiased estimator of the integral, which may have a high variance.
The usual way to reduce the variance is to average a number of samples taken from Xf . The
mean of samples taken from Xf can be thought as of new estimator

Xf ({x̄i}ni=1) =
1
n

n∑
i=1

Xf (x̄i).

This new estimator has the same expected value as the Xf , but its variance gets lower and
lower as the number of samples taken from Xf grows up,

lim
n→∞

Xf ({x̄i}ni=1) =
∫

Ω
f(x̄) dµ(x̄).

13

3.2 Behavioural Properties of Monte Carlo Estimators

Consistency. An estimator is weakly consistent if it satisfies the weak law of large numbers,
which states that the sample average converges in probability towards the expected value,

Xf ({x̄i}ni=1)
p→ µ when n→∞.

That is to say that for any positive number ε,

lim
n→∞

Pr(|Xf ({x̄i}ni=1)− µ| < ε) = 1.

Interpreting this result, the weak law essentially states that for any non-zero margin specified,
no matter how small, with a sufficiently large sample there will be a very high probability
that the average of the observations will be close to the expected value, that is, within the
margin. Convergence in probability is also called weak convergence of random variables. This
version is called the weak law because random variables may converge weakly (in probability)
as above without converging strongly (almost surely) as below.

An estimator is strongly consistent if it satisfies the strong law of large numbers, which
states that the sample average converges almost surely to the expected value

Xf ({x̄i}ni=1) a.s.→ µ.

That is,
Pr(lim

n→∞
Xf ({x̄i}ni=1) = µ) = 1 when n→∞.

This law justifies the intuitive interpretation of the expected value of a random variable as
the ”long-term average when sampling repeatedly”. Almost sure convergence is also called
strong convergence of random variables. This version is called the strong law because ran-
dom variables which converge strongly (almost surely) are guaranteed to converge weakly (in
probability). The strong law implies the weak law.

Biased versus Unbiased. Let θ be an estimated quantity, and let θ̂ be an estimator of θ.
The bias of θ̂ is defined as

B(θ̂) = E[θ̂]− θ.

It is the distance between the average of the collection of estimates, and the single quantity
being estimated. It also is the expected value of the error, since

E[θ̂]− θ = E[θ̂ − θ].

The estimator θ̂ is a biased estimator of θ if and only if B(θ̂) 6= 0, and analogously the
estimator θ̂ is an unbiased estimator of θ if and only if B(θ̂) = 0. Note that bias is a property
of the estimator, not of the estimate. Often, people refer to a ”biased estimate” or an
”unbiased estimate”, but they really are talking about an ”estimate from a biased estimator”
or an ”estimate from an unbiased estimator”.

14

3.3 Ray Paths and Path Space

In a geometrical sense a path is a chain of points striked by rays during scattering events.
For a path of length n we have nodes xi (0 ≤ i ≤ n) represented by points in R3. For all
paths the node x0 refers to the eye point (view point or camera location), and for all paths
in which light flow occurs the node xn refers to a point on a light source. All middle points
(0 < i < n) refer to the light flow events, such as reflections and transmissions. However,
we can have many different types of flow events in a single node, and because of nature of
algorithms we will usually have to use only one specified type of flow event at each node. To
denote a path of length n we will use the following notation

x̄[n] = x0 : x1 : ... : xn.

Let τi be the type of the node xi, to denote a type of the path x̄[n] we will use similar notation
as we used to denote the path itself.

τ̃ [n] = τ0 : τ1 : ... : τn.

The type of the path x̄[n] is simply a chain of types related with the nodes. The fact that x̄[n]

is the path of the type τ̃ [n] is expressed as follows

x̄[n] :: τ̃ [n].

There are a few ways to define node types and path types. We begin with description of
different classes of node types. The first way to define a type of a single node is to classify
its scattering mode as reflection (R) or transmission (T). We will call this class of node
types as node types of the first kind, letting Λ1 = {R, T} be the set of node types of the
first kind. The second way to define a type of a single node is to classify its scattering mode
as diffuse (D), glossy (G) or specular (S), calling this class of types as node types of the
second kind, and letting Λ2 = {D,G, S} be the set of types. Finally, the third way is to
mix the two ways just described into one, which results in most detailed class of node types.
We have types like diffuse reflection (Dr), glossy reflection (Gr), specular reflection (Sr),
diffuse transmission (Dt), glossy transmission (Gt) and specular transmission (St), letting
Λ3 = {Dr, Gr, Sr, Dt, Gt, St} be the complete set of node types of the third kind. We also
introduce two additional classes, Λα and Λβ. The class Λα is a set of types, for each of which
the direct and indirect illumination can not (or should not) be computed separately. For
example, in a case of mirror-like glossy reflection (imagine a tiny solid angle around a perfect
specular reflection direction) it is very likely that a random direction generated towards
a randomly chosen light source will be far away from perfect specular reflection direction.
On the other hand, there are types for which the direct and indirect illumination treated
separately can be desired, for example a perfect diffuse reflection or a glossy reflection with a
wide solid angle. These types belong to the Λβ class. Both the Λα and Λβ classes are subsets
of Λ3 .

As said before path type is a chain of node types. It is very important that there is no need
to keep all node types in this chain in a single class type. This gives us freedom in describing
path types. There will be two types associated with a single light path. The strong type
τ

[n]
• = τ•1 : τ•1 : . . . : τ•n and the weak type τ

[n]
◦ = τ◦1 : τ◦1 : . . . : τ◦n. The strong type refers to

concrete scattering modes chosen by a sampling procedure to generate and evaluate a path.
The weak type refers to how we look at a path.

15

Let S be a scene (a part of an instance of global illumination problem), and let C be a
camera. Let P∞(S, C) be a set of all possible light paths in S we want to consider. Most
important paths are those connecting camera to a light source (directly or through multiple
scattering events), such that for each i between 0 and n− 1 nodes xi and xi+1 are mutually
visible. We will refer to this kind of paths as valid paths. These paths can either transport
light energy or not, due to materials properties (for example reflectivity). In an ideal case we
would like to integrate f only over valid paths, but it is usually hard or even impossible to
design a sampling procedure that generates only valid paths. Invalid paths are paths that do
not connect the camera with a light source. Such a path occurs when a sampling procedure
fails to connect the camera with a light source. This may happen if a sampling procedure has
not made a connection yet, but it decided to terminate scattering events. It may also happen
when created path can not transport light because of an obstacle that makes two consecutive
nodes mutually invisible. Note that invalid paths affect only the variance, but still lead to the
same final solution at expense of weaker convergence. However, we do not need to include
complete set of invalid paths, and we can try to design a sampling procedure that generates
invalid paths rarely.

Let P(i)(S, C) be the subset of P∞(S, C) that contains only paths of length i. Let P(i)
τ, (S, C)

be the subset of P(i)(S, C) that contains only paths of type τ . Following equalities describe
subdivision of P(i)(S, C) into disjoint sets with respect to path length (i), path type (τ) and
wavelength (λ).

P∞(S, C) =
∞⋃
i=1

P [i](S, C) =
∞⋃
i=1

P(i)(S, C)

P [k](S, C) =
k⋃

i=1

P(i)(S, C)

P(i)(S, C) =
⋃

τ∈EHi−1(H+L)

P(i)
τ, (S, C)

P(i)
τ, (S, C) =

⋃
λ∈[λmin,λmax]

P(i)
τ,λ(S, C)

Light paths connecting the eye point to a light source can be understood as light streams
that transfer light energy. The value of each light path refers to the steady-state distribution
of light, i.e. fixed amount of light energy per unit time.

16

3.4 Energy and Spectrum-Valued Functions

In the context of global illumination the value of f refers to energy. However, energy can be
represented by a spectrum of light intensity, referring to the range of colors (i.e. real-valued
function of wavelength of light) instead by a scalar value. Due to that, f is the functional of
the type Ω→ (R→ R) and it may not be clear how to integrate such functional.

If we ignore wavelength dependency then we can easily compute the total energy. Instead

of integrating spectrum-valued f over the Ω, we can integrate
λmax∫
λmin

f(x̄)(λ) dλ over the Ω. In

the case of continuous spectrum [λmin, λmax] the total energy et can be computed as follows

et =
∫
Ω

λmax∫
λmin

f(x̄)(λ) dλ dµ(x̄),

and in the case of discrete spectrum {λ1, λ2, . . . , λn} it can be computed as follows

et =
∫
Ω

n∑
i=1

f(x̄)(λi) dµ(x̄).

The concept of total energy will be useful for some algorithmic reasons, but it is insufficient
for image synthesis. We need the information about the colors. We can define integral of f
as follows ∫

Ω
f(x̄) dµ(x̄)

def
= λ

s→
∫

Ω
fλ(x̄) dµ(x̄) where fλ(x̄) = f(x̄)(λ).

In computer graphics we usually deal with discrete spectrum rather than continuous one,
therefore we can assume that Λ = {λ1, λ2, . . . , λn}. Under this assumption we can replace
function s with a vector ~s = [s(λ1), s(λ2), . . . , s(λn)], now f becomes the function of the type
Ω→ Rn,

f(x̄) =
[
fλ1(x̄), fλ2(x̄), . . . , fλn(x̄)

]
.

The definition of f just described lead us to the integral of f given by∫
Ω

f(x̄) dµ(x̄) =
[∫

Ω
fλ1(x̄) dµ(x̄),

∫
Ω

fλ2(x̄) dµ(x̄), (. . .),
∫

Ω
fλn(x̄) dµ(x̄)

]
,

the estimator the integral of f given by

Xf (x̄) =
[
fλ1(x̄)
pλ1(x̄)

,
fλ2(x̄)
pλ2(x̄)

, (. . .),
fλn(x̄)
pλn(x̄)

]
,

the variance reduction by averaging a number of samples taken from Xf given by

1
n

n∑
i=1

Xf (x̄i) =

[
1
n

n∑
i=1

fλ1(x̄i)
pλ1(x̄i)

,
1
n

n∑
i=1

fλ2(x̄i)
pλ2(x̄i)

, (. . .),
1
n

n∑
i=1

fλn(x̄i)
pλn(x̄i)

]
,

and the total energy given by

et(f(x̄)) =
n∑

i=1

fλi(x̄) et(Xf (x̄)) =
n∑

i=1

fλi(x̄)
pλi(x̄)

.

17

Using formulation just described we can draw a single sample x̄, and then we can compute
each fλi using x̄ as the sample point. This implies that

∀x̄∈Ω ∀i∈{1,2,...,n} ∀k∈{1,2,...,n} pλi(x̄) = pλk(x̄).

It means that we are using a single probability density function p for all elements of the
spectrum, which obviously has a serious drawback - in a general case p is unable to be the
best importance function for each element of the spectrum. However, this has also a great
advantage. In the context of ray tracing, taking samples from the path space is extremely
expensive in comparison to the evaluation cost of the functions f , fλ1 , fλ2 , etc. Therefore
usage of the single sample x̄ to compute these functions compensates impossibility of designing
an independent probability density function for each wavelength.

Let ~% = [%1, %2, (. . .), %n] be a vector that represents the percentage/fractional energy dis-
tribution over the spectrum of wavelengths (Λ). The ~% must satisfy following conditions

•
∑n

i=1 %i = 1

• ∀i∈{1,2,...,n} %i ∈ [0, 1]

• ∀i∈{1,2,...,n} %i · et = fλi .

In the context of the total energy and the fractional energy distribution vector we introduce
the ~-notation, which states that for any spectrum-valued function g, (~% ~ et) denotes the
value of g separated into its total energy et and its fractional energy distribution ~%.

18

3.5 Types of Stochastic Noise

The (Markov Chain) Monte Carlo based rendering can suffer from a few types of noise. We
present our own noise classification.

Spatial noise. A noise that occurs on surfaces and in volumes due to undersampling. It
is perfectly noticeable kind of noise when it comes to observing a surface on which differ-
ent points or regions suffer error coming from estimator variance. In the context of global
illumination mixed with Monte Carlo methods this translates to weak samplers causing high
start-up variance and insufficient number of samples. The appearance of this noise is usually
grain-like or grit-like, but when Energy Redistribution Path Tracing is employed it gets more
smooth but splotch-like look.

Chromatic noise. This kind of noise shows its influence when a scene contains diffractive,
dispersive or goniochromatic materials. When such materials are present light flow gets more
complicated and it may be sometimes impossible to sample light paths by tracing multi-
chromatic rays. In such cases single-chromatic rays take over. Even if we are able to trace
multi-chromatic rays, the BxDF functions may have strongly different shapes expressing the
underlying reflection distributions. Consequently, any sampling distribution will cause high
variance on at least one of spectrum elements.

Temporal noise. Imagine a single frame that was rendered with sampling rate good enough
to achieve perceptually pleasant quality. Let’s say that noise is reduced to a level in which
all color gradients are very smooth and all the details are perfectly clear. Now let’s imagine
a sequence of such frames that build a movie. Each frame perceived independently will bring
that impression of nearly perfect image quality. However, corresponding or similar pixels (in
terms of screen space position) will expose varying level of noise that will lead to an annoying
flickering or blinking. That is to say that when rendering an animation, the variance reduction
requirements are stronger and the sampling rate must be increased or some other trickery
must be applied.

Focal noise. When a camera model used by a rendering engine employs any kind of optical
system that is able to re-construct focal blur (also known as depth of field) then the complexity
of rendering equations increases as the dimensionality of integration problem grows. Focal
noise shows up on surfaces being out of focus, the larger the distance between an object and
focal plane the higher variance will damage an image.

Screen-space noise. This is a noise that comes from estimation errors varying across nearby
pixels. Its nature is complex because its a mixture of spatial noise, chromatic noise, temporal
noise and focal noise. The appearance characteristics is usually grainy and gritty but may be
splotchy as well.

Light-space noise. When path space is sampled very well with respect to geometry but
is poorly sampled in terms of light source set then we experience light-space noise. The
appearance of this kind of noise is quite tricky because it not grainy, gritty or splotchy. A
scene suffering from this noise looks like it were rendered with a small set of point lights, so
it may contain banding and large patches.

19

3.6 Monte Carlo Path Tracing

A path tracer samples the rendering equation by means of ray paths that connect the eye
point to a light source through a number of scattering events (reflections or refractions). To
build a path, a path tracer sends out a ray from the eye point into the scene. The path tracer
then extends the ray through a number of scattering events to produce an eye subpath, using
a probabilistic sampling function to choose the outgoing direction at intersection points.

Since the ray paths created by a path tracer are Monte Carlo samples of the rendering
equation, the path tracer evaluates them in such a way that the expected value of the paths
that contribute to a given pixel is equal to the pixel brightness. To see how this is done,
consider the path in figure below that connects the eye point to a light source:

To form an unbiased estimate of the light reaching the eye along direction x1 → x0, the MC
sampler in a path tracer multiplies the pertinent terms of the rendering equation together
(i.e. f∗(...), cos(...) and Le(...)), and divides by the probability that the path was generated
by the sampler.

The path tracer may connect the eye subpath to a light source in one of two ways. First, pd

may happen to choose a direction that hits a light source. We will refer to this kind of path
as an implicit path. Second, the path tracer may connect the eye subpath directly to a point
on a light source. We will refer to paths created in this way as explicit paths. Explicit paths
may lead to the lower variance because they estimate the direct illumination by sampling
over the area of all light sources in the scene. Unfortunately, some scattering modes can not
be combined with sampling over the area of light sources, e.g. perfect specular reflections, so
we need implicit paths too. The MC sampler draws samples from the following equation

L(Ψk ← xk) def= Le(Ψk ← xk)

+
∫

Ω(xk)
f∗(Ψk ↔ Θk)L(xk ← Θk) cos(Nk, Θk) dω(Θk).

We can rewrite this equation by splitting the integral with respect to scattering modes.

20

L(Ψk ← xk) def= Le(Ψk ← xk)

+
∑

τ•k∈Λβ

∫
Ω(xk,Ψk,di)

f∗[τ•k](Ψk ↔ Θk)L(xk ← Θk) cos(Nk, Θk) dω(Θk)

+
∑

τ•k∈Λβ

∫
Ω(xk,Ψk,ii)

f∗[τ•k](Ψk ↔ Θk)L(xk ← Θk) cos(Nk, Θk) dω(Θk)

+
∑

τ•k∈Λα

∫
Ω(xk,Ψk,ti)

f∗[τ•k](Ψk ↔ Θk)L(xk ← Θk) cos(Nk, Θk) dω(Θk).

Finally, in the case of direct illumination we can switch to the integration over the surface
area of light sources as follows

L(Ψk ← xk) def= Le(Ψk ← xk)

+
∑

τ•k∈Λβ

∫
Ae

f∗[τ•k](Ψk ↔ Θk)L(xk ← Θk)GV (xk, xk+1) dA(xk+1)

+
∑

τ•k∈Λβ

∫
Ω(xk,Ψk,ii)

f∗[τ•k](Ψk ↔ Θk)L(xk ← Θk) cos(NΘ
k , Θk) dω(Θk)

+
∑

τ•k∈Λα

∫
Ω(xk,Ψk,ti)

f∗[τ•k](Ψk ↔ Θk)L(xk ← Θk) cos(NΘ
k , Θk) dω(Θk),

where

V (xk, xk+1) =

{
1 if xk and xk+1 are mutually visible
0 if xk and xk+1 are not mutually visible

G(xk, xk+1) =
| cos(NΘ

k , Θk) cos(NΨ
k+1, Ψk+1)|

||xk − xk+1||2

GV (xk, xk+1) = G(xk, xk+1) · V (xk, xk+1).

Now we will introduce few expressions referring to partial evaluation of the estimator. The
term ΥΘ denotes the value of the estimator, limited to the subpath xa : xa+1 : . . . : xb−1 : xb,
under assumption that at each node from this subpath sampling over the (hemi)sphere of
directions has been performed,

ΥΘ(x̄[n], a, b) =
b∏

k=a

f∗[τ•k](Ψk ↔ Θk)| cos(Nk, Θk)|
ps(xk)pm(τ•k)δβ(pii, τ•k)pd(Ψk → Θk)

.

The term ΥE(x̄[n]) refers to terminating the x̄[n] as an explicit path, it includes the value of
the estimator of the direct illumination with respect to the sampling over the surface area of
all light sources,

ΥE(x̄[n]) = Le(Ψn ← xn)
f∗[τ•n−1](Ψn−1 ↔ Θn−1)GV (xn−1, xn)
ps(xn−1)pm(τ•n−1)pdi(τ•n−1)pl(lk)pa(xn)

.

21

The term ΥI(x̄[n]) refers to terminating the x̄[n] as an implicit path,

ΥI(x̄[n]) =


Le(Ψn ← xn)

pt(xn)
if τn−1 ∈ Λα

0 if τn−1 ∈ Λβ

Using the terms ΥΘ, ΥI and ΥE , the complete estimator can be defined as follows

Xf (x̄[n]) =

{
ΥI(x̄[n])ΥΘ(x̄[n], 1, n− 1) if x̄[n] is an implicit path
ΥE(x̄[n])ΥΘ(x̄[n], 1, n− 2) if x̄[n] is an explicit path,

where

• Le(Ψk ← xk) is the emitted radiance leaving the node xk along the direction Ψk

• f∗[τ•i](Ψi ↔ Θi) is the B*DF function value limited to the scattering mode τ•i at the
node xi

• pe(xi) is the probability that the MC sampler decided to estimate by light emission,
which causes path termination at the node xi

• ps(τ•i) is the probability that the MC sampler decided to perform scattering events

• pm(τ•i) is the probability that the scattering mode τ•i was chosen by the MC sampler

• pd(Ψi → Θi) is the probability of generating the outgoing direction Θi for the given
incoming direction Ψi .

• pdi is the probability that the MC sampler decided to estimate direct illumination, which
causes path termination

• pii is the probability that the MC sampler decided to estimate indirect illumination,
which causes path extension

• pl(lk) is the probability that light source lk was chosen by the MC sampler

• pa(xn) is the probability that point xn was chosen on the light source with respect to
surface area.

Now we propose a set of formulas for computing the terms related to probability,

pe(xi) =

{
ζe + (1− ζe) · ζa if xi is emittive
ζa if xi is not emittive

(1)

ps(xi) =

{
(1− ζe) · (1− ζa) if xi is emittive
(1− ζa) if xi is not emittive

(2)

pm(τ•i) =
val(τ•i)
(1− ζa)

(3)

where ζe ∈ [0, 1] stands for an emission coefficient and ζa ∈ [0, 1] stands for an absorption
coefficient.

22

Graphical representation of possible sampling selections.

Absolute Path Density. The product of all of the terms related to probability in a ray
path (pe, ps, pm, pd, pdi, pii, pl, pa) can be thought of as the absolute path density in path
space with respect to the given MC sampler.
Relative Path Density. If we ignore some of the terms used in the definition of absolute
path density then we obtain the relative path density in path space with respect to the given
MC sampler. This concept will be useful in the next section, in the context of path mutations.
According to mutation strategies, the relative path density is defined as the product of pm,
pd, pl and pa.

3.7 Construction of Monte Carlo Path Tracing algorithm

In our Foxy engine we generally implemented two kinds of MCPT, both based on the knowl-
edge presented in previous sections.

Untangled MCPT. This variant of the path tracer works under assumption that each
valid path has only one connection with a light source. So we start at an eye point, we continue
to extend a path through a chain of scattering events, at each node we apply selection between
extension and termination. In a case of termination the explicit light sampling is performed.
This sampler may also hit a light source by an accident. So it can construct both, implicit
and explicit paths. This is the sampler that we used as an initial sampler for ERPT.

Entangled MCPT. This variant of the path tracer works in a slightly different man-
ner, at each internal node of a path it performs both, implicit and explicit sampling. So it
rather produces a tree containing many entangled paths. It is a better stand-alone technique,
compared to the Untangled MCPT, but is less suitable for being an initial sampler for ERPT.

3.8 Empirical Depth-Based Analysis of MC Integration in Path Space

Let’s have a look at what is inside each lighting layer, keep in mind that the kth lighting
layer is the path space subset made of paths having length equal to k + 1. Our Foxy engine
renders lighting layers into distinct buffers, this allows us to see what is there, how much
light information is stored in each layer. Notice that the Buddha model is illuminated from
the back side, so the 1st lighting layer shows nearly black silhouette. Longer paths start to

23

connect observable side of the Buddha model with the light source so we can see different
lighting effects on his shiny metallic surface.

24

complete composite image rendered by the Foxy’s MCPT

25

1st layer rendered by the Foxy’s MCPT

26

2nd layer rendered by the Foxy’s MCPT

27

3rd layer rendered by the Foxy’s MCPT

28

4th layer rendered by the Foxy’s MCPT

29

The story about lighting deepness and noise in depth-wise layers. When looking at the
pictures rendered by Monte Carlo based algorithms we usually perceive some kind of noise.
We can say that if an image is not noise-free then our lighting distribution in a scene is
undersampled. An important observation can be made here, the variance varies across the
path space depth layers, hence the noise appearance varies as well. On some layers noise will
be more destructive. Notice that since all layers sum up to a complete image, noises from all
the layers sum up to strong noise when at least one layer introduces strong noise.

The very popular strategy employed to reduce variance is importance sampling. It aims
to sample more important paths (with higher power content) with higher probability. This
is generally a very good technique unless our ability to recognize importance is poor. Well,
unfortunately it usually is very poor, comprehensive importance sampling methods exist but
are time-consuming while importance sampling methods based on partial information can
be misleading. To understand the topic it is good to pay attention to terms that are under
the integral symbol inside our rendering equations. There is roughly BxDF () × cos() × L()
expression, we can easily construct importance samplers based on the BxDF ()×cos() part of
the expression, but taking into account L() is a difficult task. So our depth-based distribution
of paths is not a perfect solution, but is fairly simple to implement and quite effort-less in
terms of computational resources. We believe that it may bring an improvement in some
cases and we leave this as a subject for further research. When a majority of lighting in a
scene comes from longer paths (strong indirect lighting) we may see benefits.

Let’s think about the depth-wise path distribution. But before we do that let’s mention
some facts. If some lighting layer contains strong noise the final image will be strongly noise-
affected. The first lighting layer, made of purely direct lighting, converges rapidly. The deeper
the layer the slower its convergence, this is a consequence of the dimensionality growing with
lighting depth, it can be understood as a high variance at low sampling rate within a highly
multi-dimensional space. Well, it looks like we escaped from the curse of dimensionality by
applying Monte Carlo methods instead of classical numerical quadrature, but the issue still
exists just in a different form. Another way to look at it is related to floating-point numbers,
notice that since precision of such numbers is limited we can express not only discrete but also
finite number of rays outgoing from a single point. This in turn translates to an observation
which states that deeper lighting layers have more light paths immersed in them, moreover,
the number of light paths grows roughly exponentially with the lighting depth. Of course
from a point of view of set theory each lighting layer has the same cardinal number, roughly
meaning that the number of path in each lighting layer is the same. But from a point of view
of numerical integration the information in lighting layers differ in terms of complexity. The
limited precision of floating-point number is mentioned here to give us an intuition about
the samplable structure of path space and the number of samplable paths that varies across
lighting layers.

As we discussed, deeper lighting layers contain more complex information about light trans-
port, this increased complexity comes from larger number of light paths. Usually we rate path
importance by its absolute radiance with relation to a complete set of paths constructing light
transport distribution, but we should ask ourselves a question - when a sampler draws a light
path, how does depth-based distribution look like? Or in other words - how big is the prob-
ability of drawing a light path from a certain depth layer? If we focus Unidirectional Path
Tracing we can control the depth-based distribution by manipulating the termination prob-
ability of a path. We experimented with three strategies. Right after the description we
provide derivations, luckily, after some time spent on re-expressing and unrolling relevant

30

formulas these distributions has shown nice recursive patterns that we managed to notice and
consequently we were able to derive closed form and elegant probability densities.

The BxDF-based distribution employment. This probably the most common method which
directly correlates the termination probability with a total reflectivity of a material. This
method is an absolute minimum of having an importance sampling applied into MC rendering.
This method has a natural tendency to generate less samples in deeper layers. By running
MCPT (with explicit sampling employed) with roughly 1000 paths per pixel we can easily
see that the first layer is in a perfectly converged state, the second layer will usually start to
show some gritty noise and in deeper layers the noise influence grows rapidly.

The equidistribution employment. In this method our goal is to draw equal number of
samples within every lighting layer. Well, we tried this distribution just because of curiosity,
it is fairly simple and computationally cheap. But it did not bring perceivable changes.

The expodistribution employment. In this method our goal is to draw more samples in
deeper layers, forcing the growth of samples to be as close as possible to some exponential
distribution. The experiments with this distribution were motivated by the observation telling
us that the number of samplable paths grows exponentially with respect to the ordinal number
of path space layer. Well, it shows improvement as we expected, but at the same time is too
aggressive, it generates too small number of samples in the first layers. We leave this as
a subject for future work. We have impression that some kind of re-scaling or weighting
constructed on the top of exponentially fading probabilities would help. Also it would be
excellent to combine that distribution with classical importance sampling techniques.

31

The derivation of the equidistribution 1.

1We are computer graphics enthusiasts that are capable of making fancy handcrafts, drafts and drawings.

32

The derivation of the expodistribution 2.

2We are computer graphics enthusiasts that are capable of making fancy handcrafts, drafts and drawings.

33

4 Markov Chain Monte Carlo Methods

This section gives an overview of sampling ideas leading up to Energy Redistribution sampling.
We give a brief overview of Markov Chain Monte Carlo integration, and present the concepts
of correlated integrals, energy flow, and general and detailed balance. Finally, Metropolis
sampling is reviewed and compared against Energy Redistribution sampling.

4.1 Introduction

The Markov Chain is a kind of random walk over a set of space locations. Generally, be-
tween every two locations A and B we define probabilities, T (A → B) - the probability of
movement from A to B, and T (B → A) - the probability of movement from B to A. When
these movements or let’s say their transition probabilities are designed carefully, the unique
stationary distribution π for the set of space locations will exist. That distribution expresses
the steady-state probability of being at certain location. This concept may look completely
useless in the context of integration and global illumination, but we will explain why this is
a wrong impression. We also strongly recommend to read the [4], it brings a good example
of Markov Chain employed to reconstruct/copy an image. To employ this into integration
problems such us integral equations for light transport simulation we go in reverse direction.
We know how does our best sampling function look like, it is the Holy Grail of Monte Carlo
Rendering, the fR

f
. We will treat it as the steady-state distribution of visiting paths in the

path space and we will try to figure out the movements along with their probabilities that
will lead to our desired distribution. Before the promised derivation let’s look at an example
of simple 2-state Markov Chain.

An example of a simple Markov Chain. 3

3The image found on Wikipedia.

34

Graphical representation of a multi-domain Markov Chain 4.

4We are computer graphics enthusiasts that are capable of making fancy handcrafts, drafts and drawings.

35

A Markov Chain that would satisfy the detailed balance rule supports the following equality:

π(x)× T (x→ y) = π(y)× T (y → x).

Now let’s apply our Holy Grail of Monte Carlo rendering, let π(x) = f(x)R
f

:

f(x)∫
f
× T (x→ y) =

f(y)∫
f
× T (y → x).

Now we can notice that the 1R
f

terms cancel out, this is the step where the wizardry does
the job and the proof that our Markov Chain is able to converge to our desired distribution
without an explicit knowledge about it:

f(x)× T (x→ y) = f(y)× T (y → x).

Now it looks like we are stuck, we have one equation but two unknown values, T (x → y)
and T (y → x), but we will employ more wizardry, we will express the unknown values as a
product of yet another unknown values. So let T (x → y) = TT (x → y) × a(x → y), where
TT is our tentative transition, we can design it on our own with a lot of freedom, we have:

f(x)× TT (x→ y)× a(x→ y) = f(y)× TT (y → x)× a(y → x).

After a little reorganization the equation directly expresses the value of a(x→ y), we end up
with:

a(x→ y) =
f(y)× TT (y → x)
f(x)× TT (x→ y)

× a(y → x).

But we still have two unknown values, we call them acceptance probabilities. We have one
equation and two variables, this simply means that the equation may have more than one
solution. The formal derivation is beyond the scope of this thesis, but the solution that is
often used looks like that:

a(x→ y) = min

[
1,

f(y)× TT (y → x)
f(x)× TT (x→ y)

]
.

That’s it! This formula brings not only an acceptance probability that allows our Markov
Chains to work, but it also guarantees the highest acceptance rate across possible solutions.

36

For some it still may be a bit confusing because in computer graphics we are interested in
pixels, we want to have brightness and color in all pixels and here we are talking about some
awkward walking or jumping between paths through some network of strange movements
with some probabilities. In our opinion a good way to think about it is to assume that each
path has a box attached to it. Every time when we visit a path we throw a single coin into the
box. Of course there is also a Ncoins - the total number of coins that we have thrown into the
boxes. If we divide the number of coins by the Ncoins for each box, we will get approximation
of the steady-state probability of being in each path. Yet again, what about pixels? Nobody
wants to store all the boxes in memory. Now imagine, that we can perform grouping, we can
think about groups of paths and the probability of visiting a certain group. The probability
of visiting a group is simply a sum of all the probabilities attached to paths being members
of a group. Now notice that every pixel is illuminated by a set of paths, these paths form a
group with well-defined steady-state probability that is directly proportional to the desired
pixel brightness. So our pixels act as bins capturing the probability that is proportional to
the incoming radiance. So we can think that instead of throwing coins into boxes attached to
paths, we can directly throw coins into pixels. We believe that this delivers a good intuition
about the work performed by Markov Chains in the context of image synthesis.

37

4.2 Correlated Integrals

Some of integration problems involve the estimation of not just one, but a large number of
integrals. Photorealistic image synthesis is a particularly pertinent example. In the context
of Monte Carlo ray tracing each pixel of an image is an integral that is evaluated using Monte
Carlo integration. When a standard path tracer is used as a Monte Carlo ray tracer, each
pixel is solved by n statistically independent MC samples. Notice that, since samples within
a domain of a single integral are statistically independent, samples from different integral
domains are also statistically independent. Strictly speaking, each MC sample is generated
from scratch, despite the fact that when a high contribution sample (light path) is found by
a MC path tracer, it would be better to exploit this information to generate new samples
by performing exploration of nearby paths. The most successful correlated integral solutions
tend to exploit the correlation between integrals to reduce variance, in order to achieve faster
convergence. In fact, the correlation between pixel integrands is the implied basis for many
of the global illumination algorithms currently in use, including irradiance caching [Ward
et al. 1988], photon mapping [9] and Metropolis Light Transport [Veach and Guibas 1997].
Irradiance caching and photon mapping take adavantage of inter-pixel correlation by caching
incident light values, which are later used to approximate parts of the pixel integrals that
are difficult to evaluate independently. MLT leverages the correlation between pixel integrals
in a different way, using mutation strategies to share integrand information between pixels.
We present a similar approach, utilizing path mutations to spread the energy of initial Monte
Carlo pixel estimates over the image plane.

38

A fish-eye view from two points 5.

4.3 Energy Flow

One way to coordinate sampling efforts between correlated integrals is to use a process of
energy flow. (By energy, we simply mean the value of a real-valued function. For a color-
valued function, such as an image, energy refers to the luminance.) Energy flow allows a
sampling procedure to perform a directed search between similar points in the domains of
correlated integrals. To see why this can be useful, consider two correlated integrals, I1 and
I2, with domains Ω1 and Ω2. Suppose that in the process of sampling, a high contribution
point x̄ is found in Ω1 (i.e. Xf (x̄) is large). Since I1 and I2 are correlated, it is likely that a
high contribution point ȳ will exist in a location similar to x̄ in Ω2. Energy flow establishes a
connection between points x̄ and ȳ and transfers some of the energy at x̄ to ȳ. Figure 2 shows
this graphically. Often, energy flow can be more efficient than standard Monte Carlo sampling
because the cost of finding high contribution points is amortized over multiple integrals.

The expected energy flow. In practice, energy flow is created by perturbing or ”mu-
tating” a source point, x̄, to produce a destination point, ȳ. (Imagine laying a pipe from x̄
to ȳ along which energy can flow.) Some of the energy at x̄ is then transferred to ȳ. Let

5The image comes from original publication [2].

39

T (x̄ → ȳ) be the transition probability from x̄ to ȳ, that is, the probability that ȳ is chosen
as the destination point given that x̄ is the source point. In this situation, the expected flow
from x̄ to ȳ is

E[φ(x̄→ ȳ)] = E[Xf (x̄)p(x̄)T (x̄→ ȳ)q(x̄→ ȳ)]

where φ(x̄→ ȳ) denotes the energy flow from x̄ to ȳ, E[·] is the expected value, Xf (x̄)p(x̄)
is the expected energy located at x̄ from an initial Monte Carlo estimate, and q(x̄→ ȳ) is the
percentage of energy at x̄ that flows to ȳ once a connection has been established.

General and detailed balance. Astonishingly, energy flow can occur without biasing the
integral estimates, as long as certain conditions on the flow amount are met. In particular,
the integral estimates will remain unbiased as long as the expected flow of energy out of any
point x̄ equals the expected flow back in. We will refer to this property as general balance.
More formally, we say that general balance holds if

∀x̄ E

[∫
φ(x̄→ ȳ) dµ(ȳ)

]
= E

[∫
φ(ȳ → x̄) dµ(ȳ)

]
An even stronger constraint that guarantees unbiased-ness is called detailed balance. De-

tailed balance requires that the expected flow between any two points be equal. In other
words,

∀x̄∀ȳ E[φ(x̄→ ȳ)] = E[φ(ȳ → x̄)]

40

4.4 Review of Metropolis Sampling

We will now shortly review characteristics of Metropolis sampling, pointing out main dif-
ferences between MLT sampling and ERPT sampling. For more details about the MLT we
suggest reading the original work [1]. Generally, classic Metropolis sampling relies on cre-
ating a single very long Markov Chain with stationary distribution that is proportional to
brightness distribution over pixels. This approach has a few limitations and weaknesses.

Stratification. The stratification is a property that determines pixel coverage quality in our
image. Let’s recall the MCPT algorithm for a while, in this technique we can easily control
the stratification because we are able to manually set the number of MC samples for each
pixel. Often, the simplest choice gets employed, which is equal number of MC samples across
all the image pixels. While it may not be the optimal solution it guarantees that every pixel
will be assigned a reasonably high number of MC samples. In MLT this is not the case, a
long Markov Chain can store a lot of information in some pixels, resulting in nearly converged
solution, but it can leave a lot of pixels that are sampled poorly or pixels that are not sampled
at all. This tells us that the MLT cannot work successfully with short Markov Chains, by
definition it should be run with settings promoting very long Markov Chains.

Start-up bias. Despite the fact that Markov Chain eventually converges to a desired dis-
tribution first samples within a Markov Chain are generated with some arbitrary start-up
distribution that often does not match that desired distribution. This means that a prefix
sub-chain of some usually unpredictable length will bring an error to our image. We have to
put additional effort in order to overcome the issue. In contrast to the MLT, the ERPT does
not have that issue because initial MC samples bring correct estimation with potentially high
variance and Markov Chains are only used to reduce that variance.

Importance sampling. In its classic formulation Metropolis Light Transport is unable to
take advantage of importance sampling, at least not with the same level of freedom as seen
in MCPT. In ERPT we have both benefits, the importance sampling for initial MC samples
and Markov Chains bringing the higher order of convergence.

Ergodicity. The Metropolis Light Transport requires comprehensive set of mutations, this
roughly means that no matter where a Markov Chain starts, moves or stays it must always be
able to reach any point within a domain (let’s say a path in path space) in limited number of
steps. In other words, there must be no region in a domain from which Markov Chain cannot
escape and all regions have to be always approachable for a Markov Chain. Skipping the
formal language again, mutation set must guarantee that the unique stationary distribution
exists. This issue forces us to deal with more complexity when designing a mutation set.
The ERPT does not suffer from this problem because initial MC samples ensure ergodicity,
therefore our requirements for properties that mutations must satisfy are relaxed.

41

5 Energy Redistribution Path Tracing

This algorithm was introduced by David Cline, Justin Talbot and Parris Egbert in their arti-
cle [2] ”Energy Redistribution Path Tracing”. The original paper was very informative in the
context of some elements of the algorithm, but some elements were difficult to understand
or to figure out when making an implementation. Later, Christopher Batty published his
technical report [3] Implementing Energy Redistribution Path Tracing. His work gets into
some details better than the original paper, however it sill suffers from some mistakes and
rendered images show visual corruptions. Many people were trying to understand the algo-
rithm and to implement it correctly, these efforts shown that it is a challenging, error-prone
and time-consuming task.

The situation mentioned above gave us a motivation to understand this tricky technique, to
analyse properties of mutation schemes and to bring a friendly description that will be helpful
during any engineering or research work involved with this algorithm. Below we mention a
list of properties that in our opinion make the ERPT an interesting research subject.

• locality, mutations can be easily controlled in a local manner

• predictability, predictable behaviour in a relatively small number of iterations

• offline-suitability, suitable for offline rendering within space-time of paths

• simplicity, mutation schemes that are sufficient to achieve good results are fairly simple

• flexibility, a lot of freedom in mutation design

• mixing-vulnerability, brings benefits of both the MC and MCMC worlds

42

The first ERPT-based image rendered by FlowlightFox. 6.
Well, that was not very promissing, nor it was impressive, but we did not give up.

6Models taken from Stanford repository.

43

The first high quality ERPT-based image rendered by FlowlightFox, achieved after many
months of hard work.7

It is important to note that this image does not use any biased refinement techniques. It
shows quite difficult back-side lighting scenario with perceivable direct and indirect shadows.
All the edges, corners, cavities, wrinkles and tiny details are modelled through real geometry.
The matte-like surface appearance is achieved by employing Lambert and Oren-Nayar models.

7Models taken from Stanford repository.

44

5.1 A Quick Analysis of Deposition Constant

The Metropolis Light Transport suffers from start-up bias because the initial path X0 for
the mutation chain is not sampled with a distribution proportional to f . The Energy Re-
distribution Path Tracing algorithm overcomes this problem somehow and samples the X0

with a distribution proportional to f . This is achieved by creating many mutation chains
per MC sample, all with equal length N . The Monte Carlo Path Tracing is used to generate
the initial path X0 for these mutation chains. When using MCPT, the path X0 is sampled
with probability p(X0), thus the probability of having X0 as the initial path of a chain is
proportional to p(X0). However, this number should be proportional to f(X0). Hence, the
number of mutation chains starting at X0 is off by a factor of f(X0)

p(X0) . This is resolved by
starting multiple chains per initial path X0. When on average, the number of chains for
X0 is proportional to f(X0)

p(X0) , the initial mutation chain paths referred to as X0 are sampled
proportional to f and start-up bias is eliminated. This is realized by making the number of
mutation chains numChains(X0) per path X0 equal to:

numChains(X0) = floor

[
U(0, 1) +

f(X0)
p(X0)

× 1
N · qed

]
In this equation, the U(0, 1) is a uniform random number between 0 and 1 and the qed is

the deposition energy quantum (called ed in the original work [2]), it is the amount of energy
that is contributed to the image by each mutation in a chain. To see why ERPT does not
require an unbiased estimate of c (the MLT’s equivalent of qed), let us compute the expected
number of contributions to the image plane for MLT and ERPT. For MLT, the total number
of contributions to the image plane always equals N . For an ERPT sample with initial path
X0, the average number of contributions equals 1

qed
· f(X0)

p(X0) . Therefore, the expected number
of contributions per ERPT sample equals∫

Ω

1
qed
· f(x)
p(x)

· p(x)dΩ(x) =
1

qed

∫
Ω

f(x)dΩ(x) =
c

qed

Compared to MLT, the expected number of contributions per ERPT sample is off by a
factor of c

qed
· 1

N . So, to keep the ERPT estimator unbiased, instead of contributing c
N per

mutation, as in MLT, an ERPT mutation should contribute c
N ·

qed
c ·

N
1 = qed. Hence, the

ERPT algorithm does not require an explicit estimate of c. The energy quantum qed may
be chosen freely without introducing bias. However, it does influence its performance. The
number of mutation chains per ERPT sample is inversely proportional to both N and qed.
The expected number M of mutation chains per ERPT sample can be regulated by using
qed = c

N×M . This again requires an estimate of c. However, this estimate does not need to
be very accurate and may even be biased, as it only influences the performance of the ERPT
algorithm. In practice, the ERPT algorithm is not very sensitive to the value of qed. We
provide this analysis based on the work in [8].

45

5.2 Core Control Parameters

In its basic form the algorithm is based on a few parameters that govern the workflow. The
algorithm creates and processes a lot of Markov Chains so parameters will mainly express their
properties. The first parameter is the deposition quantum. It is a small fraction of energy
that well be recorded or deposited in the image after each single Markov Chain step. Keep in
mind that the energy word here is used rather non-formally, it should be rather replaced with
radiance or power, but for the sake of simplicity and harmony with the original publication
[2], let it be energy. The second parameter, the chain length, determines how many steps a
single Markov Chain will survive. The third one, the expected number of mutation per initial
MC sample, determines how many Markov Chains in average will be spawned from a single
Monte Carlo sample. This parameter is referred to as a desired number of mutations per
correlated integral in the original article [2], but we consider it a little bit misleading. Often
it is interpreted as a desired number of mutations per pixel and it works this way quite well,
the only concern we had with this interpretation is that it is not fully independent of other
parameters. Notice that when number of initial MC samples grows the number of mutations
per MC sample than can be physically achieved shrinks. If the number of initial MC samples
per pixel will be grater than the desired number of mutations then obviously some of these
MC samples will get no Markov Chains at all, they will be just forgotten. To avoid these
issues we define the desired number of mutations as a desired number of mutations per initial
MC sample. Of course these parameters are in addition to the regular set of parameters
present in the start-up Monte Carlo sampler, the lighting deepness, the maximal ray trace
depth, number of Monte Carlo samples per pixel.

5.3 Algorithm Outline and Correction

For complementary set of algorithm elements we refer the reader to [2] and [3]. Here we will
only recall the routines that are subject of our interest within this document. Let’s start
with the explicit formulation of the deposition quantum estimation, it’s fairly simple and can
easily be adopted to work with tiles by limiting pixel ranges.

The Deposition Quantum Estimation algorithm.

Christopher Batty in his report [3] described the Equal Deposition Flow routine that is
responsible for spawning Markov Chains and for accumulation of deposition quantum with

46

correct spectral-distribution of energy. Unfortunately, he made a mistake that is easily per-
ceivable as splotches having undesired color flavours. Due to his description of the Equal
Deposition Flow a red-coloured path can redistribute its energy over path space regions that
are made of blue-coloured paths, or let’s say that a reddish surface can trade its energy with
a blueish surface. This leads to an undesired color blending. Below we remind his version
of the algorithm and we deliver the refined version. Our modification is based on a principle
stating the no matter what is going on we should always preserve the spectral-distribution of
the current state of Markov Chain, or let’s be more specific, we should preserve the color of
the so far accepted light path. Renderings created by the FlowlighFox show that our change
is good.

The flawed version of the Equal Deposition Flow algorithm.

47

The refined version for the Equal Deposition Flow algorithm.

5.4 Implementing the Mutations

When it comes to implementing mutation schemes, we must be sure what to calculate and
how. The probably most mysterious part of the algorithm’s set of formulas that needs to be
computed is the tentative transition density division, or briefly TTDD. Christopher Batty
in his report calls it ∆density(x→ y). Let’s recall how it is defined:

TTDD(x→ y) =
T (y → x)
T (x→ y)

.

Keep in mind that the T (x → y) and T (y → x) are relative probability densities of per-
forming a tentative step from one path to another. Also notice that the term T (x → y) is
a multiplication of partial probabilities T0(x → y), T1(x → y), and so on. Assuming that a
sampled path has length equal to n, we have:

T (x→ y) =
n∏

k=0

Tk(x→ y).

The migration over film plane. In our implementation we perform screen-space migration
over pixels by walking randomly within a square of K×K pixels. We employ uniform sampling
with respect to the square surface area and when walking near the edges of the square we
wrap around the square to maintain equal probability of jumping into any pixel from any
pixel within the square. Consequently, we have:

T0(y → x)
T0(x→ y)

= 1.

48

The hard re-connection. This type of mutation event occurs when we connect the yk

node to the xk+1 node. This is a completely deterministic operation, so we consider it as a
Dirac-impulse and we have:

Tk(x→ y) = 1,

and if both transitions, (x→ y) and (y → x), are guaranteed to perform hard re-connection,
we have:

Tk(y → x)
Tk(x→ y)

= 1.

Extension and termination through the soft re-connection. When we generate a
ray within a solid angle surrounding the re-connection direction we say that it is the soft
re-connection. When performed on non-emitting surfaces it just acts as a path extension, but
when performed in the context of light sources it acts as path termination. Assuming that
the uniform distribution was chosen and that the solid angles are equally sized, we have:

Tk(y → x)
Tk(x→ y)

= 1.

Otherwise, with different solid angles (let’s call it caps) and distributions we have to take into
account probability densities involved with rays generated within the solid angles constructed
around the re-connection vectors, finally we have:

Tk(y → x)
Tk(x→ y)

=
pcap(yk, xk+1)
pcap(xk, yk+1)

.

For complete information about sampling of spherical caps that we used in the context of soft
re-connection routine we send the reader to [5].
Extension through the plain BxDF. In this case we simply generate a sample based on
a local BxDF function, very similar to what would be done in a typical MCPT. Assuming
that for our xk and yk this is the only choice, we have:

Tk(y → x)
Tk(x→ y)

=
pd(yk)
pd(xk)

,

often the cosine-lobe distribution is used, having in mind that the probability density for this
distribution equals cos(θxk

)

π , we end up with:

Tk(y → x)
Tk(x→ y)

=
cos(θyk

)
cos(θxk

)
.

Mixtures. As we can see, often many terms cancel out, so our formulas get simplified. But
it should be explicitly stated that if for a single path we employ a set of strategies, s1, s2,
. . . , sk, then the complete mixture transition density is given by:

T (x→ y) =
k∑

i=1

p(si) · T si(x→ y),

where p(si) is the probability of selecting the si strategy, and keep in mind that all these
probabilities p(si) have to sum to 1, so

∑k
i=1 p(si) = 1.

49

There is also another one bit added to the complexity if we want to avoid corner and cavity
traps. Later an illustration will be shown, it will mention some issues that affect blow-like
mutations described in the next section. To fight against these traps we suggest to perform
a random selection between the hard re-connection and BxDF extension, this translates into
geometric sequence exponentially fading. So the average or expected number of rays traced
per mutation will grow only slightly, it would require some calculations to say it precisely but
straight from the top of our heads we feel like the growth should be about 1 or 2. Also we
have to reflect this change in the transition probability, constructing a mixture sampling on
the top of the two selectable operations.

Finally we would like to remind that our ERPT mutations are closed to the path length
and the weak path type (defined in the third chapter). Also for each initial MC sample all
the Markov Chains must have the same length, keep in mind that the Markov Chain length
have to be also preserved across all the paths having the same signature with respect to weak
type and path length. These are needed to support the detailed balance rule from which the
Equal Deposition Flow was derived.

50

Illustration presenting the discussed mutating operations 8.

8We are computer graphics enthusiasts that are capable of making fancy handcrafts, drafts and drawings.

51

5.5 Designing Good Mutations

First of all, for the sake of clarity and simplicity in this document, we will work with uni-
directional mutations only.

A mutation explores path space around an original path. Let’s say a mutation performs
walking over nearby paths. Assuming that all mutations start from an eye we have two ways
of creating a mutated path. One way is to expand a path sub-set surrounding an original path,
it is achieved by generating mutation directions within wide solid angles. The second way
is to extend a paths within that sub-set, an extension is about making the mutation prefix
path longer. Extending the mutation prefix path may result in a complete reconstruction
of an original path. What is the best choice? Should mutations be narrow or rather wide?
Should they be short—shallow or rather long—deep? As always it depends on what do we
want to achieve. The long—deep mutation prefix paths lead to a more rich information about
the lighting space because more vertices get modified, shorter mutation prefix paths result
in an undesired appearance as if a scene was rendered with a small set of point lights. Long
mutation prefix paths are required for playing with caustic paths as a mutation has to go
through all the specular vertices, eventually reaching the light source. Long mutation prefix
paths are more time-consuming as they require more rays to be traced. Wider mutations
allow a Markov Chain to cover vast part of the path space and screen space quickly, with
smaller number of steps, this means that to achieve a good screen space and path space
coverage it is sufficient to run many short chains, which in turn improves stratification over
screen space. Unfortunately everything has its price, wider mutations struggle to capture
small or high frequency details/features and high energy paths covering tiny parts of the
path space. Narrow mutations have contrary properties, they are good in capturing complex
details/features and irreplaceable in exploring tiny path space regions containing high energy
paths. The worst combination of just mentioned properties is a wide and long mutation, this
kind of mutation is nearly worthless as it deteriorates into plain Monte Carlo sampler.

Taking into account the previously mentioned mutation properties we can introduce two
major mutation types that will not strictly refer to certain types of light paths, such as
caustic or bleeding paths. The first mutation type is a blow-like mutation which is focused on
expansion with a tendency to short mutation prefix paths. It may by either wide or narrow,
but tends to re-connect to an original path as soon as possible. The second mutation type
is a drill-like mutation which is focused on drilling the space surrounding an original path
through narrow solid angles. If an original path is a caustic path then the drilling is continued
until a light source will be striked, otherwise the mutation can terminate somewhere in the
middle. Obviously it is a number one choice for caustic paths, but can be also a good choice
for bleeding paths flowing through some difficult geometry.

We consider three types of path extension during mutation events. The first one is a
free extension, it is just about performing a BxDF-based deflection. The second one is a
strict reconnection, it is about connecting a trailing/pending vertex of a new (mutated) path
to corresponding (with the same ordinal number) vertex of an original path. This kind
of extension also terminates a path. The third one is a non-strict reconnection which is
similar to strict reconnection, the only difference is that we treat the reconnection direction
as a deflection dominant, then we generate a random direction within a small solid angle
surrounding that dominant. Eventually we will either hit the same surface with some spread
around the original vertex or we will hit completely different surface—object.

52

Graphical representation of blows and drills with respect to narrow and wide variants 9.

9We are computer graphics enthusiasts that are capable of making fancy handcrafts, drafts and drawings.

53

Graphical representation of the Corner Trap 10.

10We are computer graphics enthusiasts that are capable of making fancy handcrafts, drafts and drawings.

54

Graphical representation of the Edge Trap and Hollow Trap 11.

11We are computer graphics enthusiasts that are capable of making fancy handcrafts, drafts and drawings.

55

Now we will introduce quality norms that quantify empirically measurable mutation prop-
erties. An obvious way of rating the quality of an algorithm is rating the visual appearance
in the context of time it takes to render it. Can we do any better than that? Can we have
some more precise, detailed, formal or numerical? Fortunately yes, we noticed that there is
a set of events and a set of properties that can be constructed on the top of that events,
these properties can be measured during rendering runtime and they provide very meaningful
information about how good our mutations are for a given scene and lighting conditions. We
noticed like four events, the mutation acceptance, the mutation rejection, the domain hit and
the domain miss. Now we will define them.

The mutation acceptance event occurs when a Markov Chain, during its tentative transition
step, decided that a new path generated by a successful mutation is accepted and our chain
moves to it. This is the most desired event across all the events.

The mutation rejection event occurs when a Markov Chain, during its tentative transition
step, decided that a new path generated by a successful mutation gets rejected and it stays
at the original path in path space. When this event shows up we are generally a bit unhappy
but it is not the worst thing that can happen, it depends on a few things, we will discuss it
later. This event has also an additional advantage, despite the fact that a sample got rejected,
we still can accumulate to both locations by replacing the deposition quantum with expected
values at both locations, the new and the original.

The domain hit event occurs when a mutation does not fail to create a new path. In other
words, a path that got created by a mutation routine is valid in our path space and we are
are allowed to make a decision, we can either accept it or reject it. A path may be invalid
for many reasons, re-connection step may strike an obstacle along the way, path extension
may fail to hit a light source, path extension may hit a material that does not have the same
scattering mode, a mutation ray can fly away into a void. This is absolutely desired event
and we definitely aim to be in a situation in which all mutations end up with domain hits
because this means that our time spent on tracing mutation rays was not wasted.

The domain miss event occurs when a mutation fail to create a valid path. This can be
interpreted as an instant rejection with a little bit more pain because of computing resources
wasted on tracing ray for a path that can not be constructed. That is the biggest fail as there
is no chance for Markov Chain to leave its current location and the accumulation will always
go fully into the original location. We can not accumulate expected values at both locations.
It is also likely in some cases that this event will appear in a form of long consecutive chain
of failing mutations which leads to a highly visible defects that are hard to recover from.

We can count these events and build up some metrics or norms on the top of them. We
introduce the concepts such as strength and streak. The strength is simply the ratio of number
of events of some type to the total number of mutations performed. The streak is the number
of uninterrupted consecutive events of the same type. We will be usually interested in average
streak, the median could also be useful but is more difficult to compute. These two concepts
can be mixed with any type of event and this is what brings us measurable information
about a MCMC-based algorithm performance. So let’s answer the question - what properties
a good set of mutations should have? Obviously, it should have high acceptance strength,
low rejection strength and low domain miss strength. This information however is still far
from being comprehensive and judicial. Even if rejection strength is quite high, it does not
mean that Markov Chains perform poorly. This is the situation in which streaks play their
role. If rejection strength is high but the average rejection streak is low an employed set of
mutations can be considered good. To understand that think about the following example.

56

Imagine a Markov Chain that performs 200 steps and imagine that half of steps will face
rejection events and another half will face acceptance events. The lacing pattern or let’s say
the order in which these events are interleaved is important. Let’s consider two cases, in the
first case our mutation chain starts with rejection, hits the acceptance in the second step
and continues to alternate between rejection and acceptance all the way until the end, so it
looks like RARARARARA(RA)∗ . In this case rejection strength will be equal to 0.5 (or
let’s say 50 %) and the average rejection streak will be 1. And this is not that bad, this
scenario has a chance to spread information over 100 pixels in a very balanced way because
each of these pixels may be visited not more that 2 times. In the second case we want to
consider a situation in which a Markov Chain starts with the acceptance event and generally
shoots 100 uninterrupted acceptance events followed by 100 uninterrupted rejection events.
So a symbolic word for that situation would look like AAAAAA(A)∗RRRRRR(R)∗ . The
first sequence of acceptance events will have a chance to cover 100 different pixels which
is awesome but the second sequence ruins it all because it will accumulate 100 times into
the same pixel. So we do not have that nice accumulation balance and this kind of event
will create extremely bright spot or speckle on our image. Usually it is a dramatic defect,
a deal-breaker in terms of high quality rendering. Let’s look at how it is expressed by our
norms, the rejection strength is exactly the same, but the average rejection streak equals 100
instead of 1. This shows us that the ordinal distribution of events is very important and has
significant impact on the image quality. Also we can easily notice that average streaks must
be as low as possible for events such as rejections and domain misses. The two cases that
we just presented do not cover the whole set of possibilities. There are other lacing patterns
that are undesired and destructive, e.g. (AR6AR9AR3AR7)+. For this example some other
measurable norm should be established, so we could detect it during rendering. Generally, the
statistical norms just described explain why in the original paper [2] they needed to use the
so called Consecutive Sample Filtering. This biased filter was successfully removing speckles,
sparkles, fireflies, bright spots, hot spots or however we want to call them, at the expense of
bias in estimates. But since that routine is using only a single threshold it is unable to solve
cases such as (AR6AR9AR3AR7)+.

57

5.6 Optical Type System as a Tool for User-Controllable Transition Schemes

Here we would like to describe the complementary optical type system with respect to all
important events and properties that can be used to a construction of optimised transition
schemes. Here we define 16 atomic types:

• eDr : external diffuse reflection

• eWGr : external wide glossy reflection

• eNGr : external narrow glossy reflection

• eSr : external specular reflection

• eDt : external diffuse transmission

• eWGt : external wide glossy transmission

• eNGt : external narrow glossy transmission

• eSt : external specular transmission

• iDr : internal diffuse reflection

• iWGr : internal wide glossy reflection

• iNGr : internal narrow glossy reflection

• iSr : internal specular reflection

• iDt : internal diffuse transmission

• iWGt : internal wide glossy transmission

• iNGt : internal narrow glossy transmission

• iSt : internal specular transmission

These types can be mixed up with the concepts of impulse deflection and scattered deflection
to bring even larger set of types. By using these types to construct a hierarchy of strong and
weak path types we can perform a path space partitioning which in turn may be used to design
intelligent mutation strategies through relaxing the type-oriented constraints. We mention it
as an avenue for future exploration.

58

5.7 MC Sample-Set Entropy

Here we would like to introduce a concept of MC sample-set entropy along with an explanation
of its role in achieving good MC-MCMC sample trade-off. Imagine that we generated some
set of initial MC samples and we chose values for all required parameters. Having these things
fixed we can introduce the concept of a mutation volume. Pick a single MC sample from our
set of initial MC samples and imagine running an infinite number of Markov Chains started
from this sample. These chains will cover all paths reachable from the initial MC sample,
the complete set of these reachable paths is what we call mutation volume. Now notice that
depending on the distribution of initial samples mutation volumes may bring smaller or larger
coverage of the path space, also they may be mutually overlapping. A coarse-grain observation
here is that we want to achieve good path space coverage with not too much overlapping. So
the entropy in this context would express how rich and unique is the information given by
the set of initial MC samples.

5.8 Trade-Off Between Number of MC Samples and MCMC Samples

One of the ERPT properties that have not been explored is the relationship between the
number of initial MC samples and the desired number of MCMC samples per MC sample.
Here we would like to discuss the topic.

In our experiments we were suffering from the light-space noise when using just 1 initial MC
sample per pixel. Values between 4 and 8 seemed to bring quite good results. In general sense
we think that this trade-off is dependent on our earlier mentioned depth-wise distribution.
Taking into account MC sample-set entropy we may prefer a good stratification over strong
importance sampling. By stratification here we mean both, the stratification within each
lighting depth-wise layer and the stratification over these lighting layers. So again we meet
depth-wise distribution.

59

5.9 Workflow, Work-splitting Schemes and Accumulation Styles

The Energy Redistribution Path Tracing is quite challenging for multi-threading, like all other
algorithms that involve Markov Chains. The reason is very obvious, a Markov Chain that
starts from some pixel walks over an image plane and accumulates information into randomly
visited pixels. We consider two work-split schemes, pane-based and tile-based.

In pane-based scheme we simply create an image buffer for every thread. Assuming that
our screen space has N ×M pixels and we have T threads running at the same time, we have
N ×M × T pixels in total that will have to be stored in memory.

In tile-based scheme we split the screen into tiles and each thread gets its tile to render.
Assuming that our screen space has N ×M pixels and we have T threads, we could expect
that memory consumption will be proportional to N ×M pixels. There is an issue, if we
just split the rendering into tiles then we will end up with highly perceivable tile edges.
Unfortunately, experiments show that regardless of the number of initial MC samples and
number of mutations they will persist. To overcome the issue we introduce flanged tiles with
fringed deposition. The concept is very simple each tile has a flange that can be understood
as an extension of an original tile. The initial Monte Carlo samples can only be generated
from pixels that belong to an original tile, meaning that all Markov Chains start from original
tile. The key thing is that chains can accumulate not only into original tile but also into its
flange. This strategy results in flange-flange and flange-tile overlapping that in turn leads to
a blending with less hard edges. Unfortunately, this solution is also imperfect and edges may
be still noticeable as a lattice pattern with low frequency. To resolve the issue we can force
flanges to be large enough to cover the entire screen space. Well, obviously we get back to
the pane-based memory consumption but the situation is not hopeless, we will return to this
topic later. One may ask - why should I bother myself with flanged tiles then? The answer
is that they bring another benefit, the varying deposition quantum. Notice that tiles cover
different regions of a screen space and a scene. Some of them may be lighter and some of them
may be darker. This observation leads to a conclusion that calculating a single deposition
quantum from an entire screen is generally sub-optimal. Tiles with larger total amount of
radiance will enlarge the deposition quantum. Larger deposition quantum means that darker
regions of an image will get smaller number of Markov Chains redistributing the energy of
initial Monte Carlo samples. So darker tiles will remain undersampled, suffering from higher
variance and lower image details. From a technical point of view this translates to a desired
number of mutations being preserved within an entire screen space but being non-preserved
within some of tiles. With flanged tiles we can calculate a distinct deposition quantum for
each of tiles, consequently we will maintain the desired number of mutations within each tile.

Now let’s return to the topic of memory management in the context of accumulation.
When rendering algorithms are determining pixel values or calculating any kind of partial
information that will contribute to the final pixel value, memory may be accessed in many
different patterns, memory requirements in terms of size may be enormous, memory may suffer
from synchronization issues when many threads are employed. To overcome all the challenges
and to service each scenario as efficient as possible we introduce a few accumulation styles
that impact memory consumption requirements along with its computational properties.

AccumulationStyle::Blasting. This is the most simple way of accumulation, in which
each thread has access to the same memory resource, let’s say that this resource is shared
between threads, and each of these threads can access this shared memory (e.g. by perform-
ing read—write operations) simultaneously without any synchronization mechanisms. This

60

method offers low memory consumption and fast memory access but assumes that threads
are working on disjoint sub-sets of the memory resource. In other words, the assumption
states that the original memory resource is shattered into elements exclusively accessible by
only one thread. The Monte Carlo Path Tracing is a good example of an algorithm that can
successfully exploit this method.

AccumulationStyle::Buffering. This is a method in which the original memory resource
is duplicated, copied multiple-times or may be split into many overlapping elements. The key
thing is that all that copies and elements are represented by independent memory allocations
that eventually must be flushed into the original memory allocation. This method may lead to
an excessive memory consumption but keeps threads safe in terms of memory access collisions
without necessity for any synchronization mechanisms. Also, an important property is that
buffers are by-definition large or let’s say large enough to survive the entire thread lifetime.
Consequently, the flush operation is performed only when a thread finishes its job, and it is
guaranteed that there will be no need for flush operations somewhere in the middle. The
Energy Redistribution Path Tracing is a good example of an algorithm that can make use of
this method, but preferably only when it draws a single framebuffer.

AccumulationStyle::Caching. This method is pretty much similar to buffering but with
one important exception - cache is not large enough to survive the entire thread lifetime, or
let’s say it may survive but it is not guaranteed. So during a runtime of a single thread we
can expect/experience many flush operations. When excessive memory consumption is not
acceptable we can employ relatively small buffers (called caches) that will provide us with a
good balance between low memory consumption and low flush frequency. Unfortunately there
are trade-offs, smaller caches imply higher flushing frequency while lower flushing frequency
works in the opposite direction - implies larger caches. Well, we have to live it out. The
Energy Redistribution Path Tracing is a good example of an algorithm that can make use of
this method, especially when it draws multiple-framebuffers, e.g. framebuffers corresponding
to distinct layers of path-space. As an implementation of this method we propose the so called
micro-tiling algorithm, which requires only one KeyLock (mutex-like object) per framebuffer.

A quick analysis telling us why buffering does not always work well for us. Markov Chain
Monte Carlo algorithms are challenging in terms of memory transactions because they start
drawing samples at some pixel and as the time passes they migrate between pixels. Con-
sequently, they perform accumulate operations over many pixels in unpredictable patterns,
possibly any pixel can be visited by a Markov Chain starting from a certain pixel. We are
nearly unable to make any assumptions about set of visited pixels nor we have any ’a priori’
knowledge. So let’s imagine that we want to render an image with the following properties:

• full HD resolution (that is 1920× 1080),

• the PathSpace depth equals 8,

• a single pixel is 12-bytes large (3 channels x 4 bytes-per-channel),

• we employ 12 threads in our rendering process.

This gives us 12×1920×1080×8×12 bytes, which translates to approximately 2278 [MegaByte]
or roughly 2.22 [GigaByte]. Set the PathSpace depth to 16 and use 24 threads, you will end
up with 8.88 [GB]. It is a trap leading to an enormous memory allocation explosion.

61

An example of sharp tile-edges in ERPT rendering

62

6 Conclusion

Now we will do a summary for this compact document, we will mention what we wanted
to achieve, what was done and what was not, finally leaving the reader with suggestions
for future work. One of the goals was to create a complete and correct implementation of
discussed algorithms on the ground of our own rendering engine, the FlowlightFox gsl.Engine,
or simply the Foxy. The term gsl.Engine stands for Global Shading-and-Lighting Engine.
The vast majority of time spent on that thesis went into the design and development of
that rendering engine along with many experiments and a painful debugging that was not
completed during the timespan of this work. Yet we are happy that this quite big and complex
system having approximately 1.1 MB large code (that is a bit over 106 of characters) has many
working features, tools and instruments, that allowed us to perform our experiments and gave
us a lesson about how hard it can be to develop such system. We were struggling a lot with
floating-point imprecisions, multi-threading, memory consumption and corruptions.

We presented quite large amount of theoretical background for light transport and Mote
Carlo methods that we used as a base for construction of algorithms that we implemented
in the Foxy. Although they look a bit overcomplicated we believe they bring a bit of the
well-grounded comprehensiveness. Based on our experiences with the Foxy and its instru-
ments allowing us to look into different parts of path space we prepared a Monte Carlo noise
classification. We made an insight into distinct lighting depth-wise layers to see how much
information is stored, and to see how the noise appearance and convergence properties vary
across these lighting layers. We proposed and derived two depth-based distributions, the
equidistribution which appeared to be too weak to bring noticeable improvement for conver-
gence in deeper layers, and the expodistribution which appeared to be too aggressive for first
few layers, leaving them simply undersampled for a very long time. We suggest to construct
a distribution that is somewhere in the middle between the two, or some fine-tuning of the
expodistribution. We would also like to explore well-known importance sampling techniques
combined with our depth-wise distributions. We leave it as a subject for future work. As for
Markov Chains and Energy Redistribution Path Tracing, we tried to bring a reader-friendly
descriptions, derivations and intuitions. We believe that our work will bring a bit of clarity
where things seem to be overcomplicated and difficult to understand or figure out. We also
believe that our work will uncover the true and beautiful simplicity of MCMC-based algo-
rithms that is hidden behind the loads of mathematical symbols and beefy formulas. We feel
like we delivered an added value to the topic as we made a few refinements, corrections and
improvement suggestions for the ERPT. We brought a clarified and flawless interpretation of
the parameter named desired number of mutations per correlated integrand, it is presented
as independent of all other parameters so a user does not have to pay attention if he set up
all the values fairly good and will not struggle to find a flawless balance. We also presented
the refined and by our best knowledge correct version of the Equal Deposition Flow routine.
This was followed by the invention of statistical quality norms that are measurable at runtime,
they are good quantifiable expression of visual corruptions that are by-products or side-effects
of ERPT. We mentioned how they explain the necessity of employing the consecutive sam-
ple filtering presented in the original publication [2] bringing the ERPT to the world. We
would like to continue this topic, aiming to construct norms that will be able to detect all
the relevant lacing patterns with respect to every single mutation strategy. It would be also
great to build up an automatic fine-tuning of the ERPT parameters and automatic selection
of mutation strategies based on that statistical norms, our high quality seen in rendering was

63

achieved by gathering the statistics and performing manual tuning based on that gathered
information, we agree that this is not comfortable to a user. We presented a different view
on the mutation strategies. Instead of distinguishing between the lens and caustic mutation
strategies, we constructed all our mutations as an eye-side manner. We focused on whether
they are long—deep or short—shallow, and whether they are wide or narrow. We discussed
how to apply them to different lighting situations, unfortunately we did not manage to ex-
amine our unidirectional caustic-oriented mutations, we would like to see how they perform
in combination with importance sampling techniques, e.g. [9] photon map based importance
sampling. We addressed the issue of corner and cavity traps and suggested a simple solution
to that problem. We also introduced an idea of using multiple deposition energy quanta with
different values and to our knowledge it is the first time of mentioning such idea. However
more experiments for its claimed strengths would be useful along with the formal proof of
preserved properties of the algorithm. We are happy to say that we managed to theoret-
ically (by our observations and derivations) as well as practically (by our implementation)
create the ERPT version that can handle variety of diffuse surfaces modelled by Lambert
and Oren-Nayar models that are involved with complex edges and cavities. We remind that
for the purpose of our experiments the texturing system was turned off and all the surface
details, shapes, features, cavities and edges on the Asian statues were modelled purely by
high resolution geometry, this is a proof that the Foxy successfully resolves the addressed
ERPT-related issues while bringing high quality nearly photo-realistic images and preserving
the original unbiased nature of the ERPT.

64

7 Bibliography

[1] Eric Veach, Leonidas J. Guibas. Metropolis Light Transport. Computer Science Depart-
ment, Stanford University.

[2] David Cline, Justin Talbot, Parris Egbert. Energy Redistribution Path Tracing. Brigham
Young University.

[3] Christopher Batty. Implementing Energy Redistribution Path Tracing. Department of
Computer Science, The University of British Columbia.

[4] David Cline and Parris Egbert, 2005. A practical introduction metropolis light transport.
Brigham Young University.

[5] Philip Dutre. Global Illumination Compendium. Department of Computer Science,
Katholieke Universiteit Leuven.

[6] Kajiya J. T. 1986. The Rendering Equation. In SIGGRAPH 1986.

[7] Matt Pharr, Greg Humphreys. Physically Based Rendering, From Theory To Implemen-
tation.

[8] Dietger van Antwerpen. Unbiased physically based rendering on the GPU. Delft University
of Technology.

[9] Henrik wann Jensen, 1996. Global illumination using photon mapping. In Rendering
Techniques, 21-30.

[10] Eric P. Lafortune, Yves D. Willems. Bi-Directional Path Tracing. COMPUGRAPHICS
1993.

[11] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, Don-
ald P. Greenberg. Lightcuts: a scalable approach to illumination. SIGGRAPH 2005.

[12] Per H. Christensen. Point-Based Approximate Color Bleeding. Technical Report #08-01,
Pixar Animation Studios, 2008.

65

