
Production Volume Rendering
Fundamentals

SIGGRAPH 2011 Course Notes

Course Organizers

Magnus Wrenninge1

Sony Pictures Imageworks

Nafees Bin Zafar2

DreamWorks Animation

Updated: 8 okt 2011

1 magnus.wrenninge@gmail.com
2 nafees@nafees.net

mailto:magnus.wrenninge@gmail.com
mailto:magnus.wrenninge@gmail.com
mailto:nafees@nafees.net
mailto:nafees@nafees.net

Course Description

Computer generated volumetric elements such as clouds, fire, and whitewater, are becoming
commonplace in movie production. The goal of this course is to familiarize attendees with the
technology behind these effects. The presenters in this course have experience with and have authored
proprietary volumetrics systems.

The course begins with a quick introduction to generating and rendering volumes. We then present
some of the most fundamental parts of a production usable volumetrics toolkit, focusing on the feature
set and why those features are desirable. Specific focus will be given to the approaches taken in tackling
efficient data structures, shading approaches, multithreading/parallelization, holdouts, and motion
blurring.

Level of difficulty: Intermediate

Intended Audience
This course is intended for artists looking for a deeper understanding of the technology, developers
interested in creating volumetrics systems, and researchers looking to understand how volume
rendering is used in the visual effects industry.

Prerequisites
Some background in computer graphics, and undergraduate linear algebra.

On the web
http://magnuswrenninge.com/productionvolumerendering

http://magnuswrenninge.com/productionvolumerendering
http://magnuswrenninge.com/productionvolumerendering

About the presenters

Nafees Bin Zafar is a Senior Production Engineer in the Effects R&D group at DreamWorks
Animation where he works on simulation and rendering problems. Previously he was a Senior Software
Engineer at Digital Domain for nine years where he authored distributed systems, image processing,
volume rendering, and fluid dynamics software. He received a BS in computer science from the College
of Charleston. In 2007 he received a Scientific and Engineering Academy Award for his work on fluid
simulation tools.

Magnus Wrenninge is a Senior Technical Director at Sony Pictures Imageworks. He started his career
in computer graphics as an R&D engineer at Digital Domain where he worked on fluid simulation and
terrain rendering software. He is the original author of Imageworks' proprietary volumetrics system Svea
and the open source Field3D library, and is also involved with fluid simulation R&D. He has worked as
an Effects TD on films such as Spiderman 3, Alice In Wonderland and Green Lantern, and is currently Effects
Animation Lead on Oz: The Great and Powerful. He holds an M.Sc. in Media Technology from Linköping
University.

Presentation schedule

10.45 – 11.00 Introduction
11.00 – 11.40 Basics of volume modeling
11.40 – 12.10 Basics of volume rendering
12.10 – 12.15 Q&A

Table of contents

Introduction 6

What’s new? 6

An informal history of volumetric effects 7

A simple volumetrics system 10

Volume modeling 11

Voxel buffers 12

Writing to voxel buffers 18

Interpolation 21

Geometry-based volume modeling 23

Rasterization primitives 27

Instantiation-based primitives 33

Modeling with level sets 42

Motion blur 44

High resolution voxel buffers 47

Volume rendering 52

Lighting theory 53

Raymarching 58

Pre-computed lighting 62

Holdouts 65

Motion blur 69

Putting it all together 70

References & Further reading 71

1. Introduction

If you google “volume rendering” or search for it at your favorite book store web site, you will find that
most available literature and research regards volume rendering in medical and data visualization
contexts. A smaller portion deals with photorealistic rendering of light scattering in participating media,
but precious few texts are available that describe how volume rendering is used in practice to create
visual effects.

The aim of this course is to give an introduction to volume rendering in visual effects production.
Production volume rendering is a fairly isolated subset of volume rendering, and there is little overlap
between it and the other volume rendering contexts. We aim to cover only techniques actively used in
visual effects production, and while this excludes much of current research into rendering of
participating media, we want to highlight the techniques with the most practical applications. We
further limit the scope of this course to rendering of true 3D volumes, excluding topics such as sprite-
and slice-based methods.

Our goal is to provide enough details about how high-end production volume rendering is
accomplished that participants could set about writing their own basic rendering software. Part of the
course’s purpose is also to discuss the limitations of the techniques used.

1.1. What’s new?
The main difference between this and last year’s course is that the Fundamentals section (which you are
currently reading) is separate from the Systems section, which is now its own course with separate course
notes3.

Most of the code examples provided in these course notes are also different from last year. They are now
excerpts of the upcoming open source renderer PVR, which will be released late 2011 in conjunction
with the book Production Volume Rendering – Design and Implementation.

Production Volume Rendering – Fundamentals 6

3 http://magnuswrenninge.com/productionvolumerendering

http://magnuswrenninge.com/productionvolumerendering
http://magnuswrenninge.com/productionvolumerendering

1.2. An informal history of volumetric effects
One of the most memorable volumetric effects in cinema history is the “cloud tank” effect from Close
Encounters of the Third Kind. Developed by Scott Squires, this technique called for filling a tank partially
with salt water, then carefully layering on lower density fresh water on top. The clouds were created by
injecting paint into the top layer, where it would settle against the barrier between the salt water and the
fresh water [Squires, 2009]. Beyond just art direction, this particular cloud effect was a character in it’s
own way. The goals the special effects crew had during Encounters are the same goals we have today. We
want to control how the volumetrics look, and how they move.

Cloudtank effect used in Independence Day.
© 1996 Twentieth Century Fox and Centropolis Entertainment. All rights reserved.

Computer graphics got into the mix shortly thereafter with William Reeves’ invention of particle
systems. He used particle systems to create the Genesis sequence in Star Trek II: The Wrath of Khan. The
title of the associated SIGGRAPH publication provides an excellent preview into what we are trying to
do: Particle Systems – A Technique for Modeling a Class of Fuzzy Objects [Reeves, 1983]. This basic
methodology is still prevalent today, and very relevant to this course.

With the advent of digital rotoscoping and compositing it became common practice in live action visual
effects to film elements in staged shoots and composite them onto the plate. This allowed the creation of
very complex photoreal effects, since the elements were real.

For purely digital effects, particle systems remained the popular choice. Their use in production
indicated a certain look barrier to particle based volumetrics. Particles work great when they are used to
model media which is well approximated by particles. The problem occurs when one tries to model a
media which is meant to be continuous. The use of particles in these cases leads to a very discontinuous
sampling. Particles could be combined with some low frequency tricks such as sprites to look good in
special cases, but not so in the general case. One could simply choose to use more particles, but that

Production Volume Rendering – Fundamentals 7

looses the advantage of the sparse sampling, and comes at an exponential increase in computational
cost.

In the late 90’s, an alternative approach started taking root in the visual effects industry [Kisacikoglu,
1998; Lokovic and Veach, 2000; Kapler, 2002]. This technique treated space as a discretized volume,
where the contents of a given small volume of space is stored in a sample. The kinds of data stored are
properties such as density, temperature, and velocity. Each volumetric sample is called a voxel, and the
entire collection is referred to as a voxel buffer or voxel grid. Modeling operations are performed on the
grid by rasterizing shapes, particles, or noise. Most morphological operations common in the image
processing paradigm are also applicable to volumes. This familiarity in workflow also helped artists
adapt to this voxel based pipeline.

The Nightcrawler’s “Bamf” effect from X2.
© 2003 Twentieth Century Fox and Centropolis Entertainment. All rights reserved.

One of the first systems successfully used in multiple movies and commercials was the Storm software
developed by Alan Kapler at Digital Domain. The goal behind Storm was to provide a modeling and
rendering solution which could be operated efficiently by artists at the resolutions required for feature
films. It featured a language where artists could create buffers, model volumetric shapes, perform
arithmetic and compositing operations, and control rendering. The modeling commands allowed artists
to use different geometric shapes and a rich set of noise algorithms to create high quality effects very
quickly. The system was implemented as a plugin to the Houdini animation software which also aided
in quick adoption by the artists.

The memory requirements of scenes Storm needed to render exceeded 25 gigabytes. A stringent
requirement even by today’s standards, it was impossible when Digital Domain started working on a CG

Production Volume Rendering – Fundamentals 8

avalanche effect for Columbia Pictures’ 2002 film xXx. Storm utilized in-core data compression
techniques, and innovated to use of buffers transformed to fit the camera frustum. These buffers, called
“frustum buffers”, provided high resolution close to the camera, and low resolution but complete spatial
coverage far away from the view point [Kapler, 2003]. For his pioneering efforts in the design and
development of Storm, Alan Kapler received a Technical Achievement Award from the Academy of
Motion Picture Arts and Sciences in 2005.

Digital avalanche in xXx. © 2002 Columbia Pictures. All rights reserved.

Production Volume Rendering – Fundamentals 9

1.3. A simple volumetrics system
A minimal volumetrics system contains three major components. First a data structure for voxel buffers.
This means defining both a file format and its in-core representation. A naive implementation is an
object which contains a contiguous array, and provides accessor methods to access values with 3D grid
indices or positions.

The second component consists of a set of operations which fill the buffer with data. One such operation
may simply evaluate noise at each voxel, and store the value. Another operation may take a list of points
with radii, and fill the spherical region around the particle with a given value. These modeling
commands can involve filtering, distorting, and combining multiple voxel buffers with arithmetic
operations. Each operation could be implemented as a separate command line tool, or one tool which
processes a sequence of commands and arguments to these operations.

The final component is a renderer to produce an image of the voxel buffer. In addition to the buffer to
render, this component also requires specifications for a camera, and lights.

A typical workflow is to model and animate some primitives such as a set of particles, or meshes. Then
one creates a voxel buffer around the location of these primitives. The primitives are then rasterized into
the voxel buffer. Further volumetric processing operations are performed. Finally the buffer is rendered
by the volume rendering component. The next three chapters will expand further upon these
components.

Voxel filling tool

Voxel buffer

Voxel renderer

Camera Lights

Final image

Geometric
primitives

A very simple volume modeling and rendering system

Production Volume Rendering – Fundamentals 10

2. Volume modeling

In other forms of volume rendering, such as medical visualization, the data to be rendered is directly
available to the system, as in the case of a CT or MRI dataset. When it comes to volume rendering in
visual effects, we need to create this data ourselves. The process is called volume modeling, and involves
turning geometric data into volumetric data, most often in the form of voxel buffers.

A classic example of volume modeling is the use of pyroclastic noise primitives to model billowing
smoke, where each primitive is a sphere that can be represented as a position, a radius and various noise
parameters. The use of simple geometric primitives combined with noise functions is one of the most
fundamental methods of volume modeling.

Volume modeling is an almost endless topic, as there is an infinite number of ways and methods that
one can fill a voxel buffer. This chapter will try to describe the basics, from the voxel data structures
needed and elementary modeling primitives, to techniques for scaling to high resolution data sets.

Simple sphere Windowed noise function

Displacement based on noise Pyroclastic noise

Production Volume Rendering – Fundamentals 11

2.1. Voxel buffers
An ordinary computer image is a two-dimensional orthogonal array that stores either single values (for a
grayscale image), or multiple values (for a spectral image, such as RGB). The concept translates directly
to three dimensions, where we can imagine a 3D orthogonal array, which stores single or multiple values
in each of its cells.

This 3D array goes by many names, such as voxel grid, voxel volume, voxel buffer, etc., and depending on
whether it stores scalar- or vector-valued data it is sometimes also referred to as a scalar field/buffer/grid or
vector field/buffer/grid. Throughout these course notes we will refer to the case of discrete voxel arrays used
in a program as voxel buffers. In the general case of non-voxelized, arbitrary functions in 3-space, we will
refer to those as fields.

8x8x8 resolution orthogonal (uniform) voxel grid

2.1.1. Implementations
There are countless ways to implement voxel buffers. The simplest ones fold the 3D space into a
contiguous 1D array, and store the data using float* and malloc(), or in a std::vector<float>. More
complex implementations may allocate voxels as-needed, allowing the size and memory use to scale
dynamically. Such techniques become important as the resolution of a voxel buffer increases. Densely
allocated buffers are manageable up to resolutions of roughly 10003. (On very high-memory machines
this may stretch to 20003 or so.) To reach higher resolutions we need to use different data structures,
such as sparsely allocated buffers. We will return to this topic and ways of dealing with it in the section
titled High resolution voxel buffers.

Though implementing a simple voxel buffer class is straightforward, there are also free, open source
libraries. Field3D4 is one alternative, which has the benefit of being developed and tested in production
for volume rendering and fluid simulation. We will use Field3D’s data structures in our examples and
pseudo-code.

Production Volume Rendering – Fundamentals 12

4 http://github.com/imageworks/Field3D

http://github.com/imageworks/Field3D
http://github.com/imageworks/Field3D

2.1.2. Voxel indices
Just as with a 2D image, we can access the contents of a voxel by its coordinate. The bottom left corner of
the buffer has coordinate [0,0,0] (unless a custom data window is used, see below), and its neighbor in the
positive direction along the x axis is [1,0,0]. When referring to the index along a given axis, it is common
to label the variable i, j and k for the x, y and z axes respectively. In mathematic notation this is often
written using subscripts, such that a voxel buffer called S has voxels located at Si,j,k.

In code, this translates directly to the integer indices given to a voxel buffer class’ accessor method, such
as:

class DenseField
{
 const float& value(int i, int j, int k)
 {
 // ...
 }
 // ...
};

float a = buffer.value(0, 0, 0);

2.1.3. Implementation awareness
Although it is easy to write code that is agnostic about how voxels are represented in memory, writing
efficient code usually means being aware of and taking advantage of the implementation’s underlying
data structure. For example, a trivial voxel buffer may store its data as a contiguous one-dimensional
array, such as

std::vector<float> data(xSize * ySize * zSize);

Where the mapping of a 3D coordinate to its 1D array index is calculated as

int arrayIndexFromCoordinate(int i, int j, int k)
{
 return i + j * xSize + k * xSize * ySize;
}

The memory for such a buffer has the following structure:

...
0,0,0 1,0,0 2,0,0 0,1,0 1,1,0 2,1,0 0,0,1 1,0,1 2,0,1 0,1,1 1,1,1 2,1,1 0,0,2i,j,k

Production Volume Rendering – Fundamentals 13

If we were to loop over all the voxels in the buffer, for example to clear all the values, we might write it as
follows:

// Naive loop, with x dimension outermost
for (int i = 0; i < xSize; ++i) {
 for (int j = 0; j < ySize; ++j) {
 for (int k = 0; k < zSize; ++k) {
 buffer.lvalue(i, j, k) = 0.0f;
 }
 }
}

The problem with the code above is that the inner loop steps along the z axis, which means the memory
access pattern has a stride of xSize * ySize. For a buffer of realistic resolution, this will most likely
cause a cache miss at each voxel increment and force an entire cache line to be loaded, which cripples
performance.

Access pattern for the naive loop

If we instead reorder the loop so that the x axis is the innermost, performance is improved since the
access pattern is sequential in memory.

// Better loop, with x axis innermost
for (int k = 0; k < zSize; ++k) {
 for (int j = 0; j < ySize; ++j) {
 for (int i = 0; i < xSize; ++i) {
 buffer.lvalue(i, j, k) = 0.0f;
 }
 }
}

Access pattern for the improved loop

0,0,0 1,0,0 2,0,0 0,1,0 1,1,0 2,1,0 0,0,1 1,0,1 2,0,1 0,1,1 1,1,1 2,1,1 0,0,2i,j,k

0,0,0 1,0,0 2,0,0 0,1,0 1,1,0 2,1,0 0,0,1 1,0,1 2,0,1 0,1,1 1,1,1 2,1,1 0,0,2i,j,k

Production Volume Rendering – Fundamentals 14

Of course, we are still doing the multiplication to find the 1D array index once per voxel access,
something that could be avoided through the use of iterators. Iterators allow code to be written without
explicit bounds checks in all dimensions:

for (DenseField<float>::iterator i = buffer.begin(); i != buffer.end(); ++i) {
 *i = 0.0f;
}

Or even better:

std::fill(buffer.begin(), buffer.end(), 0.0f);

Iterators have the benefit of both being more efficient and producing cleaner code. We refer the
interested reader to the Field3D programmer’s guide5 for a more in-depth look at iterators.

2.1.4. Extents and data windows
As mentioned earlier, voxel indices do not need to start at [0, 0, 0]. As a parallel, images in the OpenEXR
file format have a display window and data window that specify the intended size and the allocated pixels
of an image. The same concept translates well to voxel buffers, where we will refer to the intended size of
the buffer as extents and the region of legal indices as data window.

2D example of extents and data window

In the illustration above, the extents (which defines the [0, 1] local coordinate space) is greater than the
data window. It would be the result of the following code:

Box3i extents(V3i(1, 1, 0), V3i(15,7,10));
Box3i dataWindow(V3i(2, 2, 0), V3i(11, 6, 10));
buffer.setSize(extents, dataWindow);

Using separate extents and data window can be helpful for image processing (a blur filter can run on a
padded version of the field so that no boundary conditions need to be handled), interpolation

voxel space origin

extents

data window

Production Volume Rendering – Fundamentals 15

5 http://sites.google.com/site/field3d/downloads

http://sites.google.com/site/field3d/downloads
http://sites.google.com/site/field3d/downloads

(guarantees that a voxel has neighbors to interpolate to, even at the edge of the extents) or for optimizing
memory use (only allocates memory for the voxels needed).

2.1.5. Coordinate spaces and mappings
The only coordinate space we’ve discussed so far is the voxel buffer’s native coordinate system. In the
future, we will refer to this coordinate space as voxel space. In order to place a voxel buffer in space we
also need to define how to transform a position from voxel space into world space (which is the global
reference frame of the renderer). Besides voxel and world space, a third space is useful, similar to
RenderMan’s NDC space but local to the buffer. This local space defines a [0, 1] range over all voxels and
is used as a resolution independent way of specifying locations within the voxel buffer. This definition is
the same as Field3D uses.

Illustration of coordinate spaces

When constructing a voxel buffer we define a localToWorld transform in order to place the buffer in
space. This transform is also called mapping, and defines the transformation between local space and world
space. Note that the transformation from local space to voxel space is the same regardless of the buffer’s
location in space. To sum things up:

• World space is the global coordinate system and exists outside of any voxel buffer.
• Local space is a resolution-independent coordinate system that maps the full extents of the voxel buffer

to a [0, 1] space.
• Voxel space is used for indexing into the underlying voxels of a field. A field with 100 voxels along the x

axis maps [100.0, 0.0, 0.0] in voxel space to [1.0, 0.0, 0.0] in local space.

As a matter of convenience and clarity, we will prefix variables in code and pseudocode with an
abbreviated form of the coordinate space. A point P in world space will be called wsP, in voxel space vsP,
and in local space lsP.

local origin

world origin

voxel space [0,8]

vo
xe

l s
pa

ce
 [0

,4
]

lo
ca

l s
pa

ce
 [0

,1]

local space [0,1]

Production Volume Rendering – Fundamentals 16

2.1.6. Integer versus floating-point coordinates
Voxel space is different from local and world space in that it can be accessed in two ways – using integer or
floating-point coordinates. Integer access is used for direct access to an individual voxel, and floating-
point coordinates are used when interpolating values. It is important to take care when converting
between the two. The center of voxel [0, 0, 0] has floating-point coordinates [0.5, 0.5, 0.5]. Thus, the edges
of a field with resolution 100 are at 0.0 and 100.0 when using floating-point coordinates but when
indexing using integers, only 0 through 99 are valid indices. An excellent overview of this can be found
in an article by Paul S. Heckbert – What Are The Coordinates Of A Pixel? [Heckbert, 1990]

In practice, it is convenient to define a set of conversion functions to go from float to int, and
Vec3<float> to Vec3<int>, etc. In this course we will refer to these conversion functions as
discreteToContinuous() and continuousToDiscrete().

int continuousToDiscrete(float contCoord)
{
 return static_cast<int>(std::floor(contCoord));
}

float discreteToContinuous(int discCoord)
{
 return static_cast<float>(discCoord) + 0.5f;
}

2.1.7. Boundless fields
Although it is outside the scope of this course, it is possible to design voxel data structures that are
boundless, i.e. that contain data over an infinitely large domain. In those cases the coordinate spaces
would need to be redefined, as the local space concept no longer applies, leaving only a worldToVoxel
transform.

Production Volume Rendering – Fundamentals 17

2.2. Writing to voxel buffers
The fundamental purpose of a voxel buffer is obviously to read and write to it. In this section we will
consider a few different ways of writing voxel data, and the methods will serve as the foundation for all
subsequent modeling techniques.

For purposes of illustration, let’s consider a simple C++ function for writing a floating-point value to a
given voxel:

void writeToVoxel(VoxelBuffer::Ptr buffer, int i, int j, int k, float value)
{
 buffer->lvalue(i, j, k) += value;
}

Writing a value directly at a voxel location doesn’t get us very far in terms of modeling complex voxel
buffer however. As it turns out, the most common modeling operation is the writing of a value in-
between voxels. In these notes we will refer to this as splatting, though it is sometimes also called
stamping and baking a sample.

2.2.1. Nearest neighbor splat
The simplest way to splat a value that lies in-between voxels is to simply round the coordinates to the
nearest integers. While this has some obvious aliasing problems, it can sometimes be a reasonable
solution, especially when writing large quantities of low-density values which will blend when taken
together.

Splatting a sample using the nearest-neighbor strategy

sample location

i,j,k

Production Volume Rendering – Fundamentals 18

This method can be implemented trivially as:

inline void writePoint(const Vector &vsP, const Imath::V3f &value,
 VoxelBuffer::Ptr buffer)
{
 using namespace Field3D;

 int i = contToDisc(vsP.x);
 int j = contToDisc(vsP.y);
 int k = contToDisc(vsP.z);

 if (buffer->isInBounds(i, j, k)) {
 buffer->lvalue(i, j, k) += value;
 }
}

2.2.2. Trilinear splat
If antialiasing is important we can use a filter kernel when writing the value. The simplest, and most
commonly used form is a triangle filter with a radius of one voxel. This filter will at most have non-zero
contribution at eight voxels surrounding the sample location. The value to be written is simply
distributed between its neighboring voxels, each weighted by the triangle filter.

Splatting a sample using the trilinear strategy

sample location

i,j,ki-1,j,k

i-1,j+1,k i,j+1,k

Production Volume Rendering – Fundamentals 19

A simple implementation would be:

void writeAntialiasedPoint(const Vector &vsP, const Imath::V3f &value,
 VoxelBuffer::Ptr buffer)
{
 using namespace std;
 using namespace Imath;

 // Offset the voxel-space position relative to voxel centers
 // The rest of the calculations will be done in this space
 Vector p(vsP.x - 0.5, vsP.y - 0.5, vsP.z - 0.5);
 // Find the lower-left corner of the cube of 8 voxels that
 // we need to access
 V3i corner(static_cast<int>(floor(p.x)),
 static_cast<int>(floor(p.y)),
 static_cast<int>(floor(p.z)));
 // Calculate P's fractional distance between voxels
 // We start out with (1.0 - fraction) since each step of the loop
 // will invert the value
 Vector fraction(Vector(1.0f) - (static_cast<Vector>(corner + V3i(1)) - p));
 // Loop over the 8 voxels and distribute the value
 for (int k = 0; k < 2; k++) {
 fraction[2] = 1.0 - fraction[2];
 for (int j = 0; j < 2; j++) {
 fraction[1] = 1.0 - fraction[1];
 for (int i = 0; i < 2; i++) {
 fraction[0] = 1.0 - fraction[0];
 double weight = fraction[0] * fraction[1] * fraction[2];
 if (buffer->isInBounds(corner.x + i, corner.y + j, corner.z + k)) {
 buffer->lvalue(corner.x + i,
 corner.y + j,
 corner.z + k) += value * weight;
 }
 }
 }
 }
}

Production Volume Rendering – Fundamentals 20

2.3. Interpolation
In order to sample an arbitrary location within a voxel buffer we have to use interpolation. The most
common scheme is trilinear interpolation which computes a linear combination of the 8 data points
around the sampling location. The concept and implementation are very similar to the trilinear
splatting described above.

2D illustration of linear interpolation

Depending on the look required, it may be desirable to use higher order interpolation schemes. Such
schemes will come at an increased computational cost. Profiling reveals that a significant portion of the
runtime of a volume renderer is spent interpolating voxel data. The primary reason is that a naive voxel
buffer data structure offers very poor cache coherence. A tiled data storage scheme combined with
structured accesses will improve overall performance, but will require a more complicated
implementation.

The following is an implementation of trilinear interpolation:

float Sampler::trilinearInterpolation(const V3f& vsP)
{
 // Offset the voxel-space position relative to voxel centers
 // The rest of the calculations will be done in this space
 V3f p(vsP.x - 0.5, vsP.y - 0.5, vsP.z - 0.5);
 // Find the lower-left corner of the cube of 8 voxels
 // that we need to access
 V3i lowerLeft(static_cast<int>(floor(p.x)),
 static_cast<int>(floor(p.y)),
 static_cast<int>(floor(p.z)));
 float weight[3];
 float value = 0.0;
 for (int i = 0; i < 2; ++i)
 {
 int cur_x = lowerLeft[0] + i;
 weight[0] = 1.0 - std::abs(p[0] - cur_x);

sample location

i,j,ki-1,j,k

i-1,j+1,k i,j+1,k

Production Volume Rendering – Fundamentals 21

 for (int j = 0; j < 2; ++j)
 {
 int cur_y = lowerLeft[1] + j;
 weight[1] = 1.0 - std::abs(p[1] - cur_y);
 for (int k = 0; k <= 1; ++k)
 {
 int cur_z = lowerLeft[2] + k;
 weight[2] = 1.0 - std::abs(p[2] - cur_z);
 value += weight[0] * weight[1] * weight[2] * buffer.value(cur_x, cur_y, cur_z);
 }
 }
 }
 return value;
}

Production Volume Rendering – Fundamentals 22

2.4. Geometry-based volume modeling
In the previous sections we discussed direct (integer) voxel access, and how to splat filtered samples into
a voxel buffer. These can be thought of as the first two layers in the voxel modeling pipeline.

Integer voxel access

Splatting

Rasterization
primitives

Instantiation-based primitives

Co
m

pl
ex

ity

Outline of the volume modeling abstraction hierarchy

The third layer is the rasterization layer. Rasterization primitives include types such as pyroclastic points,
splines and surfaces, but also includes any primitive that is converted voxel-by-voxel into a volumetric
representation. The rasterization process normally accesses voxels directly (i.e. using the integer voxel
access layer), although when considering motion blur they may also use the splatting layer.

The fourth layer is instantiation-based primitives. They are referred to by different names at different
facilities, sometimes also called wisps or generators. These primitives are composed of instances of the
lower-level primitives, and either create rasterization primitives, or directly create sample points to be
splatted. Instantiation-based primitives may also generate other instances of their own or other
instantiation primitive types. Because of this potentially recursive nature, they can be very powerful.

The third and fourth layers can be thought of as two quite different approaches to volume modeling,
even though they are often used in conjunction. A useful comparison is that of the difference between a
raytracing-based renderer and a micropolygon-based one. Rasterization is similar to raytracing in that it
considers each voxel in turn and decides how primitives contribute to it. Instantiation-based primitives
(and micropolygon renderers) see primitives as the first-class citizen, and considers which voxels are
affected by a given primitive. Rasterization-based modeling pulls values into a voxel, and instantiation-
based modeling pushes values into voxels.

Production Volume Rendering – Fundamentals 23

2.4.1. Defining voxel buffer domains
The first step in volume modeling is to determine the domain of the voxel buffer that is being created, so
that the buffer encloses the space of the primitives that are being rasterized. A very basic implementation
might simply compute an axis-aligned or oriented bounding box for the incoming primitives, but a
robust solution needs to consider other factors. For example, almost all volumetric primitives extend out
past their geometric representation. If the system allows users to create new primitives as plug-ins, it is
important to communicate the bounds of a primitive back to the renderer during the domain
calculation. This is especially true for primitives that include displacements driven by user input.
Although it is possible to let the user dial displacement bounds manually, usability is improved if they
are handled automatically.

The motion of a primitive also needs to be considered in order to provide enough room to store the
entire length of the sample. Motion blur techniques are discussed further in subsequent sections.

Geometric primitives

Empty voxel buffer

Create domain

Rasterize primitives

Filled voxel buffer

2.4.2. Noise coordinate systems
Volume modeling often, if not always, uses noise functions to add detail to primitives. Noise functions
need to be tied to a coordinate system, but almost any geometric primitive that has a reasonable
parameterization method for a 3D coordinate system can be used.

For some primitives, such as a sphere, the coordinate system is trivial. Others, such as splines, require a
little bit more work. The important thing to consider is that the parameterization should be smooth and
reasonably quick to transform in and out of. Therefor we prefer transformations with closed-form
solutions, rather than ones that require numerical iteration to find a solution, but as we will see, not all
primitives used in production satisfy this preference.

Production Volume Rendering – Fundamentals 24

For a sphere, defining a coordinate system is simple. We simply use the object space as the noise
coordinate space. Transformations in and out of this coordinate system can be calculated as a simple
matrix multiplication.

Coordinate system for a sphere (x, y, z) Primitive with cartesian coordinate system

For a curve or spline it is most common to use a coordinate system that deforms along with the spline.
The coordinate range is [0,1] along the spline and [-1,1] along the two axes that span the radius of the
spline. In order to transform in and out of the local/noise space we define two basis vectors. The tangent
of the curve itself is used as one basis, and the normal direction of the curve (orthogonal to the tangent)
is used as the second. The third basis can be computed as the cross product of the first two. The curve
may be a polygonal line or a parametric curve, but regardless of how the vertices are interpolated the
transform in and out of this space is much more costly than for a sphere.

Basis vectors for a curve (N × T, N, T) Primitive with curve-based coordinate system

Production Volume Rendering – Fundamentals 25

The coordinate range for a surface patch is [0,1] along each dimension of the surface and [-1,1] along the
normal direction of the surface. This implies that the third dimension extends equally from the back
and front of the surface.

A polygon mesh or surface patch can be transformed into and out of using the dP/du and dP/dv partial
derivatives as the first two basis vectors, and the normal direction as the third. Just as with curves, the
transformation into this space is costly as the surface primitive may be composed of an arbitrary number
of parametric primitives, which need to be searched.

Basis vectors for a surface (dP/du, dP/dv, N) Primitive with surface-based coordinate system

Production Volume Rendering – Fundamentals 26

2.5. Rasterization primitives
Rasterization is the process of building volume data voxel-by-voxel. Fundamentally, there are two
approaches to rasterizing. The first is to visit each voxel in the buffer once, the second is to visit each
primitive once. Depending on the way the voxel data is stored, one may be more appropriate than the
other. For example, some renderers store voxel data as a set of 2D images on disk, each compressed
using some form of non-lossy scheme. The overhead of pulling a slice from disk and decompressing it
into memory is quite expensive, in which case the better approach is to visit each voxel only once. For
these notes, we will assume that the buffer used for rasterization is fully loaded in memory and that
there is no penalty for accessing neighboring voxels in any direction (other than potential cache misses)
and use the second approach of visiting each primitive once.

2.5.1. Rasterization algorithm
In its most generic form, rasterization involves instancing the primitive representation, bounding it,
looping over the voxels that it overlaps, and sampling its density function at each voxel.

void Point::execute(Geo::Geometry::CPtr geometry,
 VoxelBuffer::Ptr buffer) const
{
 AttrVisitor visitor(points, m_params);
 for (AttrVisitor::const_iterator i = visitor.begin(), end = visitor.end();
 i != end; ++i) {
 // Update attributes
 m_attrs.update(i);
 // Transform to voxel space
 Vector vsP;
 buffer->mapping()->worldToVoxel(m_attrs.wsCenter.as<Vector>(), vsP);
 // Calculate rasterization bounds
 BBox vsBounds = vsSphereBounds(mapping, m_attrs.wsCenter.as<Vector>(),
 m_attrs.radius);
 // Call Base::rasterize(), which will come back and query getSample() for values
 RasterizationPrim::rasterize(vsBounds, buffer);
 }
}

void RasterizationPrim::rasterize(const BBox &vsBounds,
 VoxelBuffer::Ptr buffer) const
{
 FieldMapping::Ptr mapping(buffer->mapping());

 DiscreteBBox dvsBounds = Math::discreteBounds(vsBounds);
 DiscreteBBox bufferBounds = buffer->dataWindow();
 dvsBounds.min -= Imath::V3i(1);
 dvsBounds.max += Imath::V3i(1);
 dvsBounds = Math::clipBounds(dvsBounds, bufferBounds);

 // Iterate over voxels

Production Volume Rendering – Fundamentals 27

 for (VoxelBuffer::iterator i = buffer->begin(dvsBounds),
 end = buffer->end(dvsBounds); i != end; ++i, ++count) {
 RasterizationState rState;
 RasterizationSample rSample;
 // Get sampling derivatives/voxel size
 rState.wsVoxelSize = mapping->wsVoxelSize(i.x, i.y, i.z);
 // Transform voxel position to world space
 Vector vsP = discToCont(V3i(i.x, i.y, i.z));
 mapping->voxelToWorld(vsP, rState.wsP);
 // Sample the primitive
 this->getSample(rState, rSample);
 // Write to buffer
 if (Math::max(rSample.value) > 0.0f) {
 *i += rSample.value;
 }
 }
}

void Point::getSample(const RasterizationState &state,
 RasterizationSample &sample) const
{
 if ((state.wsP - m_attrs.wsCenter).length < m_attrs.radius) {
 sample.value = m_attrs.density.value();
 } else {
 sample.value = 0.0;
 }
}

The m_attrs.update() call is responsible for finding the current primitive’s point attributes. The
second step, vsSphereBounds(), returns the voxel-space bounding box of the primitive. Once the
primitive is prepared and the region of voxels to traverse is known, the primitive is evaluated at each
voxel location and the density is recorded in the voxel buffer.

2.5.2. Rasterizing primitives
Sphere-based primitives always carry two fundamental attributes: their position (center), and their
radius. On top of these an arbitrary number of attributes are used to define the various noise parameters
that control its look.

For a sphere-shaped primitive the bounding box is a fairly tight fit, but for curves and surfaces many
voxels will be calculated that lie far away from the primitive’s region of influence. This has the downside
of causing lots of unnecessary voxels to be computed. The rasterization loop can be improved in those
cases, for example by determining the distance to a primitive before calculating the density function.
However, even with that optimization, the world-to-local transform is quite expensive for curves and
surfaces, and in practice point-instantiation techniques are used for those types of primitives. The next
chapter will describe that approach in more detail.

Production Volume Rendering – Fundamentals 28

2.5.3. Solid noise primitives
One of the most straight-forward sphere-based primitives is the solid noise primitive. It uses the
location of the sphere and its radius to “window” a noise function, so the density function is simply the
sum of the windowing function and a fractal function.

Solid noise point

The function can be written as:

noiseDensity(P) = m(P) + (1 - |P/radius|)

where P is in the local space of the primitive. We notice that because of the fractal function, the density
function may be positive outside the radius of the sphere. If the maximal amplitude of the fractal
function fbm is A, it follows that the function has non-negative values at most A units away from the
radius, as A + (1 - |1+A|) = 0.

Illustration of density function and the required bounds padding

Because of this added distance, solid noise points are an example of a primitive that requires padding of
its bounds calculations (as mentioned in Defining voxel buffer domains).

Production Volume Rendering – Fundamentals 29

The getSample() call of a solid noise primitive would be:

void SolidNoisePoint::getSample(const RasterizationState &state,
 RasterizationSample &sample) const
{
 // Transform to the point's local coordinate system
 float radius = m_attrs.radius;
 Vector lsP = (state.wsP - m_attrs.wsCenter.as<Vector>()) / radius;
 Vector nsP = lsP;
 // Compute fractal function
 double fractalFunc = m_attrs.fractal->eval(nsP);
 fractalFunc = Math::gamma(fractalFunc, m_attrs.gamma.value());
 fractalFunc *= m_attrs.amplitude;
 // Compute final value
 double distanceFunc = 1.0 - lsP.length();
 sample.value = m_attrs.density.value() *
 std::max(0.0, distanceFunc + fractalFunc);
}

2.5.4. Pyroclastic sphere primitives
Pyroclastic primitives have been mentioned several times so far, so let’s see how one can be
implemented. A pyroclastic noise function uses a distance function to determine its location in the
scene, and adds a procedural noise value (usually a fractal function, for example fractal brownian motion6)
to the distance function. By thresholding the final value we create the pyroclastic look, although for
antialiasing purposes it’s better to use a smoothstep function, so that the transition in density is gradual.

pyroclasticDensity(P) = max(radius - |P/radius| + abs(m(P)), 0)
density = smoothStep(pyroclasticDensity, 0, 0.05)

A single pyroclastic noise primitive

Production Volume Rendering – Fundamentals 30

6 For a complete description of the fbm function, see Ebert et al – Texturing & Modeling (Morgan Kaufmann publ.)

The pyroclastic look comes from using the noise function as a displacement, rather than by directly
rendering it, and because the displacement is done per-voxel on the distance function itself, it is
possible to produce overhangs, where parts of the density disconnects from the main body. If this is
undesirable, the noise function lookup point can be projected onto the sphere primitive, effectively
making the displacement amount constant for all points along the same normal vector. This is
illustrated in the figure 3D vs. 2D displacement below.

In its simplest form, the code would be:

void PyroclasticPoint::getSample(const RasterizationState &state,
 RasterizationSample &sample) const

{
 // Transform to the point's local coordinate system
 float radius = m_attrs.radius;
 Vector lsP = (state.wsP - m_attrs.wsCenter.as<Vector>()) / radius;
 Vector nsP = m_attrs.displace2D ? lsP.normalized() : lsP;
 // Compute fractal function
 double fractalFunc = m_attrs.fractal->eval(nsP);
 fractalFunc = Math::gamma(fractalFunc, m_attrs.gamma.value());
 fractalFunc *= m_attrs.amplitude;
 // Compute final value
 double sphereFunc = lsP.length() - 1.0;
 float filterWidth = state.wsVoxelSize.length();
 double thresholdWidth = filterWidth * 0.5 / radius;
 double pyroValue;
 pyroValue = Math::fit(sphereFunc - fractalFunc,
 -thresholdWidth, thresholdWidth, 1.0, 0.0);
 sample.value = m_attrs.density.value() * pyroValue;
}

By varying the noise parameters (amplitude, scale, gain), and animating the noise offset, it is possible to
create a wide range of looks even from such a simple primitive. And yet more variations can be had by
using a vector-valued noise function to displace the sample point used by the pyroclastic noise function.

Varying noise amplitude

Production Volume Rendering – Fundamentals 31

3D displacement vs. 2D displacement

2.5.5. Sampling and antialiasing
Rasterization is prone to aliasing artifacts and sampling problems in the same way that surface
rendering is. Where the projected pixel size, or the spot size, is used in surface rendering to antialias
shader functions, we can use the voxel size to do the same in volume rasterization. The sampling
frequency is simply the inverse of the voxel size. Once the sampling frequency is knows, we can apply the
same frequency clamping and other antialiasing techniques as used in surface shading. Larry Gritz’
section in the 1998 Advanced RenderMan siggraph course notes [Gritz, 1998] is a good starter.

Similarly to how the sample positions in surface rendering may be randomized, we can add a small
offset to each voxel’s sample position using some function with a nice poisson distribution that prevents
sample locations from bunching up.

Production Volume Rendering – Fundamentals 32

2.6. Instantiation-based primitives
Rasterization primitives work well when modeling clouds, fog and other phenomena that are inherently
continuous in nature and where the primitives fill in a major portion of the voxels in the buffer. In cases
where primitives contain a lot of negative space the overhead of traversing and calculating the density
function for all voxels can be quite substantial, and the more sparse the primitives become, the worse the
performance. The problem is inherent to the pull-nature of the rasterization algorithm, and it is
difficult to optimize away the wasteful sampling without incurring too much overhead in bookkeeping.
Instantiation-based primitives avoid this problem as their push-nature means that calculations only take
place for parts of the primitive that actually contribute density. This means that calculation costs are
proportional to the amount of voxel data that is actually visible, instead of proportional to the coverage
of the base primitive, as in the case of rasterization primitives.

Although instantiation-based primitives theoretically can instantiate any other primitive, the most
common case is the class which instantiates points (usually in very large numbers) to fill in a volume. We
will refer to those as point instantiation primitives.

Point instantiation primitives have other advantages beside their inherent efficiency. They also support
the full range from smooth-looking to granular primitives, simply by varying the number of instances
used to fill the primitive.

Examples of primitives using point instantiation

Production Volume Rendering – Fundamentals 33

2.6.1. Point instantiation
The simplest point instantiation primitive uses a sphere as its base primitive. The first step in its
generation is the scattering of points. Depending on the desired look, the scattering may be done only
on the surface of the sphere, or inside the entire volume of the sphere. The images below show the
different results of the two techniques.

left) Points scattered at sphere radius
middle) Points displaced by noise function

right) Point color modulated by noise function

left) Points scattered to fill inside of sphere
middle) Points displaced by noise function

right) Point color modulated by noise function

Once the points are scattered, any number of noise- or texture-based modulations and displacements
may occur. In our simple example the points are displaced by a vector-valued fractal noise function, and
then a scalar-valued noise function is used to modulate their color. From this simple foundation, point
instantiation primitives used in production typically add large numbers of control parameters and noise
functions, each responsible for manipulating the final appearance in a different way.

Production Volume Rendering – Fundamentals 34

The following code implements a simple sphere-based instancing algorithm

void Sphere::execute(const Geo::Geometry::CPtr geo) const
{
 size_t numPoints = numOutputPoints(geo);
 Particles::Ptr particles = Particles::create();
 particles->add(numPoints);

 AttrTable &points = particles->pointAttrs();
 AttrRef radius = points.addFloatAttr("radius", 1, vector<float>(1, 1.0));
 AttrRef density = points.addVectorAttr("density", Vector(1.0));

 // Loop over input points
 size_t idx = 0;
 AttrVisitor visitor(geo->particles()->pointAttrs(), m_params);
 for (AttrVisitor::const_iterator i = visitor.begin(), end = visitor.end();
 i != end; ++i) {
 // Update attributes
 m_attrs.update(i);
 // Seed random number generator
 Imath::Rand48 rng(m_attrs.seed);
 // For each instance
 for (int i = 0; i < m_attrs.numPoints; ++i, ++idx) {
 // Randomize local space position
 Vector lsP(0.0);
 if (m_attrs.doFill) {
 lsP = solidSphereRand<V3f>(rng);
 } else {
 lsP = hollowSphereRand<V3f>(rng);
 }
 // Define noise space
 V3f nsP = lsP;
 // Set instance position
 V3f instanceWsP = m_attrs.wsCenter;
 instanceWsP += lsP * m_attrs.radius;
 // Apply displacement noise
 if (m_attrs.doDispNoise) {
 V3f noise = m_attrs.dispFractal->evalVec(nsP);
 instanceWsP += noise * m_attrs.dispAmplitude * m_attrs.radius;
 }
 // Set instance density
 V3f instanceDensity = m_attrs.density;
 // Apply density noise
 if (m_attrs.doDensNoise) {
 float noise = m_attrs.densFractal->eval(nsP);
 instanceDensity *= noise;
 }
 // Set instance attributes
 particles->setPosition(idx, instanceWsP);
 points.setVectorAttr(wsV, idx, Vector(0.0));
 points.setVectorAttr(density, idx, instanceDensity);
 points.setFloatAttr(radius, idx, 0, m_attrs.instanceRadius);
 }
 }
}

Production Volume Rendering – Fundamentals 35

Note that in this example we accumulate all points in a collection which gets sent to the rasterizer once
instantiation is complete. It would also be possible to directly rasterize each point as it is instanced.

2.6.2. Curve-based point instantiation
Sphere-based primitives are particularly convenient because of their simple parameterization, and
because of how easy it is to define a coordinate space that travels with the primitive. As we will see,
curves and surfaces can also be used, but their coordinate spaces are a little more involved to define.

The following images show various noise techniques applied to a curve primitive. Each primitive uses
roughly 40 million points.

Constant-radius curve primitive Varying the radius of the curve

Absolute-valued perlin noise modulating
density

Displacing points along normal using absolute
perlin noise (pyroclastic)

Production Volume Rendering – Fundamentals 36

Points displaced by vector-valued perlin noise Density first modulated by scalar-valued perlin
noise, then displaced using vector-valued perlin

noise

In the example above the point distribution is completely random, which can lead to bunching up of
point locations and lead to a grainy look in the final result. Depending on the desired look, this may or
may not be a good thing. If a smooth look is the goal, it may be better to use a blue noise/poisson
distribution of points.

The following code shows a simple curve-based instancing algorithm.

void Line::execute(const Geo::Geometry::CPtr geo) const
{
 size_t numInstancePoints = numOutputPoints(geo);
 Particles::Ptr particles = Particles::create();
 particles->add(numInstancePoints);

 AttrTable &points = particles->pointAttrs();
 AttrRef radiusRef = points.addFloatAttr("radius", 1, oneDefault);
 AttrRef densityRef = points.addVectorAttr("density", Vector(1.0));

 // Loop over input polygons
 size_t idx = 0;
 Polygons::CPtr polys = geo->polygons();
 AttrVisitor polyVisitor(polys->polyAttrs(), m_params);
 AttrVisitor pointVisitor(polys->pointAttrs(), m_params);

 for (AttrIter iPoly = polyVisitor.begin(), endPoly = polyVisitor.end();
 iPoly != endPoly; ++iPoly) {
 // Update poly attributes
 updatePolyAttrs(iPoly);
 // Update point attributes
 size_t first = polys->pointForVertex(iPoly.index(), 0);
 size_t numPoints = polys->numVertices(iPoly.index());
 updatePointAttrs(pointVisitor.begin(first), numPoints);
 // Seed random number generator

Production Volume Rendering – Fundamentals 37

 Imath::Rand48 rng(m_polyAttrs.seed);
 // For each instance
 for (int i = 0; i < m_polyAttrs.numPoints; ++i, ++idx) {
 // Randomize local space position
 V2f disk;
 if (m_polyAttrs.doFill) {
 disk = solidSphereRand<V2f>(rng);
 } else {
 disk = hollowSphereRand<V2f>(rng);
 }
 V3f lsP(disk.x, disk.y, rng.nextf());
 // Let t be floating-point index
 float t = lsP.z * (m_pointAttrs.size() - 1);
 // Interpolate instance attributes
 V3f instanceDensity = LINE_INST_INTERP(density, t);
 V3f instanceWsP = LINE_INST_INTERP(wsP, t);
 V3f instanceWsV = LINE_INST_INTERP(wsVelocity, t);
 V3f wsN = LINE_INST_INTERP(wsNormal, t).normalized();
 V3f wsT = LINE_INST_INTERP(wsTangent, t).normalized();
 float radius = LINE_INST_INTERP(radius, t);
 // Compute first basis vector from N and T
 V3f wsNxT = wsN.cross(wsT);
 // Offset instance position based on local space coordinate
 instanceWsP += lsP.x * wsNxT * radius;
 instanceWsP += lsP.y * wsN * radius;
 // Apply noises
 V3f nsP = lsP;
 if (m_polyAttrs.doDensNoise) {
 V3f nsLookupP = nsP / m_polyAttrs.densScale.value();
 instanceDensity *= m_polyAttrs.densFractal->eval(nsLookupP);
 }
 if (m_polyAttrs.doDispNoise) {
 V3f nsLookupP = nsP / m_polyAttrs.dispScale.value();
 V3f disp = m_polyAttrs.dispFractal->evalVec(nsLookupP);
 instanceWsP += disp.x * wsNxT * radius *
 m_polyAttrs.dispAmplitude.value();
 instanceWsP += disp.y * wsN * radius *
 m_polyAttrs.dispAmplitude.value();
 instanceWsP += disp.z * wsT * radius *
 m_polyAttrs.dispAmplitude.value();

 }
 // Set instance attributes
 particles->setPosition(idx, instanceWsP);
 points.setVectorAttr(densityRef, idx, instanceDensity);
 points.setFloatAttr(radiusRef, idx, 0, m_polyAttrs.instanceRadius);
 }
 }
}

LINE_INST_INTERP() macros are used to calculate the values in-between the control vertices of the
curve, and they may use any method for this. If curves are finely tessellated then a piecewise linear
function may be enough, although it is more common to use a spline function.

Production Volume Rendering – Fundamentals 38

2.6.3. Surface-based point instantiation
The following images show various noise techniques applied to a surface primitive. Each primitive uses
roughly 400 million instanced points in order to achieve a smooth result at 1024x1024 pixels. A frustum-
shaped voxel buffer of resolution ~1200x1200x250 was used. It should be noted that primitives that
modulate their density using noise are slightly “wasteful”, because we need to instantiate a point,
calculate its noise space position and evaluate the full fractal noise function before knowing whether to
cull it due to zero density.

Constant-thickness surface primitive Perlin noise modulating density

Absolute-valued perlin noise modulating
density

Displacing points along normal using absolute
perlin noise (pyroclastic)

Production Volume Rendering – Fundamentals 39

Points displaced by vector-valued perlin noise Density first modulated by scalar-valued
absolute perlin noise, then displaced using

vector-valued perlin noise

The following code shows a simple surface-based instancing algorithm.

void Surface::execute(const Geo::Geometry::CPtr geo) const
{
 size_t numInstancePoints = numOutputPoints(geo);
 Particles::Ptr particles = Particles::create();
 particles->add(numInstancePoints);

 AttrTable &points = particles->pointAttrs();
 AttrRef radiusRef = points.addFloatAttr("radius", 1, oneDefault);
 AttrRef densityRef = points.addVectorAttr("density", Vector(1.0));

 // Loop over input points
 size_t idx = 0;
 Meshes::CPtr meshes = geo->meshes();
 AttrVisitor meshVisitor(meshes->meshAttrs(), m_params);
 AttrVisitor pointVisitor(meshes->pointAttrs(), m_params);

 for (AttrIter iMesh = meshVisitor.begin(), endMesh = meshVisitor.end();
 iMesh != endMesh; ++iMesh) {
 // Update mesh attributes
 updateSurfAttrs(iMesh);
 // Update point attribute
 size_t first = meshes->startPoint(iMesh.index());
 size_t numCols = meshes->numCols(iMesh.index());
 size_t numRows = meshes->numRows(iMesh.index());
 size_t numPoints = numCols * numRows;
 updatePointAttrs(pointVisitor.begin(first), numPoints);
 // Seed random number generator
 Imath::Rand48 rng(m_surfAttrs.seed);
 // For each instance

Production Volume Rendering – Fundamentals 40

 for (int i = 0; i < m_surfAttrs.numPoints; ++i, ++idx) {
 // Randomize local space position
 V3f lsP;
 lsP.x = rng.nextf();
 lsP.y = rng.nextf();
 lsP.z = rng.nextf();
 // Let s,t be floating-point index
 float s = lsP.x * (numCols - 1);
 float t = lsP.y * (numRows - 1);
 // Interpolate instance attributes
 V3f instanceDensity = SURFACE_INST_INTERP(density, s, t);
 V3f instanceWsP = SURFACE_INST_INTERP(wsP, s, t);
 V3f instanceWsV = SURFACE_INST_INTERP(wsVelocity, s, t);
 V3f wsN = SURFACE_INST_INTERP(wsNormal, s, t).normalized();
 V3f wsDPds = dPds(s, t);
 V3f wsDPdt = dPdt(s, t);
 float thickness = SURFACE_INST_INTERP(thickness, s, t);
 // Offset along normal
 instanceWsP += Math::fit01(lsP.z, -1.0f, 1.0f) * wsN * thickness;
 // Apply noises
 V3f nsP = lsP;
 if (m_surfAttrs.doDensNoise) {
 V3f nsLookupP = nsP / m_surfAttrs.densScale.value();
 float noise = m_surfAttrs.densFractal->eval(nsLookupP);
 float fade = edgeFade(lsP.x, lsP.y, lsP.z);
 instanceDensity *= noise + fade;
 }
 if (m_surfAttrs.doDispNoise) {
 V3f nsLookupP = nsP / m_surfAttrs.dispScale.value();
 V3f disp = m_surfAttrs.dispFractal->evalVec(nsLookupP);
 instanceWsP += disp.x * wsDPds * thickness *
 m_surfAttrs.dispAmplitude.value();
 instanceWsP += disp.y * wsDPdt * thickness *
 m_surfAttrs.dispAmplitude.value();
 instanceWsP += disp.z * wsN * thickness *
 m_surfAttrs.dispAmplitude.value();
 }
 // Set instance attributes
 particles->setPosition(idx, instanceWsP);
 points.setVectorAttr(densityRef, idx, instanceDensity);
 points.setFloatAttr(radiusRef, idx, 0, m_surfAttrs.instanceRadius);
 }
 }
}

Just as curves can be any number of segments, each surface primitive can be made up of an arbitrary
number of pieces. Traditionally, each piece is a quad-connected set of vertices, which can be used to
create either a regular polygon mesh or a parametric surface. Either way, the SURFACE_INST_INTERP()
macro needs to evaluate quickly for any coordinate in the patch based on its st coordinate.

Production Volume Rendering – Fundamentals 41

2.7. Modeling with level sets
Level sets are a technique for tracking interfaces. From its introduction to the computer graphics
community in the late 1990s the level set method has quickly become one of the workhorses of the
industry. Level sets are useful for collision detection, fluid simulation, and rendering. They are also
featured in popular third party applications, such as Houdini and Real Flow.

Typically interfaces in graphics, such as the model of a character, are represented explicitly with polygon
meshes or NURBS, for example. There is a rich history of tools and techniques for dealing with such
explicit representations. However it is very difficult to implement operations like unions or differences
with explicit representations. Additionally, topological changes due to animation need to be handled in
special ways which are not robust. The level set method works by representing an orientable manifold
surface as a function which tracks the signed distance to the nearest point on the interface from any
point in space. In the general case the level set method defines the evolution of the level curve in the
normal direction at a certain speed. Most of the time we are interested in the Euclidean distance, which
leads to a special case of level sets called signed distance fields (SDF).

Level sets are typically stored in the same volumetric data structures we have been discussing. Each voxel
stores the level set value, ϕ, at that location. This is the distance to the nearest point on the interface. As
the name signed distance field suggests these values are oriented based on whether the location is inside
or outside of an object. For our discussion we assume that level set values outside the object are positive,
ϕ > 0 , and negative, ϕ < 0, inside the object. The zero level, ϕ = 0, represents the exact interface.

2.7.1. Constructive Solid Geometry Operations
We can extend our voxel buffer machinery with level set specific methods to obtain some really powerful
features. The most trivial ones to implement are CSG operations. This pseudocode for a union operation
demonstrates one of the reasons behind the viral popularity of level sets: they are extremely trivial to
implement.

/∗! Performs a CSG union between level sets A and B, and
stores the results in A. Assumes A and B have the same transform .∗/
void union(VoxelBuffer& A, const VoxelBuffer& B) {
 BBox dims = lightBuffer .dims();
 for (int k = dims.min.z; k <= dims.max.z; ++k) {
 for (int j = dims.min.y; j <= dims.max.y; ++j) {
 for (int i = dims.min.x; i <= dims.max.x; ++i) {
 A.value(i,j,k) = std::min(A.value(i,j,k), B.value(i,j,k));
 }
 }
 }
}

Production Volume Rendering – Fundamentals 42

The difference between two buffers A and B can be calculated by computing the maximum value at each
voxel between value in A and the negated value in B. Intersections between two buffers are computed by
taking the maximum value at each voxel. In user interface terms the intersection corresponds to a copy
operation, the union is a paste operation, and the difference is a cut operation.

Operation Implementation

Union min(A, B)

Intersection max(A, B)

Difference max(A, -B)

2.7.2. Rendering Level sets
Level sets can be rendered as a solid object, or as a volumetric element. The simplest volumetric
treatment assigns a constant density value to each inside voxel, ϕ ≤ 0. In order to avoid aliasing artifacts
a roll-off can be applied to the voxels in a band near the surface.

phi = levelSet.value(i,j,k);
if ((phi <= 0) && (phi >= −bandwidth))
 density = defaultDensity ∗ smoothstep(−phi, 0, bandwidth);

Surface rendering of level sets can be performed directly, or it can be converted back to an explicit mesh.
Ray tracing level sets is very efficient because the level set values can be used to accelerate the ray
intersection tests. We evaluate the level set value at the start position of the ray. This value tells us how
far along the ray we have to advance before we are at the surface. We then evaluate the level set at this
new location, and iterate a fixed number of times to find an accurate intersection point if one exists. We
can convert level sets to polygon meshes using the popular marching cubes algorithm.

In order to be representable as a level set, an object must have a clearly defined inside and outside.
Museth et al. provide discussion of conversion techniques in their paper Algorithms for Interactive Editing
of Level Set Models. We recommend the excellent text Level Set Methods and Dynamic Implicit Surfaces by
Stanley Osher and Ronald Fedkiw for more details on level sets and the useful things you can do with
them.

Production Volume Rendering – Fundamentals 43

2.8. Motion blur
So far we have only considered primitives that are stationary. Of course, to create a production-quality
volume renderer we need to consider primitives in motion as well. When it comes to surface rendering,
micropolygon-based renderers record the motion per-fragment and assigns a time to each pixel sample.
A raytracing-based renderer also assigns a time to each ray, and displaces the contents of the scene so
that the ray sees the appropriate state.

In volume rendering, true motion blur is often too expensive to calculate. In some cases, such as
eulerian motion blur of procedural fields and simulation data, the motion blur calculation can be done
correctly. However, when considering thousands or millions of volumetric primitives we simply cannot
produce correct motion blur – in fact, the use of rasterization into voxel buffers prevents it.

The most common solution to producing almost correct motion blur in voxel buffers is to smear each
sample along its motion vector. Smearing has the following properties: It distributes the value evenly
across all the voxels it touches, and the sum of all values written to those voxels is equal to the original
value.

2.8.1. Line drawing
The first approach we can use to smearing the sample is to employ standard line-drawing in 3D. In
order for the motion blur to look smooth we need to antialias the line. Fortunately, algorithms for
drawing an antialiased line are commonplace in computer graphics, and we refer the reader to the
standard literature for implementation details.

2.8.2. Splat-based smearing
The second approach is to draw multiple trilinear splats to make up the line. This has the benefit of
being easier to implement, and as we’ll see below it also introduces the opportunity to control the
quality of the smear.

void writeLine(const Vector &vsStart, const Vector &vsEnd,
 const Imath::V3f &value, VoxelBuffer::Ptr buffer)
{
 using namespace std;
 using namespace Imath;
 using namespace Field3D;
 Vector vsLine = (vsEnd - vsStart);
 size_t numSamples = static_cast<size_t>(std::ceil(vsLine.length()));
 numSamples = max(static_cast<size_t>(2), numSamples);
 for (size_t i = 0; i < numSamples; ++i) {
 double fraction = static_cast<double>(i) /
 static_cast<double>(numSamples - 1);
 Imath::V3f sampleValue = value / static_cast<double>(numSamples);
 Vector vsP = Imath::lerp(vsStart, vsEnd, fraction);
 writeAntialiasedPoint(vsP, sampleValue, buffer);
 }
}

Production Volume Rendering – Fundamentals 44

By calculating the fraction of the distance travelled instead of incrementing the position at each step of
the loop we avoid accumulation of errors in the splat positions.

Using splats has another interesting possibility – undersampling. Though we know how many samples
we should use, we could potentially use fewer to speed up the rasterization. Just as with nearest-neighbor
splatting, when a lot of primitives are involved, their random distribution tends to hide undersampling
and noise artifacts. Thus, we may add a scaling factor to the function, which lets the user control how
many samples should be used to draw each line.

size_t numSamples = static_cast<size_t>(samplingFactor * std::ceil(vsLine.length()));
numSamples = max(static_cast<size_t>(2), numSamples);

2.8.3. Smearing problems
Of course, smearing the samples before lighting is computed is technically incorrect. In an abstract
sense, we are folding the temporal domain into the spatial domain, and in doing so we lose all
information about when a given primitives occupies a given position in space. This problem becomes
apparent in the loss of lighting detail during subsequent rendering. A sharp feature that is smeared will
no longer shade the same as when stationary, and the result tends to look artificially soft. However, this
downside is usually acceptable when considering the alternative of calculating full deformation blur
during rendering.

Smeared primitive produces incorrect
lighting

Correct result

We find another problem if the camera is moving at the same speed as the primitives being rasterized,
any motion should be cancelled out and the result look sharp. But because the motion blur is baked into
the voxel buffer this is not possible.

Production Volume Rendering – Fundamentals 45

2.8.4. Post-rasterization smearing
An alternative to smearing each individual sample is to use a separate buffer to accumulate a velocity
vector for each voxel. Once all rasterization and/or splatting is done, the velocity is used to smear the
entire buffer in a single step. This is often faster than smearing each sample as it is written to the buffer,
but it suffers from a potentially large problem, depending on the input geometry. The problem occurs
when the input primitives overlap and have drastically different motion vectors. In this case it becomes
impossible to calculate a valid direction to smear in. It is possible to resort to keeping track of the
average motion vector in each voxel that has overlapping primitives, but this can cause visual artifacts in
the final render.

A variant of this method is to simply retain both the density buffer and the velocity buffer and calculate
the motion blur during rendering. This still suffers from the problem with overlapping primitives but
does avoid the problem of reduced shading detail in motion blurred areas. Microvoxel-based volume
renderers lend themselves well to this approach.

A third approach is possible if the lit volume itself is voxelized. In this case, motion blur can be applied
after. This solves the problem of lighting a voxel buffer with motion blur baked in, but can still show
artifacts where overlapping primitives have different velocity vectors.

Production Volume Rendering – Fundamentals 46

2.9. High resolution voxel buffers
Up until now we’ve expected that voxels exist everywhere within the domain of the voxel buffer. And in
this domain each voxel is the same size. This is fine when the volumetric element that is being modeled
is small in screen-space, but if we need to get close to the element, or if the element extends across the
entire visible frame, the resolution required in order to provide sharp details will likely range in the
thousands along each axis.

Two approaches are most common in visual effects production when trying to solve this problem. The
first addresses the problem of unused voxels occupying memory, and the second amounts to adapting
the voxel size so that voxels close to camera are small and those far away are large.

2.9.1. Sparse data structures
Any time a dense voxel buffer stores a zero density it is effectively wasting memory. This happens
because dense buffers blindly allocate storage for every voxel in its domain without considering what
areas will be populated. Since most volumetric elements tend to have some sort of connectedness and
generally don’t occupy the entire domain of the voxel buffer, finding a data structure that allocates
memory more intelligently would help improve memory use.

One of the simplest such structures is the block-based sparse buffer. (What is referred to here as blocks is
sometimes also called tiles.) It can be thought of as a two-level-deep hierarchical data structure where the
domain of the buffer is subdivided into coarse blocks, and where a block can contain either a single value
(usually zero, though for storage of level sets it can be useful to assign a different value), or an N3 array of
voxels, representing the actual voxel data in the block.

A sparsely allocated voxel buffer (with unallocated blocks hidden)

The illustration above shows a sparsely allocated voxel buffer with blocks of size 23 (for purposes of
clarity). A more common block size would be between 83 and 323.

Production Volume Rendering – Fundamentals 47

A block remains unallocated (storing just a single value) until the first write-access to one of its voxels.
Once the first write happens, all of the block’s voxels are allocated. Each block is thus effectively its own,
small, dense buffer once allocated.

Using a fixed-depth hierarchy means that voxel read and write access is O(k), or constant time, though
with a larger k than an ordinary dense buffer. The allocation that happens on the first write access is
amortized over all subsequent accesses.

Field3D provides an implementation of this type of data structure in its SparseField class.

2.9.2. Frustum-shaped voxel buffers
The second approach is to adapt the voxel size to account for the fact that objects far away from camera
require less detail than those close up. The most common way of accomplishing this is to use frustum-
shaped voxel buffers, usually referred to simply as frustum buffers. Frustum buffers are tied to a camera
(usually the main shot camera), and follow any animation applied to the camera. When seen from the
side (below), each voxel looks stretched and sheared, but when viewed from the camera, each row of
voxels lines up perfectly with the projection of a pixel into the scene.

A frustum-shaped voxel buffer

The resolution of the above buffer is 8x8 in the XY plane, with 8 slices along the Z axis. The XY resolution
is normally locked to the resolution of the camera, times some multiplier, and the number of Z slices is
left as a user parameter. The Z resolution is normally much lower than either of the XY axes, usually on
the order of a few hundred.

Production Volume Rendering – Fundamentals 48

The transform from from world space to voxel space can be implemented as:

void FrustumMapping::worldToVoxel(const V3f &wsP, V3f &vsP)
{
 // The camera’s 0..1 NDC space matches the local space of the voxels
 V3f nsP;
 m_camera->worldToNdc(wsP, nsP);
 localToVoxel(nsP, vsP);
}

To further optimize memory use we can combine sparse buffers and frustum buffers. Since the
coordinate transform is independent of the data structure used for voxel storage, this is straightforward.
This approach combines the benefit of finer detail close to camera with the empty space optimization of
the sparse buffer.

A sparsely allocated frustum-shaped voxel buffer

Production Volume Rendering – Fundamentals 49

2.9.3. Problems with frustum buffers
Frustum buffers are not without drawbacks. Light leaks may be visible along the edges of the frame
during rendering, since no density is available outside the view of the camera to stop light from
penetrating into the buffer. This can usually be addressed by padding the bounds of the frustum buffer,
so that it extends outside the view of the camera, though in extreme cases the amount of padding needed
negates the performance gains and reduced memory usage offered by the frustum buffer.

Light leaks along right edge of frustum

Another problem occurs when primitives in the scene are widely distributed along the camera’s depth
axis. This forces each Z slice to become excessively deep, which manifests itself as aliasing artifacts,
called slicing artifacts. These are visible as a posterization-like look, with poor lighting detail. The artifacts
can be reduced by careful antialiasing of the volumetric primitives during the rasterization phase, but to
completely avoid them an increase in Z resolution is required.

Production Volume Rendering – Fundamentals 50

Sufficient detail along z axis (150
slices)

Slicing artifacts due to low z
resolution (25 slices)

Frustum buffers are also more prone to aliasing due to the noise functions used and if an insufficient
number of z slices is used the effect can be very visible. The example below shows a render using the
same 25 slices as above, but with noise antialiasing disabled:

Aliasing artifacts due to excessive high-frequency detail in noise function

It can also be difficult to correctly capture moving primitives at the edge of the frustum. Primitives that
motion blur into the buffer need to be considered even if only a few samples of their smeared
contribution fall into the buffer, otherwise leaks will occur due to the loss of density, similar to the light
leaks discussed earlier. In certain cases it may also be difficult and/or expensive to determine if a
primitive should be included, for example if a primitives both enters and exits the frustum buffer in a
single time frame.

Production Volume Rendering – Fundamentals 51

3. Volume rendering

Now that we have the foundations in place for creating the data for volumetric effects we move on to
looking at how to render the data. Volume rendering is about the mathematics of how light behaves in a
participating medium, where the medium may be anything from smoke or water vapor to clouds and
atmospheric haze. The equations that govern volume rendering are applicable across a large range of
media, and we can use the same approach to render almost any kind of volumetric effect.

Volume rendering for visual effects production also extends past the physical in order to achieve certain
desired looks, and to better integrate with the rest of the production pipeline. It often becomes necessary
to bend the rules for what should happen, and the constant challenge is to find methods for doing so that
are controllable yet plausible.

This chapter will describe the fundamental components required for creating a production-grade
volume renderer, and will cover basic scattering theory and the raymarching approach to solving the
scattering problem. It will also cover efficiency and optimization, integration issues and the challenges
associated with motion blur. Most topics will be familiar to those familiar with volume rendering in
general, but in this course we aim to describe which specific techniques are used in day-to-day
production environments, and how those techniques are integrated to create a practical and functioning
system. There are of course other approaches to volume rendering than those described here, and
several different ones are actively used in the visual effects community as well, but in these course notes
we will focus on the raymarching-based approach.

Production Volume Rendering – Fundamentals 52

3.1. Lighting theory
When designing a volumetric effects we want to describe both its shape and motion (the modeling part of
volume rendering), as well as its appearance (the real rendering part of volume rendering). When
describing the appearance it is useful to break it down into some fundamental characteristics, which can
then be combined in various relationships to achieve a wide variety of looks.

As it turns out, there are only three fundamental characteristics needed to describe any given volumetric
element. Each describes a different physical process.

• Absorption is the loss of radiant energy along a ray of light due to energy being converted into some
other form, such as heat. Black smoke is a good example of an absorbing medium.

• Emission adds radiant energy and happens where the medium itself is luminous. Flames and fire are
examples of emissive media.

• Scattering describes how likely a medium is to cause a ray of light to collide with a particle and change
its direction. As an example, water vapor is an almost completely scattering medium. There are two
types of scattering to consider. First, light traveling from a distant object towards the camera has a
probability of being reflected off to another direction, which is called out-scattering. Another possible
outcome is that a ray of light traveling in some random direction gets reflected into the view ray of the
camera, which is called in-scattering. Each of these probabilities is equally likely to occur, since the light
being reflected has no idea of the position and orientation of any observers.

A purely scattering volume A purely absorbing volume A purely emissive volume

Each of these characteristics can be isolated and discussed in terms of how they affect a ray of light
traveling through space. When deriving the mathematical model for how light is affected by
participating media it is useful to consider a differential cylinder: a cylinder, infinitely thin, of unit
length, through which a ray of light passes.

Production Volume Rendering – Fundamentals 53

A differential cylinder filled with a participating medium

We will use the following notation in the equations that follow:

• p – the position of the cylinder, and the interaction location
• ω – the direction of the ray
• L – the radiance quantity
• Li – the incoming radiance, before any interaction with the medium
• Lo – the outgoing radiance, after the interaction with the medium

3.1.1. Modeling absorption
In discussing the light scattering properties of volumes we will draw some parallels to surfaces and their
BRDFs. A dark surface is dark because of its low reflectivity. The laws of physics dictate that whatever
incident radiant energy that is not reflected away from the surface must be absorbed – energy does not
disappear, it only changes form, in this case into heat. Volumes share this property, but instead of
describing the fraction of light absorbed after interaction with a surface the absorption coefficient
determines how likely it is that a ray of light is absorbed as it travels through a volume.

The unit of the absorption coefficient σa is a reciprocal distance (i.e. m-1), which essentially describes the
probability that a ray of light is absorbed as it travels through one length unit of the medium. Being a
reciprocal means that it can assume any positive value – it can be infinitely large.

Mathematically formulated, the absorption interaction can be described as:

Lo = Li + dL
dL = -σa Li dt

3.1.2. Modeling emission
When the medium emits light, for example as the result of some chemical reaction, or due to the
thermal properties of the medium, it adds to the radiance of a ray passing through it.

Production Volume Rendering – Fundamentals 54

The emissive term Le(p, ω) is a measurement of radiance, which describes the amount emitted in
direction ω along a one unit long section of a ray.

The mathematic formulation for emission is:

Lo = Li + Le

Le = σe dt

3.1.3. Modeling scattering
The scattering property describes the likelihood that a ray of light traveling through the medium will
bounce and reflect to another direction. As mentioned before, this interaction accounts for both in-
scattering and out-scattering, although when calculating lighting effects in a volume, the effect of out-
scattering is usually folded into the absorption calculation, since the net result is identical. We refer to
the extinction term when considering absorption and out-scattering together.

The unit of the scattering coefficient σs is (just as absorption) a reciprocal distance, which describes the
probability that a ray of light is scattered as it travels through one length unit of the medium. This
means that a ray traveling through a medium with σs = 0.1 will travel on average a distance of 0.1-1 = 10
units before a scattering event occurs. This distance can also be referred to as the scattering length.

Given a light source S, whose function S(p, ω') describes the quantity of light arriving at point p from
direction ω', we can formulate the scattering interaction as:

Lo = Li + dLin + dLout

dLin = σs p(ω, ω') S(p, ω')
dLout = -σs Li dt

The function p(ω, ω') is called the phase function, and the next section will detail what it is and how it
affects the scattering interaction.

Production Volume Rendering – Fundamentals 55

3.1.4. Wavelength-dependency
Each of the physical properties of a volume may be wavelength dependent, where the amount of
scattering/absorption/emission varies across the color spectrum. Scattering in particular produces
interesting results as the color of light shifts to the complementary as it penetrates deeper into a volume.
The effect occurs naturally, especially in mixed/polluted media such as smoke, but also in the
atmosphere itself7.

Color balance can shift as light penetrates through smoke

Scattering coefficient: 0.5,0.7,1.0 Absorption coefficient: 0.4,0.5,1.0

3.1.5. Phase functions
The property of a volume that relates closest to a surface BRDF function is the phase function. A BRDF
defines how much of light hitting a surface while traveling in direction ω will scatter to direction ω', and
similarly the phase function determines how much light traveling through a medium in direction ω will,

Production Volume Rendering – Fundamentals 56

7 The sky is blue due to the wavelength-dependent scattering behavior of the atmosphere.

upon scattering, reflect to direction ω', i.e. probability = p(ω, ω'). Phase functions (at least the ones relevant
to our purposes) have a few important properties. First, they are isotropic, meaning that the function is
rotationally invariant, and only the relative angles between ω and ω' need to be considered, thus we can
write p(ω, ω') = p(θ). Second, they are reciprocal, so p(ω, ω') = p(ω ', ω). Third, they are normalized such that
integrating across all angles for ω while holding ω' constant gives exactly 1.

direction of
light travel

The length of each vector illustrates the probability of scattering in that direction

forward scatteringbackward scattering

isotropic scattering

direction of
light travel

Isotropic and anisotropic phase functions

Phase functions come in two flavors, isotropic and anisotropic. An isotropic (not to be confused with
isotropic in the rotationally invariant sense, as in the previous paragraph) phase function scatters lights
equally in all directions. Anisotropic phase functions are biased either forward or backward, as seen from
the direction of light travel before the scattering event.

Isotropic phase functions are perfectly sufficient when rendering low-albedo media, such as ash clouds,
dust etc., but for media such as clouds and atmospheres, anisotropy is an important element to include
in lighting calculations. Anisotropic behavior in participating media can be thought of as the parallel to
specular BRDFs, and isotropic to diffuse/lambertian BRDFs. In everyday life, anisotropy is responsible
for the silver lining in clouds, where the edge of a cloud becomes increasingly bright as the sun reaches a
grazing angle.

Phase functions are well researched, and the two most common ones are the Rayleigh model (which
describes atmospheric scattering, the interaction of light with particles the size of molecules), and the
Mie model (which is more general and can handle much larger particle sizes, for example water vapor
and droplets suspended in the atmosphere). In production rendering we often use a few other, simpler
models, since Rayleigh and particularly Mie are expensive to evaluate. Henyey-Greenstein is a simple
model that can handle both isotropic and anisotropic media, and a similar, but cheaper one is the Schlick
phase function. These functions can all be found in the standard literature, but one especially good
overview of phase functions in the context of volume rendering can be found in the book Physically Based
Rendering8 .

Production Volume Rendering – Fundamentals 57

8 Matt Pharr & Greg Humphreys – Physically Based Rendering (Morgan Kaufmann publ.)

3.2. Raymarching
Transmittance is the fraction of light which passes through a volumetric sample after being impeded by
the material in the sample. It is the ratio of the outgoing light to the incoming light. Beer-Lambert’s Law
relates the absorption capacity of a material to the transmittance. We write this equation as: T = e−σρl.

• T is transmittance
• σ is the coefficient of absorption
• ρ is amount of absorbing material in the sample
• l is the length of the path through the sample.

Opacity is the fraction of light which is absorbed by the sample. α = 1 − T . With respect to rendering,
opacity is accumulated to compute the alpha channel.

As in any other kind of rendering we want to figure out the light that gets to the camera. Real
participating media attenuates the light, modulates the frequency, and alters the path of light. In other
words a lot of complicated physical processes which we are going to simplify. This simplification was
introduced by Kajiya and Von Herzen in 1984 in their seminal SIGGRAPH paper Ray Tracing Volume
Densities. The process is to trace a ray from the cam- era through the volume, and compute the
illumination in small segments along the ray. The illumination at each segment must be attenuated by
the density between the camera and the segment. The ray is traced until the ray exits the volume, or it
can see no further into the volume. The illumination calculation at each segment requires determining
how much light is reaching that segment. This implies that we must perform another raymarch from
each light to the segment. We must also account for material properties such as albedo, and the light
absorption capacity of the material. This is a very simplified process, and does not account for some
common effects such as volumes that emit light, such as fire, or scattering effects. But this is a good
starting point.

Voxel buffer

Production Volume Rendering – Fundamentals 58

In order to compute the pixel value for a ray, x, we initialize color, C and opacity, α, to zero.
Transmittance, T, is initialized to 1. We then intersect the ray against the voxel buffer to determine
where we need to perform the integration. Finally we integrate this interval by sampling along x in steps
of length △x. The contribution of a sample i is:

Ti = e−σρ△x

Ttotal = Told ∗ Ti

Ci = Ttotal L(xi)c(xi)ρ(xi)△x
Ctotal = Cold + Ci

αtotal = αold + (1 − Ti) ∗ (1 − αold)

where

Ti : Transmittance at xi

Ttotal : Total transmittance from the start of the ray to xi

L(xi) : Incident lighting at sample location
c(xi) : Color of the material at sample location
ρ(xi) : Density at sample location
△x : Ray step length
α : Opacity

In order to compute the incident lighting we need to compute the transmittance from the light to the
sample position. This requires us to perform another ray march between the sample position and the
light. Employing the same mechanism used above:

Ti = e−σρ△x

Ttotal = Told ∗ Ti

L = Ttotal ∗ Clight ∗ P(θ)

where

Clight : Light color
P(θ) : Phase function

Production Volume Rendering – Fundamentals 59

The following method is a simple integration module. Note that no lighting calculations are performed.

float Raymarcher::integrate(const V3f& pos, const V3f& dir, const float absorption) const
{
 // Determine intersection with the buffer
 float t0, t1;
 if (false == m_buffer->intersect(pos, dir, t0, t1))
 return 1.0f;

 // Calculate number of integration steps
 const int numsteps = int(ceil(t1 - t0) / m_stepsize);

 // Calculate step size
 const float ds = (t1 - t0) / numsteps;
 V3d stepdir(dir);
 stepdir *= ds;

 V3d raypos(pos);
 raypos += stepdir;

 const float rhomult = -absorption * ds;

 // Transmittance
 float T = 1.f;

 for (int step = 0; step < numsteps; ++step) {
 float rho = m_buffer.trilinearInterpolation(raypos);
 T *= std::exp(rhomult * rho);
 if (T < 1e-8)
 break;
 raypos += stepdir;
 }

 return T;
}

In order to accelerate the lighting calculation we precompute the transmittance values from each light
through the volume. During rendering we interpolate this data set to determine lighting at the sample
point. This is discussed in further detail in the section on pre-computed lighting.

It is often necessary to model volumetric materials which are emitting light, such as fire. Such materials
are like diffuse densities, except that we can consider them to have intrinsic lighting. The rendering
procedure involves augmenting the lighting function, L(xi), with an additional source for the emissive
light.

3.2.1. Artistic controls
This simple illumination model offers a lot of room for art direction. The constants which appear in the
expressions above are the simplest of these controls. While these parameters are rooted in physical
accuracy we need not keep to this constraint. The absorption coefficient, σ, can be different between the

Production Volume Rendering – Fundamentals 60

lighting and rendering calculations. It can also be varied for each color channel for a complex lighting
effect.

We have found it useful to provide a multiplier for the density, ρ, parameter. This provides the user a
simple way to manipulate the source data at render time. The step length, △x, parameter is the simplest
way to trade off between quality and rendering speed. Large step sizes means the ray integration has to
consider a lot fewer samples, and is quicker to compute. Consequently it also fails capture all of the
detail available in the voxel buffer. The concept of frustum buffers is based on the observation that we
may not require high quality integration far away from the source of the ray. Step length is typically
expressed in world space units.

3.2.2. Implementation
The modular nature of the ray marching algorithm hints at how we can implement a generic volumetric
shading architecture. In a simple scheme we can have a main renderer, material shader plugins, and
light shader plugins. The main renderer is responsible for rendering a given voxel buffer. The user
specifies which material shader to apply to that buffer, as well as the lights. The renderer invokes the ray
marching, and performs the integration. At each sample along the ray the material shader is called with
the shading position, voxel buffer, and information about the lights. The material shader is then
responsible for returning a shaded color and transmittance for a single sample. This requires that the
shader loop over all the lights and invoke the light shaders. In the case of using precomputed lighting
the method to obtain lighting from the light shaders can simply return the appropriate value for the
given sample position.

Production Volume Rendering – Fundamentals 61

3.3. Pre-computed lighting
Lighting calculations are one of the computationally heaviest steps of the raymarching algorithm. Since
at each step we need to sample incoming light, the number of samples needed quickly approaches the
billions. A completely unbiased approach to lighting would, for each raymarch step (of which there are at
least 100 per pixel) along a primary ray, perform another raymarch toward each light in the scene to
determine the amount of occlusion (multiplying the number of samples by another 100 or so). A brute
force implementation of this scheme is incredibly slow, and as such it is mostly useful as a way of
verifying the result of other techniques. Production renderers usually use other approaches to speed up
the calculation, most of which rely on pre-computation.

3.3.1. Voxelized lighting
One method that is easy to implement and allows for very fast lookup times is to simply sample and
voxelize the incoming light across the full domain of the scene. Since this is decoupled from the sample
density of the camera rays, it is possible to sample less frequently than the final raymarch, and then
interpolate values from the voxel representation. While this approach allows for fast lookups during
final rendering, the pre-computation can be expensive, as for each voxel a full raymarch toward each
light is performed.

void voxelizeLights(const Scene &scene, const std::vector<Light> &lights,
 VoxelBuffer &lightBuffer)
{
 BBox dims = lightBuffer.dims();
 for (int k = dims.min.z; k <= dims.max.z; ++k) {
 for (int j = dims.min.y; j <= dims.max.y; ++j) {
 for (int i = dims.min.x; i <= dims.max.x; ++i) {
 V3f vsP = discreteToContinuous(i, j, k);
 V3f wsP;
 lightBuffer.mapping().voxelToWorld(vsP, wsP);
 Color incomingLight = 0.0f;
 for (int light = 0; light < lights.size(); ++light) {
 float intensity = lights[light].intensity(wsP);
 // Raymarch toward light to compute occlusion. This is a costly operation.
 float occlusion = computeOcclusion(lights[light].wsPosition(), wsP);
 incomingLight += intensity * (1.0 - occlusion);
 }
 lightBuffer.lvalue(i, j, k) = incomingLight;
 }
 }
 }
}

The biggest downsides to voxelized lighting is the cost of pre-computation. Because each voxel is
calculated separately, we suffer similar performance problems as brute-force calculations, although we
gain control over the sampling density (i.e. the resolution of the voxelized lighting buffer), which can be
used to tune the quality/speed trade-off.

Production Volume Rendering – Fundamentals 62

3.3.2. Deep shadows
One important aspect of the lighting calculation that isn’t taken advantage of in the voxelized lighting
approach is that light travels linearly from each light source. If the incoming light at voxel V1 in the
illustration below has been computed, then the incoming light calculation at voxel V2, V3, etc. could
potentially use the occlusion value at V1 to speed up their calculations. In practice however, figuring out
which values can be re-used quickly becomes difficult and incurs its own performance overhead from
storing book keeping data.

V1

light source

V2

V3

Illustration of light propagation

A better approach is to simply calculate occlusion as seen from the light. This is equivalent to how
shadow maps work, and it requires us to choose a resolution controlling how finely the scene is to be
sampled. For each pixel in this map, we then need to calculate the transmittance function.

Production Volume Rendering – Fundamentals 63

Visualization of a deep shadow map, with spectral transmittance function for a pixel displayed below

This turns out to be trivial, as it is the exact same calculation that we perform when raymarching a
volume from the camera and only accumulating transmittance/opacity. The only difference is that we
need to record what the accumulated transmittance is at each raymarch step, so that this can later be
queried for any point in space that is visible from the light source. The simplest way of storing the data
is as a sequence of depth/transmittance pairs, ordered away from the light.

Technically, we could voxelize this data set and use it in beauty renders the same way as in the previous
section, but a more efficient way to store this data is to leave it in its native form, i.e. a monotonically
decreasing function per pixel seen from the light source. When storing it in this way, it is equivalent to
the deep shadow maps technique described by Tom Lokovic and Eric Veach in their paper Deep Shadow
Maps [Lokovic, 2000].

Deep shadow-style maps have several advantages. The transmittance function is mostly smooth and can
be compressed efficiently to reduce the storage required both in memory and on disk. Also, since the
number of samples in the transmittance function can vary from pixel to pixel, there is little cost
associated with storing empty pixels. The downside is that the cost of lookups into the transmittance
function are higher than for a voxelized representation, because each lookup requires a search in the
transmittance function vector in order to find the appropriate depth sample.

Production Volume Rendering – Fundamentals 64

3.4. Holdouts
Volumetric elements rarely exist in isolation, and in almost any shot there are other elements which the
volumetric must integrate with in the final composite. Holdouts are a common way of dealing with
integration of multiple elements, both in surface and volume rendering. A holdout is an object in the
scene that occludes and shadows other objects but does not itself show up in the final frame. Matte
objects, phantom objects and holdout objects are all different names for the same thing.

Ground and object A visible, object B as
holdout

Object B visible, ground and object A as
holdouts

Composited image (additive) Color correction applied to object B’s image

Holdouts allow a render to be broken into multiple images that can be manipulated individually, and
that composite easily into a final frame. They also allow the breaking down of complex scenes, as object
occlusion is handled per-pixel, without the need to know the correct depth sort order. In the example

Production Volume Rendering – Fundamentals 65

above, separating objects A and B without the use of holdouts would be tedious, as they both occlude
each other in different parts of the image.

Holdouts are fairly trivial to implement in a surface shader, but in volume rendering, they can be
implemented in a number of different ways, depending on the rendering approach and the type of
holdout types that are supported.

3.4.1. Holdouts in volume rendering
In the microvoxel-based renders that handles both surfaces and volumes (such as PRMan or Mantra),
geometry-based holdouts are a convenient way of defining holdout objects. For a raymarch-based
volume renderer however, geometric holdouts are somewhat cumbersome to deal with. In raymarching,
holdout objects need to be able to answer a visibility query for any point in space along a ray, as seen
from the camera’s position, which means a ray must be traced against the geometry each time the
information is required. To make things even more expensive, the holdout value should represent the
pixel coverage or transparency at a given depth, so the holdout value usually needs to be supersampled
and jittered across the pixel, because a simple binary visible/hidden answer will cause aliasing artifacts at
geometry edges.

We can take advantage of the fact that this holdout query is the same form of query discussed in the
precomputed lighting section, where a transmittance function determined how much light could travel
between a light source and a given point in space. Holdout functions answer the inverse question: how
much light could travel from a given point in space all the way to the camera?

Volumetric element with surfaces
held out

Rendered image of surfaces Composite using over operator

Production Volume Rendering – Fundamentals 66

3.4.2. Implementing holdouts
If we consider the calculation of transmittance in the raymarch loop

T *= exp(-tau * stepLength);

We can rearrange this expression in the following way

T = T * exp(-tau * stepLength)
T = 0 * (1 - exp(-tau * stepLength)) + T * exp(-tau * stepLength)
T = lerp(0, T, exp(-tau * stepLength))

Which is to say that our incremental multiplication of T may be seen as a linear interpolation (or lerp)
between zero and T by the factor exp(-τ * stepLength). While this is rather useless in itself, it becomes a
much more convenient formulation once we introduce holdouts.

A holdout object in volume rendering only needs to answer one question: at a given point in the scene,
how visible is that point to the camera? That is to say

Color Tholdout = holdout.transmittance(wsP);

Logically, this function should start at 1.0 and be monotonically decreasing for any line pointing away
from the camera, since once an obstacle is found its reduction of transmittance cannot be undone. If we
consider the zero value in our lerp() expression above, that corresponds to the expected result of a
holdout object that occludes nothing, i.e.

Tholdout = 1;
opacity = 1 - Tholdout;
opacity = 0.

As it turns out, accounting for the holdout object is as easy as replacing the zero in the lerp expression
with 1 - Tholdout. So the complete formulation of the raymarcher’s transmittance calculation
becomes:

Tholdout = holdout.transmittance(wsP);
T = lerp(1.0 - Tholdout, T, exp(-tau * stepLength));

If we were to create a procedural holdout function that emulated a semi-transparent glass pane right in
front of the camera lens, we might expect it to always return 0.5, for example. Logically, this would be
reflected in our final alpha and color values by making them half as large.

3.4.3. Holdout maps
In the previous chapter we saw that deep shadow maps are a convenient way of storing transmittance
functions, in fact the information that is required of the holdout function is exactly the same
information used in lighting calculation. One solution to supporting geometric holdouts is therefor to
create a transmittance function for each pixel in the final output by raytracing any holdout geometry as a
pre-process to the volume integration step. Also, users of some common surface renderers (for example
Pixar’s PRMan and SideFX’s Mantra) can output a deep shadow or deep shadow-like representation of

Production Volume Rendering – Fundamentals 67

depth-varying pixel coverage or transmittance, which can then be used directly in a stand-alone volume
renderer.

3.4.4. Problems with holdouts
In our first holdout example we saw how two interlocking rings could be held out against each other and
then composited correctly using an additive operation. This type of render is a two-sided holdout, where
each element is held out in all other images being rendered. When using a dedicated volume renderer to
produce elements that need to composite against images from a surface renderer this becomes a
catch-22, because the surface renderer would need to be aware of how to render the volume data as a
holdout object, though of course the whole point of writing a standalone volume renderer was that we
couldn’t (or didn’t want to) do it inside the surface renderer.

Because of this we often have to resort to one-sided holdouts, where the surfaces are rendered in their
entirety and only the volume rendered image has objects held out. One-sided holdouts are technically
inaccurate, but can be composited with reasonable results using an over operation instead of an add. The
composite is correct for all pixels that have either no holdout or full holdout effect, but breaks down
where partial occlusion happens.

To illustrate this we look closer at the previous example:

Light pixels bleeding through holdout edge

As we can see, the high intensity pixel values of the ground are creeping into pixels that should really
only contain values from the dark box and the smoky volume. This is often referred to as a matte line, and
shows the breakdown of one-sided holdouts. They occur because the high intensity values are already
mixed with the foreground elements into the antialiased edge pixels, and there is no way to tell what
portion of the pixel’s value was contributed by values at any given depth; that information has been lost.

One way to work around one-sided holdouts is to output a deep image from both the volume renderer
and the surface renderer, and do a deep composite of the two in a 2D application.

Production Volume Rendering – Fundamentals 68

3.5. Motion blur
In the modeling section we discussed techniques for motion blur of volumetric primitives and how that
is commonly treated at the rasterization step rather than at render time. Here we will introduce motion
blur in a few new contexts, all of which need to be handled by a production grade volume renderer.

Calculating perfectly accurate motion blur is expensive (this is why we voxelized our volumetric
primitives and smeared them to begin with), and implementation techniques tend to vary from facility
to facility. The techniques range from brute-force solutions to clever tricks that fake the effect, though in
production rendering each one can be a perfectly valid solution. Because the solutions vary from facility
to facility, we will introduce the topic in this section, but the solutions will be discussed in part two of
the course.

There are three main types of motion blur that need to be handled:

• Object motion blur is caused by motion of a volume or voxel buffer as a whole which often occurs
when attaching a fluid simulation to a moving object in the scene. To account for the motion of the
volume we need two or more motion samples. Each motion sample describes the local transform of the
volume at a given time, usually the shutter open and shutter close times.

• Deformation motion blur occurs when the velocity throughout a particular volume varies. For
example, a fluid simulation can be motion blurred at render time by looking not only at the density
field but also at the velocity field.

• Camera motion blur occurs whenever the render camera itself is moving.

Production Volume Rendering – Fundamentals 69

4. Putting it all together

The material covered so far should provide the basis needed to implement a simple volume modeling
and rendering application. With those basics in mind, the next few chapters will dive into detail about
how some actual battle-proven implementations work, and will show that the same problem often gets
solved quite differently from facility to facility. Our hope is that, taken together, they will give a good
overview of the state-of-the-art in production volume rendering.

The following diagram attempts to illustrate how each of the pieces described so far are connected to
one another, and will serve the reader as an guide to how the advanced topics that follow fit into the
volume rendering pipeline.

Voxel buffer

Procedural
noise

Rasterization
primitives

Instantiation-
based

primitives

M
od

el
in

g

Splatting

Motion blur

&

Dense buffer

Sparse buffer

Frustum
shaped

Uniform/
orthogonal

CameraVolumes

Raymarcher

Re
nd

er
in

g

Voxel buffer types

Voxel-based modeling

Lights

Scattering
model

Lighting
calculation

Other types

Ra
y

di
st

rib
ut

io
n

Voxelized
lighting

Deep shadow
maps

Transmittance
from light

Precomputed lighting

Holdouts

Adaptive
stepping

Empty space
optimization Improving sampling

Blocker maps

Scene description

Camera rays

Holdout maps

Fr
us

tu
m

 p
la

ce
m

en
t

Production Volume Rendering – Fundamentals 70

5. References & Further reading

References

Gritz, L. 1998. Basic Antialiasing in Shading Language, Advanced RenderMan SIGGRAPH course, In
course notes pp. 62-80.

Heckbert, P. S. 1990. What Are The Coordinates Of A Pixel? In Graphics Gems I, pp. 246-248. Andrew
Glassner (editor), Academic Press.

Kajiya J. T., Herzen B. P. V. 1984. Ray tracing volume densities. In SIGGRAPH ’84: Proceedings of the 11th
annual conference on Computer graphics and interactive techniques (New York, NY, USA, 1984), ACM Press, pp.
165–174.

Kapler, A. 2002. Evolution of a vfx voxel tool. In SIGGRAPH ’02: ACM SIGGRAPH 2002 conference
abstracts and applications, pages 179–179, New York, NY, USA. ACM.

Kapler, A. 2003. Avalanche! Snowy fx for xXx. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Sketches &
Applications, pages 1–1, New York, NY, USA. ACM.

Kisacikoglu, G. 1998. The making of black-hole and nebula clouds for the motion picture “sphere”
with volumetric rendering and the f-rep of solids. In SIGGRAPH ’98: ACM SIGGRAPH 98 Conference
abstracts and applications, page 289, New York, NY, USA. ACM.

Lokovic, T. and Veach, E. 2000. Deep shadow maps. In SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages 385–392, New York, NY, USA. ACM Press/
Addison-Wesley Publishing Co.

Reeves, W. T. 1983. Particle systems—a technique for modeling a class of fuzzy objects. ACM Trans.
Graph., 2(2):91–108.

Squires, S. 2009. Cloud Tank effect. http://effectscorner.blogspot.com/2009/02/cloud-tank-effect.html.

Books

Pharr & Humphries – Physically Based Rendering. Morgan Kaufmann publ.
Ebert et al. – Texturing & Modeling. Morgan Kaufmann publ.
Jules Bloomenthal (edited by) – Introduction to Implicit Surfaces. Morgan Kaufmann publ.

Websites

http://flam3.com/

Production Volume Rendering – Fundamentals 71

http://effectscorner.blogspot.com/2009/02/cloud-tank-effect.html
http://effectscorner.blogspot.com/2009/02/cloud-tank-effect.html
http://flam3.com/
http://flam3.com/

