
A Versatile and Robust Model
for Geometrically Complex Deformable Solids

Matthias Teschner Bruno Heidelberger Matthias Müller Markus Gross

Computer Graphics Laboratory
ETH Zurich

Abstract
In this paper, we present a versatile and robust model for
geometrically complex deformable solids. Our approach
can be applied to deformable tetrahedral meshes and to
deformable triangle meshes. The model considers elas-
tic and plastic deformation. It handles a large variety of
material properties ranging from stiff to fluid-like behav-
ior. Due to the computational efficiency of our approach,
complex environments consisting of up to several thou-
sand primitives can be simulated at interactive speed.

The presented approach to deformable modeling is
part of a simulation environment with integrated colli-
sion handling for tetrahedral meshes. For visualization
purposes, tetrahedral meshes can be coupled with high-
resolution surface meshes. Results are presented for de-
formable tetrahedral meshes and for deformable triangle
meshes which are used to represent cloth and discrete
shells.

Key words: Physically-based Modeling, Computer An-
imation, Deformable Modeling, Collision Handling,
Cloth Simulation, Discrete Shells

1 Introduction
There is a growing demand for interactive deformable
modeling in computational surgery and entertainment
technologies, especially in games and movie special ef-
fects. These applications do not necessarily require
physically-correct deformable models, but efficient de-
formable models with physically-plausible dynamic be-
havior. Additionally, simulations should be robust and
controllable, and they should run at interactive speed.

This paper describes a unified method suitable for
modeling deformable tetrahedral or triangulated meshes
with elasticity and plasticity. The proposed model ex-
tends existing deformable modeling techniques by in-
corporating efficient ways for volume and surface area
preservation. The computational efficiency of our ap-
proach is similar to simple mass-spring systems. Thus,
environments of up to several thousand deforming primi-
tives can be handled at interactive speed.

In order to optimize the dynamics computation vari-
ous numerical integration schemes have been compared.
Comparisons have been performed with respect to robust-
ness and performance in the context of our model.

The proposed deformable modeling approach is part of
a simulation environment. This environment can handle

collisions between tetrahedral meshes. For visualization
purposes, deformable tetrahedral meshes can be coupled
with high-resolution surface meshes in the spirit of FFD.

The paper presents experiments with various scenes of
dynamically deforming tetrahedral meshes. Further, ap-
plications of the deformable model to interactive cloth
simulation and interactive discrete shells are presented.

2 Related Work
Deformable models have been extensively investigated
in the last two decades [24, 25, 1, 12]. Approaches
based on mass-spring models [4], particle systems [9], or
FEM [17, 20] have been used to efficiently represent 3D
objects or deformable 2D structures, such as cloth [29]
or discrete shells [14]. Typical applications for these ap-
proaches can be found in computational surgery [8] and
games. Although very efficient algorithms have been pro-
posed [7, 8, 30], only a few hundred deformable primi-
tives have been simulated in real-time to date.

While many approaches are restricted to elastic defor-
mation, models for plastic deformation have been intro-
duced in [26, 21] . However, no real-time approximations
of these models have been presented so far.

In [14], a method to simulate the dynamic behavior of
discrete shells has been described. Very promising results
have been shown. However, the approach is computation-
ally expensive.

Many approaches focus on solutions to specific prob-
lems in deformable modeling. However, there exist no
efficient, unified approach to physically-plausible simula-
tion of 2D and 3D deformable models with elasticity and
plasticity. Further, there exist no framework where com-
plex deformable objects can be handled with integrated
collision handling at interactive rates.

3 Deformable Model
We consider deformable solids that are discretized into
tetrahedra and mass points. In order to compute the dy-
namic behavior of objects we derive forces at mass points
from potential energies (see Sec. 3.1). These forces pre-
serve distances between mass points (see Sec. 3.2), they
preserve the surface area of the object (see Sec. 3.3), and
they preserve the volume of tetrahedra (see Sec. 3.4). The
material properties of a deformable object are described
by weighted stiffness coefficients of all considered poten-
tial energies.

3.1 Potential Energies
In order to represent deformations of objects, we consider
constraints of the form C(p0, . . . ,pn−1). These scalar
functions depend on mass point positions pi. They are
zero if the object is undeformed. In order to compute
forces based on these constraints we consider the poten-
tial energy

E(p0, . . . ,pn−1) =
1
2
kC2 (1)

with k denoting a stiffness coefficient. This coefficient
has to be defined for each type of potential energy. The
potential energy is zero if the object is undeformed. Oth-
erwise, the energy is larger than zero. The potential en-
ergies of our model are independent of rigid body modes
of the object. The overall potential energy derived from
our constraints can be interpreted as deformation energy
of the object. Now, forces at mass points pi are derived
as

Fi(p0, . . . ,pn−1) = − ∂

∂pi
E = −kC

∂C

∂pi
(2)

The overall force at a mass point is given as the sum
of all forces based on potential energies that consider this
mass point. Damping which significantly improves the
robustness of the dynamic simulation can be incorporated
as

Fi(p0, . . . ,pn−1,v0, . . . ,vn−1)

=


−kC − kd

∑
0≤j<n

∂C

∂pj
vj


 ∂C

∂pi
(3)

with vi denoting the velocity of a mass point and kd

denoting the damping coefficient. We do not consider
any additional constraints or boundary conditions for our
forces. In contrast to similar approaches [4, 5, 22], we do
not explicitly bound potential energies or forces resulting
from the energies.

The direction of a force F based on a potential energy
E corresponds to the negative gradient of E, i. e., a dy-
namic simulation resulting from these forces reduces the
deformation energy of an object. Further, these forces are
orthogonal to rigid body modes, i. e. they conserve linear
and angular momentum of the object.

3.2 Distance Preservation
The first potential energy ED considers all pairs of mass
points that are connected by tetrahedral edges. ED rep-
resents energy based on the difference of the current dis-
tance of two points and the initial or rest distance D0 with
D0 �= 0:

ED(pi,pj) =
1
2
kD

(|pj − pi| − D0

D0

)2

(4)

Forces FD resulting from this energy are computed as
stated in (3). While damping of theses forces is very use-
ful to improve the stability of the numerical integration

process, experiments have shown no significant improve-
ment of the stability if damping is applied to forces re-
sulting from the other two energies that we consider in
our deformation model.

3.3 Surface Area Preservation
The second energy EA considers triples of mass points
that build surface triangles. EA represents energy based
on the difference of the current area of a surface triangle
and its initial area A0 with A0 �= 0:

EA(pi,pj ,pk)

=
1
2
kA

(1
2 |(pj − pi) × (pk − pi)| − A0

A0

)2

(5)

Forces FA based on this energy are computed as stated
in (2). As already mentioned in Sec. 3.2 these forces are
not damped in our approach. Preservation of surface area
is considered in the animation of discrete shells and thin
plates. In the animation of tetrahedral meshes as shown
in Sec. 6.1, 6.2, and 6.3 the effect of this energy is negli-
gible.

3.4 Volume Preservation
Our third potential energy EV considers sets of four mass
points that build tetrahedra. EV represents energy based
on the difference of the current volume of a tetrahedron
and its initial volume V0:

EV (pi,pj ,pk,pl)

=
kV

2

(
1
6 (pj − pi) · ((pk − pi) × (pl − pi)) − V0

)2

Ṽ 2
0

(6)

with Ṽ0 = V0 if our model is applied to volumetric tetra-
hedral meshes as presented in Sec. 6.1. In this case we
assume V0 �= 0. However, if our model is applied to thin
plates or discrete shells, we can not assume V0 �= 0. In
this case we use Ṽ0 =

√
2

12 l̄ with l̄ denoting the average
edge length of a tetrahedron. Then, Ṽ0 corresponds to the
volume of a regular tetrahedron with edge length l̄. Based
on EV forces FV are computed as stated in (2).

The preservation of the signed volume as it is calcu-
lated with the mixed product in (6) is of major impor-
tance to our deformation model. In contrast to the ener-
gies ED and EA, which are not sensitive to inverted tetra-
hedra, forces based on EV preserve the initial orientation
of the vectors in the mixed product. If a tetrahedron is
inverted and the orientation of these vectors changes, the
sign of the volume represented with the mixed product
in (6) changes accordingly. Thus, inverting a tetrahedron
results in forces FV that restore the original orientation
of the tetrahedron.

Due to the normalization of all constraints that are con-
sidered in the potential energies the stiffness coefficients
kD , kA, kV are scale-invariant. These stiffness coeffi-
cients can be used to mimic a wide range of material
properties as presented in Sec. 6. Refer to Sec. 6.4 for
an overview of sets of stiffness coefficients for various
materials.

Fig. 1 illustrates the three types of forces employed in
our deformation model.

Figure 1: A tetrahedron with four mass points is the basic
volumetric primitive of our deformable model. In this
simple example, six distance-preserving forces between
all pairs of points, e. g. FD(pi,pj), four area-preserving
forces, e. g. FA(pi,pj ,pk), and the volume-preserving
force FV (pi,pj ,pk,pl) are considered.

4 Tetrahedral and Triangulated Meshes
The proposed deformable model is designed to work with
tetrahedral meshes. However, the proposed deformation
model can also be applied to arbitrary triangle meshes.
In this case, distance-preserving forces are considered for
all edges and area-preserving forces are considered for all
triangles of the mesh. Employing these forces, a dynamic
simulation preserves all distances between mass points
and the surface area. However, there is no resistance of
the model against bending which is essential in cloth and
discrete shell simulation [2, 4, 10, 15, 22, 14].

Figure 2: Models used for performance measurements:
cubes, cuboid, face, membrane. Geometrical complexity
and computing times are given in Tab. 1.

In order to control bending of triangulated surface we
generate a tetrahedron for each pair of adjacent triangles
with one common edge. If vertices opposite to this com-
mon edge are connected with an additional edge, a virtual
tetrahedron is generated.

Now, preservation of the volume of the virtual tetra-
hedron, while also preserving the area of the triangles,
corresponds to a preservation of the angle between the

two adjacent triangles. If this angle is zero, the volume
of the virtual tetrahedron is zero. Otherwise, the volume
is larger or smaller than zero depending on a concave or
convex angle.

If the volume-preserving force is considered for a vir-
tual tetrahedron, its volume and the respective angle be-
tween adjacent triangles are preserved. In case of thin
plates or cloth, the rest angle is zero. In case of discrete
shells, arbitrary rest angles can occur.

5 Numerical Integration
In order to compute the dynamic behavior of our de-
formable models, Newton’s equation of motion is ap-
plied to all mass points. Based on initial values for posi-
tions and velocities, a time step h, internal forces at mass
points resulting from our deformation energies, and ex-
ternal forces, such as gravity, piecewise linear trajectories
for all mass points are calculated employing a numerical
integration scheme.

Based on performance comparisons presented in
Sec. 5.2 we have chosen the Verlet scheme for numeri-
cal integration [28]. This method has been very popu-
lar in molecular dynamics for decades and has recently
been proposed in the context of physically-based simula-
tion of cloth, general mass-spring systems, and rigid bod-
ies [15, 10, 18]. The Verlet algorithm uses positions and
forces at time t, and positions at the previous time t − h
to calculate new positions at time t + h:

x(t + h) = 2x(t) − x(t − h) + h2 F(t)
m

+ O(h4)

v(t + h) =
x(t + h) − x(t − h)

2h
+ O(h2) (7)

with F(t) = FD(t) + FA(t) + FV (t). The Verlet
method has several advantages in environments with in-
teracting, dynamically deforming objects. First, only one
force computation is required per integration step. This
is essential, since force computation is the most expen-
sive part in the calculation of an integration step. Sec-
ond, the integration of positions has a local discretiza-
tion error of O(h4). This high accuracy allows for com-
paratively large time steps. Third, the integration of po-
sitions is independent of the integration of velocities if
undamped forces are used. Depending on the applica-
tion this could be employed to omit the integration of ve-
locities, which would further improve the performance.
However, we do not use this property, since damping of
distance-preserving forces is essential for the robustness
of our model. Further, collision response, as utilized in
some of the experiments shown in Sec. 6.1, requires ve-
locities of mass points.

5.1 Computing Time
In our experiments, we distinguish between computa-
tional complexity of a numerical integration scheme,
which is discussed in this section, and the performance
of an integration method, which is discussed in the fol-
lowing section.

In a first experiment, we have tested the computational
complexity of the Verlet scheme in environments with dy-
namically deforming objects of varying geometrical com-
plexity. Tab. 1 shows the computing time for one numer-
ical integration step with various deformable objects that
are depicted in Fig. 2. Our measurements show that 1500
forces can be updated at 1 KHz, while more complex ob-
jects with 14000 forces can be updated at 140 Hz. Since
we are interested in an interactive behavior of our simula-
tions, it is essential to have update rates of the numerical
integration, that are above 20 Hz.

setup points nD nA nV time
[ms]

cube 1 8 18 0 5 0.03
cuboid 242 981 0 500 1.00
face 472 2622 874 1277 2.26
cloth 1301 5478 1826 2739 5.03
cube 2 1331 6930 0 5000 7.11
santa 915 7500 2500 3700 7.36
membrane 20402 90801 0 50000 114.61

Table 1: Computing time for one Verlet step (Intel Pen-
tium 4, 2.8 GHz). The number of mass points is given
for each model. Further, nD, nA, nV denote the num-
bers of considered distance-preserving, area-preserving,
and volume-preserving forces per integration step, re-
spectively. In case of nA = 0, the object surface is not
considered in the deformation model (see Sec. 3.3).

Note, that the computing time for an integration step
does not correspond to the performance of an integration
method. In order to assess the performance, the ratio of
integration time step and computing time has to be con-
sidered. This problem is addressed in the following sec-
tion.

5.2 Comparison to Other Approaches
In order to optimize the performance of our dynamically
deforming objects, we have implemented and compared
several numerical integration methods that have been pro-
posed in previous approaches to physically-based defor-
mation of mass-spring or particle systems.

We are not only interested in maximal time steps or
minimal computing time, but in optimal performance.
Therefore, we propose to consider the ratio of the numer-
ical integration time step and the computing time for one
numerical integration time step as performance measure.

As a test case, we have applied various integration
schemes to a cube with 1331 mass points, consider-
ing 5000 volume-preserving forces and 6930 distance-
preserving forces. The cube falls onto a plane where col-
lisions are handled (see Fig. 3). We have implemented
and compared the following integration schemes: Ver-
let [28], velocity Verlet [23], Runge-Kutta, Beeman [3],
explicit Euler, Leap-Frog [16], Heun, implicit Theta-
Scheme, and Gear [11]. Tab. 2 shows measurements of
time steps and computing times for various integration
methods.

method time step comp. time ratio
[ms] [ms]

Verlet 3.1 7.3 0.427
Leap-frog 3.1 7.3 0.426
RK 2 4.9 14.3 0.342
vel. Verlet 2.5 7.3 0.341
Beeman 2.5 7.4 0.337
Heun 4.2 18.4 0.229
expl. Euler 1.5 7.3 0.205
RK 4 6.3 33.0 0.191

Table 2: Maximum time step and computing time for var-
ious integration schemes. The last column shows the ratio
of time step and computing time for one integration step.
This ratio can be interpreted as performance measure of
an integration method.

Our measurements suggest, that Verlet and Leap-frog
can be computed very efficiently, while providing a rea-
sonable time step. Although the fourth order Runge-
Kutta scheme allows for a larger time step, its compu-
tation is significantly more expensive.

Figure 3: Image sequence illustrating our test scenario
for the numerical integration schemes. Computing times
and time steps are given in Tab. 2.

Two classes of integration schemes, namely predictor-
corrector methods (Gear) and implicit methods (Theta),
have been implemented and considered in the compari-
son, but are not listed in Tab. 2. Both methods suffer
from drawbacks that are related to our deformable model
and to our application.

Although the Gear scheme is very efficient and robust,
we do not consider it in our environment. This is due
to the fact, that the Gear scheme has to be re-initialized
after collision handling which significantly reduces the
stability of the method. Since collision handling is an
important component in our environment, Gear is not ap-
propriate for our application.

Implicit integration schemes have shown to be very
robust in physically-based simulations [2, 7, 8, 13, 29].
They are very popular, since they allow for large time
steps.

On the other hand, they are expensive to compute. Im-
plicit methods require to solve a sparse linear system per
integration step. Further, computing and storing the sys-
tem matrix cause additional costs. In our application with
comparatively complex objects with several thousand de-
grees of freedom, these costs are significant. Although,
we use an efficient Conjugate Gradient algorithm with
only a few iterations (5-30), we do not achieve comput-

ing times faster than 200 ms in our test scenario. This is
not appropriate for our application.

A second aspect is the combination of dynamically de-
forming objects and collision handling. Larger time steps
cause larger penetration depths of objects which are dif-
ficult to resolve. Robust collision response commonly re-
quires a small intersection volume of two colliding ob-
jects. This is difficult to guarantee, if the time step is too
large. In some of the experiments in Sec. 6.1, collision
handling is employed. In these experiments, the limiting
factor for the time step is not the numerical integration,
but our collision handling scheme.

From our perspective, the optimal numerical integra-
tion scheme does not depend on the size of the time step.
Instead, it depends on the underlying model, on the ap-
plication, and on the complexity of the data structures.
Although implicit integration methods are very useful in
many applications, we propose to use Verlet or Leap-Frog
for our specific problem.

6 Results
In this section, we describe some applications of our
deformable model. Sec. 6.1 presents some examples
with elastically deforming volumetric tetrahedral meshes.
Sec. 6.1 also shows, how our approach can be applied
to interactive simulations of cloth and discrete shells.
Sec. 6.2 explains the incorporation of plasticity into our
deformable model. Sec. 6.3 shows, how the variation
of stiffness constants can be used to animate melting or
fluid-like objects. Sec. 6.4 gives an overview of all pa-
rameters and the performance of the simulations.

6.1 Elastic Deformation
We have integrated our model into a simulation environ-
ment for deformable objects. In this environment, our
tetrahedral meshes can be coupled with high-resolution
surface meshes in the spirit of FFD [6, 19]. Fig. 4 il-
lustrates this visualization technique. Further, collisions
between deformable objects can be handled based on a
spatial hashing approach presented in [27]. If more than
one deformable tetrahedral mesh is used, this collision
handling scheme is employed.

Figure 4: A low-resolution tetrahedral mesh and a high-
resolution surface mesh of a snake. Deformation is com-
puted for the tetrahedral mesh, while the high-resolution
mesh is visualized. Refer to Sec. 6.4 for parameters and
performance.

Fig. 5 and Fig. 6 show sequences of a deforming pit-
bull and deforming cows with collision handling. In

addition to forces resulting from our collision response
scheme, the simulation environment considers external
forces, such as gravity and user-defined dragging of mass
points.

Figure 5: Sequence of a dynamically deforming pitbull.
Refer to Sec. 6.4 for parameters and performance.

Figure 6: Sequence of dynamically deforming and col-
liding cows. Refer to Sec. 6.4 for parameters and perfor-
mance.

Fig. 7 shows a sequence of interactive cloth simula-
tion. Fig. 8 depicts a dynamically deforming face which
is modeled as a discrete shell. These figures illustrate that
our approach can also be employed to interactively ani-
mate thin plates and discrete shells.

Figure 7: Sequence of a deformable cloth model interact-
ing with a rigid sphere. Refer to Sec. 6.4 for parameters
and performance.

6.2 Plastic Deformation
In addition to elastic deformation, the proposed model
can also handle plastic deformation as introduced in [21,

Figure 8: Sequence of a deformable face which is mod-
eled as a discrete shell. Refer to Sec. 6.4 for parameters
and performance.

26]. Therefore, the deformation of an object is decom-
posed into elastic and plastic deformation, whereas the
plastic deformation does not contribute to the deforma-
tion energy of an object. In our model, this can be rep-
resented employing the energy ED which represents dis-
tance differences (see Sec. 3.2). Therefore, ED is decom-
posed into two components for elasticity and plasticity:

ED = Eelastic
D + Eplastic

D (8)

This corresponds to a decomposition of forces FD re-
sulting from ED:

FD = Felastic
D + Fplastic

D (9)

In the case of elastic deformation, ED contributes
to the deformation energy of an object and FD is ap-
plied to minimize this energy. However, if plasticity
is considered, only the elastic part Eelastic

D contributes
to the deformation energy. Therefore, only Felastic

D =
FD − Fplastic

D is considered accordingly in the numeri-
cal integration process (see Sec. 5).

Figure 9: Sequence of a plastically deformed cube. Some
deformation energy caused by the rigid sphere is stored.
The right image shows the static equilibrium of the plas-
tically deformed cube. Refer to Sec. 6.4 for parameters
and performance.

In order to model the plastic evolution, O’Brien [21]
proposes three parameters that we have implemented in
our model. The first parameter specifies a minimum value
for ED that must be met before the decomposition of
elasticity and plasticity occurs. This represents the fact,
that small deformations are only elastic. The second pa-
rameter provides a maximum value for Eplastic

D . This
parameter controls the maximum amount of deformation
that can be stored by an object. The third parameter spec-
ifies the rate of plastic flow. This parameter can be used

to model hysteresis of a material. Further details on these
three parameters can be found in [21]. Fig. 9 illustrates
the process of plastic deformation. Plastic deformation
is only considered in the distance-preserving forces. Vol-
ume preservation and - if applied - surface area preserva-
tion is not affected by plasticity.

6.3 Melting
The proposed deformation approach allows to mimic a
wide range of material properties. Obviously, hard and
soft materials can be represented by adjusting the stiff-
ness coefficient kD for distance-preserving forces. Ad-
ditionally, volume and area-preserving forces can be em-
ployed to model further properties.

Fig. 10 illustrates the versatility of our deformable
model. In this example, the stiffness coefficient kV for
volume-preserving forces is significantly larger than the
coefficient kD for distance-preserving forces. This allows
to animate melting objects, i. e. distances between adja-
cent mass points can vary heavily, while most deforma-
tion energy is used to preserve the volume of the object.

Figure 10: Sequence of a melting dragon. Pairs of left
and right images illustrate the same simulation step from
two view points. Refer to Sec. 6.4 for parameters and
performance.

6.4 Performance and Parameters
Tab. 3 gives an overview of the geometric complexity of
the tetrahedral meshes used in the experiments. The com-
plexity of the simulation scenarios varies from 700 tetra-
hedrons to 3700 tetrahedrons. Depending on the quality
of the tetrahedrons and the additional computational costs
for collision handling and visualization up to 5000 tetra-
hedrons can be handled at interactive rates. Note, that the
numerical integration process itself is capable of handling
up to 25000 tetrahedrons at interactive rates (see Tab. 1).

Tab. 4 gives an overview of the geometric complexity
of the surface meshes that are coupled to the tetrahedral
meshes for visualization purposes. Here we use meshes
of up to 50000 faces which add a high-quality visual feed-
back to the simulation.

Tab. 5 shows all parameters for the experiments pre-
sented in this paper. The most relevant parameter for ma-

setup Fig. points nD nA nV

snakes 4 928 3548 0 1764
pitbull 5 314 1287 0 700
cows 6 1002 4626 0 2916
cloth 7 1301 7500 2500 3700
face 8 472 2622 874 1277
dragon 10 343 1472 0 834

Table 3: Complexity of the models used for experiments.
The number of mass points is given for each tetrahe-
dral model. Further, nD , nA, nV denote the numbers
of considered distance-preserving, area-preserving, and
volume-preserving forces per integration step, respec-
tively. In case of nA = 0, the object surface is not con-
sidered in the deformation model (see Sec. 3.3).

setup Fig. surface surface
points faces

snakes 4 46456 88872
pitbull 5 12520 25030
cows 6 8709 17376
cloth 7 1301 2500
face 8 472 874
dragon 10 5202 10001

Table 4: Complexity of the surface meshes visualized in
the experiments. The number of vertices and faces is
given.

terial properties is kD . Larger values as used in the “pit-
bull” experiment result in a stiff material, while smaller
values as used in the “dragon” experiment result in soft
or even fluid-like material.

The stiffness coefficient kV is responsible for the vol-
ume preservation. This parameter also avoids inverted
tetrahedrons. In most experiments, this parameter is set
to avoid the inversion of tetrahedrons. In the “dragon” ex-
periment, kV is significantly larger than kD which results
in volume preservation, while distances between mass
points are not preserved.

The parameter kA is only used for discrete shells and
thin plates. In the case of deformable triangle meshes it is
difficult to map values of individual parameters to certain
properties such as resistance against stretch, shearing, or
bending. We have not further investigated the correlation
between the stiffness coefficients and material properties
for triangulated meshes.

The damping coefficient kd improves the stability of
dynamic simulations. As mentioned in Sec. 3.1, damping
is only applied to distance-preserving forces, thus reduc-
ing internal oscillations of mass points. Experiments have
shown, that there exist optimal values for kd. If kd is too
large, energy is unintentionally added to the simulation.

Tab. 6 gives an performance overview for all experi-
ments. This table illustrates, that the time step for the
integration is usually similar to the computational time
required to compute this time step. If the ratio of both

setup Fig. kD kA kV kd

snakes 4 30 0 40 0.0001
pitbull 5 100 0 1 0.0001
cows 6 20 0 10 0.001
cloth 7 10 10 10 0.001
face 8 5 1 1 0.001
dragon 10 0.01 0 1 0.0001
cubes 3 10 0 20 0.001

Table 5: Stiffness coefficients kD , kA, kV in Nm and
damping coefficient kd.

values is one, the simulation runs at real-time. The given
computational times are used for integration and collision
handling. In cases with more than one tetrahedral mesh,
collision handling is comparatively expensive and con-
sumes up to 50 % of the computational time. In other
environments with only one deformable object, collision
handling is only performed for planar walls and a sphere,
which is negligible. The performance of the visualiza-
tion obviously depends on the complexity of our surface
meshes. If the visualization is too expensive, we usually
perform several simulation steps until the scene is ren-
dered. However, a rendering rate of more than 20 Hz is
always guaranteed.

Fig. time comp. integr. coll. vis.
step [ms] time [ms] [ms]

4 4.0 6.36 66% 34% 19.4
5 2.7 1.44 99% 1% 5.5
6 7.1 8.41 57% 43% 4.6
7 2.6 7.45 99% 1% 0.8
8 2.9 2.29 99% 1% 0.3

10 1.7 1.57 99% 1% 2.6

Table 6: Performance measurements (Intel Pentium 4,
2.8 GHz, 1GB RAM, GeForce 4 Ti 4600). Time steps
for the numerical integration are given. Further, compu-
tational times for integration, collision handling, and vi-
sualization are given. The computational time is used for
integration and collision handling with the given percent-
ages.

7 Conclusion
We have presented a new model that can be used to rep-
resent deformable tetrahedral meshes and deformable tri-
angle meshes. The model considers elastic and plastic
deformation. It handles a large variety of material prop-
erties ranging from stiff to fluid-like behavior. The pro-
posed model extends existing deformable modeling tech-
niques by incorporating efficient ways for volume and
surface area preservation.

The computational efficiency of our approach is simi-
lar to simple mass-spring systems. Thus, environments
of up to several thousand deforming primitives can be
handled at interactive speed. Experiments have been de-

scribed to show the capabilities of our simulation system
with integrated collision handling.

Ongoing work focusses on the integration of the pre-
sented deformable model into computational surgery.
First projects investigate potential applications in hys-
teroscopy simulation and simulation of stent placement.

Acknowledgements
This research is supported by the Swiss National Science
Foundation and by the Swiss National Commission for
Technology and Innovation KTI. The project is part of
the Swiss National Center of Competence in Research
on Computer Aided and Image Guided Medical Interven-
tions (NCCR Co-Me). Further, it is part of KTI project
no. 6310.1 KTS-ET.

References
[1] D. Baraff, A. Witkin, “Dynamic Simulation of Non-

penetrating Flexible Bodies,” Computer Graphics, vol. 26,
no. 2, pp. 303-308, 1992.

[2] D. Baraff, A. Witkin, “Large Steps in Cloth Simulation,”
Proc. of SIGGRAPH’98, Orlando, Florida, pp. 43-54,
1998.

[3] D. Beeman, “Some Multistep Methods for use in Molec-
ular Dynamics Calculations,” Journal of Computational
Physics, vol. 20, pp. 130-139, 1976.

[4] R. Bridson, R. Fedkiw, J. Anderson, “Robust treatment
of collisions, contact and friction for cloth animation,”
Proc. of SIGGRAPH’02, San Antonio, Texas, pp. 594-
603, 2002.

[5] E. Caramana, D. Burton, M. Shashkov, P. Whalen, “The
Construction of Compatible Hydrodynamics algorithms
Utilizing Conservation of Total Energy,” Journal of Com-
putational Physics, vol. 146, pp. 227-262, 1998.

[6] J. Chadwick, D. Haumann, R. Parent, “Layered Construc-
tion for Deformable Animated Characters,” Proc. of SIG-
GRAPH’89, Boston, Massachusetts, pp. 243-252, 1989.

[7] G. Debunne, M. Desbrun, M.-P. Cani, A. Barr, “Adaptive
Simulation of Soft Bodies in Real-Time,” Proc. of Sympo-
sium on Computer Animation, Philadelphia, Pennsylva-
nia, pp. 133-144, 2000.

[8] G. Debunne, M. Desbrun, M.-P. Cani, A. Barr, “Dynamic
Real-Time Deformations Using Space and Time Adaptive
Sampling,” Proc. SIGGRAPH’01, Los Angeles, Califor-
nia, pp. 31-36, 2001.

[9] B. Eberhardt, A. Weber, W. Strasser, “A Fast, Flexible
Particle-System Model for Cloth Draping,” IEEE Com-
puter Graphics and Applications,” vol. 16, no. 5, pp. 52-
59, 1996.

[10] A. Fuhrmann, C. Gross, V. Luckas, “Interactive Anima-
tion of Cloth Including Self Collision Detection,” Proc. of
WSCG’03, University of West Bohemia, Czech Republic,
pp. 141-148, 2003.

[11] C. Gear, “Numerical Initial Value Problems in Ordinary
Differential Equations,” Prentice Hall Inc., Englewood
Cliffs, New Jersey, 1971.

[12] S. Gibson, B. Mitrich, “A Survey of Deformable Mod-
els in Computer Graphics,” Technical Report TR-97-19,
Mitsubishi Electric Research Laboratories MERL, Cam-
bridge, Massachusetts, 1997.

[13] E. Grispun, P. Krysl, P. Schröder, “CHARMS: A Sim-
ple Framework for Adaptive Simulation,” Proc. of SIG-
GRAPH’02, San Antonio, Texas, pp. 281-290, 2002.

[14] E. Grispun, A. Hirani, M. Desbrun, P. Schröder, “Discrete
Shells,” Proc. of Symposium on Computer Animation, San
Diego, California, pp. 62-67, 2003.

[15] M. Hauth, O. Etzmuss, B. Eberhardt, R. Klein, R. Sarlette,
M. Sattler, K. Daubert, J. Kautz, “Cloth Animation and
Rendering,” Eurographics Tutorials, 2002.

[16] R. Hockney, “The Potential Calculation and Some Ap-
plications,” B. Alder, S. Fernbach, M. Rotenberg (eds.):
Methods in Computational Physics, Plasma Physics, Aca-
demic Press, New York, vol. 9, pp. 136-211, 1970.

[17] D. James, D. Pai, “Artdefo. Accurate Real-Time De-
formable Objects,” Proc. of SIGGRAPH’99, Los Angeles,
California, pp. 65-72, 1999.

[18] Z. Kacic-Alesic, M. Nordenstam, D. Bullock, “A Practi-
cal Dynamics System,” Proc. of Symposium on Computer
Animation, San Diego, California, pp. 7-16, 2003.

[19] T. Milliron, R. Jensen, R. Barzel, A. Finkelstein, “A
Framework for Geometric Warps and Deformations,”
ACM Transactions on Graphics, vol. 21, no. 1, pp. 20-51,
2002.

[20] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, B. Cutler,
“Stable Real–Time Deformations,” Proc. of Symposium
on Computer Animation, San Antonio, Texas, pp. 49-54,
2002.

[21] J. O’Brien, A. Bargteil, J. Hodgins, “Graphical Model-
ing and Animation of Ductile Fracture,” Proc. of SIG-
GRAPH’02, San Antonio, Texas, pp. 291-294, 2002.

[22] X. Provot, “Deformation Constraints in a Mass-Spring
Model to Describe Rigid Cloth Behavior,” Graphics In-
terface, pp. 147-154, 1995.

[23] W. Swope, H. Andersen, P. Berenc, K. Wilson, “A Com-
puter Simulation Method for the Calculation of Equilib-
rium Constants for the Formation of Physical Clusters of
Molecules: Application to Small Water Clusters,” Journal
of Chemical Physics,” vol. 76, no. 1, 1982.

[24] D. Terzopoulos, J. Platt, A. Barr, K. Fleischer, “Elastically
Deformable Models,” Proc. of SIGGRAPH’87, Anaheim,
California, pp. 205-214, 1987.

[25] D. Terzopoulos, K. Fleischer, “Deformable Models,” The
Visual Computer, vol. 4, pp. 306-331, 1988.

[26] D. Terzopoulos, K. Fleischer, “Modeling Inelastic Defor-
mation: Viscoelasticity, Plasticity, Fracture,” Proc. of SIG-
GRAPH’88, Atlanta, Georgia, pp. 269-278, 1988.

[27] M. Teschner, B. Heidelberger, D. Pomeranets, M. Müller,
M. Gross, “Optimized Spatial Hashing for Collision De-
tection of Deformable Objects,” Proc. of Vision, Model-
ing, Visualization, Munich, Germany, pp. 47-54, 2003.

[28] L. Verlet, “Computer Experiments on Classical Fluids.
Ii. Equilibrium Correlation Functions,” Physical Review,
vol. 165, pp. 201-204, 1967.

[29] P. Volino, N. Magnenat-Thalmann, “Comparing Effi-
ciency of Integration Methods for Cloth Animation,”
Proc. of Computer Graphics International, Hong Kong,
pp. 265-274, 2001.

[30] X. Wu, M. Downes, T. Goktekin, F. Tendick, “Adaptive
Nonlinear Finite Elements for Deformable Body Simula-
tion Using Dynamic Progressive Meshes,” Proc. of Euro-
graphics’01, Manchester, United Kingdom, pp. 349-358,
2001.

